Iskazna logika 1. Matematička logika u računarstvu. oktobar 2012

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Iskazna logika 1. Matematička logika u računarstvu. oktobar 2012"

Transcription

1 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012

2 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno.

3 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno. Iskaze ćemo obeležavati slovima, recimo p, q, r,.... Umesto iskaz koji je obeležen slovom p, mi ćemo kraće reći iskaz p.

4 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno. Iskaze ćemo obeležavati slovima, recimo p, q, r,.... Umesto iskaz koji je obeležen slovom p, mi ćemo kraće reći iskaz p. Ako iskaz p ima istinitosnu vrednost tačan, onda kažemo i da je iskaz p tačan (i analogno za istinitosnu vrednost netačan ).

5 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno. Iskaze ćemo obeležavati slovima, recimo p, q, r,.... Umesto iskaz koji je obeležen slovom p, mi ćemo kraće reći iskaz p. Ako iskaz p ima istinitosnu vrednost tačan, onda kažemo i da je iskaz p tačan (i analogno za istinitosnu vrednost netačan ). Logički veznici služe da od polaznih iskaza dobijemo složenije iskaze.

6 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu vredost: tačno ili netačno. Iskaze ćemo obeležavati slovima, recimo p, q, r,.... Umesto iskaz koji je obeležen slovom p, mi ćemo kraće reći iskaz p. Ako iskaz p ima istinitosnu vrednost tačan, onda kažemo i da je iskaz p tačan (i analogno za istinitosnu vrednost netačan ). Logički veznici služe da od polaznih iskaza dobijemo složenije iskaze. Logički veznici koje ćemo ovde razmatrati su: i, ili, ako...onda, ako i samo ako (binarni veznici), i nije (unarni veznik):

7 Složeni iskazi konjunkcija iskaza p i q je iskaz p i q,

8 Složeni iskazi konjunkcija iskaza p i q je iskaz p i q, disjunkcija iskaza p i q je iskaz : p ili q,

9 Složeni iskazi konjunkcija iskaza p i q je iskaz p i q, disjunkcija iskaza p i q je iskaz : p ili q, implikacija iskaza p i q je iskaz : ako p onda q,

10 Složeni iskazi konjunkcija iskaza p i q je iskaz p i q, disjunkcija iskaza p i q je iskaz : p ili q, implikacija iskaza p i q je iskaz : ako p onda q, ekvivalencija iskaza p i q je iskaz : p ako i samo ako q,

11 Složeni iskazi konjunkcija iskaza p i q je iskaz p i q, disjunkcija iskaza p i q je iskaz : p ili q, implikacija iskaza p i q je iskaz : ako p onda q, ekvivalencija iskaza p i q je iskaz : p ako i samo ako q, negacija iskaza p je iskaz : nije p.

12 Istinitosna vrednost složenog iskaza Istinitosna vrednost složenog iskaza zavisi od istinitosnih vrednosti iskaza od kojih se taj iskaz sastoji, i to na sledeći način: iskaz p i q je tačan ako i samo ako su i p i q tačni, iskaz p ili q je netačan ako i samo ako su i p i q netačni, iskaz ako p onda q je netačan ako i samo ako je p tačan a q netačan, iskaz p ako i samo ako q je tačan ako i samo ako iskazi p i q imaju istu istinitosnu vrednost, iskaz nije p je tačan ako i samo ako je iskaz p netačan.

13 Sintaksa iskazne logike Azbuka iskazne logike se sastoji od sledećih simbola: skup iskaznih slova S, simboli logičkih operacija:,,,,, pomoćni znaci: (, ).

14 Sintaksa iskazne logike Azbuka iskazne logike se sastoji od sledećih simbola: skup iskaznih slova S, simboli logičkih operacija:,,,,, pomoćni znaci: (, ). Skup iskaznih formula je najmanji skup reči nad azbukom L tako da Sva iskazna slova su iskazne formule; Ako su A i B iskazne formule, onda su to i sledeći izrazi: (A B), (A B), (A B), (A B), ( A)

15 Indukcija po složenosti formula Teorema Neka je O neki podskup skupa svih iskaznih formula Form tako da važe sledeći uslovi S O, Ako formule A i B pripadaju skupu O, tada i formule A B, A B, A B, A B, A pripadaju skupu O. Tada je O = Form.

16 Iskazna algebra Iskazna algebra je algebra I = {, },,,,,, gde su operacije,,, binarne, a unarna operacija, definisane svojim Cayleyevim tablicama na sledeći način: p p

17 Interpretacija iskazne formule Valuacija u iskaznoj logici je svako preslikavanje τ : S {, }. Interpretacija iskaznih formula za datu valuaciju τ jeste preslikavanje v τ : Form {, } tako da ako je p S iskazno slovo, onda v τ (p) = τ(p), v τ (A B) = v τ (A) v τ (B), v τ (A B) = v τ (A) v τ (B), v τ (A B) = v τ (A) v τ (B), v τ (A B) = v τ (A) v τ (B), v τ ( A) = v τ (A). Za v τ (A) kažemo da je vrednost formule u valuaciji τ (ili u interpretaciji v τ ). Ukoliko je v τ (A) =, kažemo da je formula A u toj valuaciji (interpretaciji) tačna, a ako je v τ (A) =, da je netačna.

18 Istinitosna funkcija Teorema Vrednost iskazne formule A u nekoj valuaciji zavisi samo od vrednosti onih iskaznih slova koja figurišu u formuli A.

19 Istinitosna funkcija Teorema Vrednost iskazne formule A u nekoj valuaciji zavisi samo od vrednosti onih iskaznih slova koja figurišu u formuli A. Definicija Istinitosna funkcija je svaka funkcija f : {, } n {, }, gde n 1. Ako je A = A(p 1, p 2,..., p n ) neka formula, onda istinitosna funkcija indukovana sa A jeste funkcija f A : {, } n {, } takva da za sve a 1, a 2,..., a n {, } važi f A (a 1, a 2,..., a n ) = v τ (A), gde je τ valuacija u kojoj je τ(p i ) = a i, za sve i {1, 2,..., n}. Primer... Test A...

20 Vrste iskaznih formula Definicija Kažemo da je iskazna formula A zadovoljiva ako postoji valuacija u kojoj je vrednost te formule tačna, oboriva ako postoji valuacija u kojoj je vrednost te formule netačna, tautologija ili valjana formula je tačna za sve valuacije, kontradikcija ako je njena vrednost netačna za sve valuacije. Test A...

21 1. p p Zakon dvojne negacije 2. p p Tertium non datur 3. (p p) Zakon neprotivrečnosti 4. (p (p q)) q Modus Ponens 5. ((p q) q) p Modus Tollens 6. (p q) ( q p) Kontrapozicija 7. (p q) p q De Morganov zakon za 8. (p q) p q De Morganov zakon za 9. ((p q) (q r)) (p r) Zakon silogizma 10. ( p (q q)) p Reductio ad absurdum 11. p (p q) Ex falso quolibet 12. p (q p) Verum ex quolibet 13. ((p r) (q r)) ((p q) r) Zakon nabrajanja 14. (p q) ((q r) (p r)) Tranzitivnost za 15. ((p q) (q r)) (p r) Tranzitivnost za 16. ((p q) p) p Pierceov zakon

22 Zamena, logička ekvivalentnost Neka je A = A = A(p 1, p 2,..., p n ), i neka su B 1, B 2,..., B n neke formule. Sa A(B 1, B 2,..., B n ) označimo formulu koja nastaje simultanom zamenom formule B i umesto iskaznog slova p i (i {1, 2,..., n}).

23 Zamena, logička ekvivalentnost Neka je A = A = A(p 1, p 2,..., p n ), i neka su B 1, B 2,..., B n neke formule. Sa A(B 1, B 2,..., B n ) označimo formulu koja nastaje simultanom zamenom formule B i umesto iskaznog slova p i (i {1, 2,..., n}). Teorema Neka je A = A = A(p 1, p 2,..., p n ) neka tautologija. Tada za proizvoljne formule B 1, B 2,..., B n važi da je A(B 1, B 2,..., B n ) takodje tautologija.

24 Zamena, logička ekvivalentnost Neka je A = A = A(p 1, p 2,..., p n ), i neka su B 1, B 2,..., B n neke formule. Sa A(B 1, B 2,..., B n ) označimo formulu koja nastaje simultanom zamenom formule B i umesto iskaznog slova p i (i {1, 2,..., n}). Teorema Neka je A = A = A(p 1, p 2,..., p n ) neka tautologija. Tada za proizvoljne formule B 1, B 2,..., B n važi da je A(B 1, B 2,..., B n ) takodje tautologija. Definicija Za dve formule A i B kažemo da su logički ekvivalentne ako je formula A B tautologija. U tom slučaju pišemo A B.

25 Najlakše tautologije 1. A A A Idempotentnost konjunkcije 2. A A A Idempotentnost disjunkcije 3. A B B A Komutativnost konjunkcije 4. A B B A Komutativnost disjunkcije 5. A B B A Komutativnost ekvivalencije 6. (A B) C A (B C) Asocijativnost konjunkcije 7. (A B) C A (B C) Asocijativnost disjunkcije 8. (A B) C A (B C) Asocijativnost ekvivalencije 9. A (A B) A Apsorpcija prema 10. A (A B) A Apsorpcija prema 11. A (B C) (A B) (A C) Distributivnost prema 12. A (B C) (A B) (A C) Distributivnost prema

26 Odnos medju veznicima A B A B A B (A B) A B A B A B (A B) A B ( A B) A B ( A B) A B (A B) (B A) A B ( A B) ( B A)

27 Potformule ekvivalencijska transformacija formula: postupak kada se od jedne formule konstruiše lanac ekvivalentnih formula...

28 Potformule ekvivalencijska transformacija formula: postupak kada se od jedne formule konstruiše lanac ekvivalentnih formula... Definicija Neka je F neka formula. Skup potformula formule F definišemo kao najmanji skup formula koji zadovoljava sledeća dva uslova: svaka formula je sama sebi potformula; ako je F jednaka nekoj od formula A B, A B, A B, A B, onda je svaka od podformula formula A i svaka potformula formule B ujedno i potformula od F; ako je F = A, onda je svaka potformula formule A ujedno i potformula od F.

29 Potformule ekvivalencijska transformacija formula: postupak kada se od jedne formule konstruiše lanac ekvivalentnih formula... Definicija Neka je F neka formula. Skup potformula formule F definišemo kao najmanji skup formula koji zadovoljava sledeća dva uslova: svaka formula je sama sebi potformula; ako je F jednaka nekoj od formula A B, A B, A B, A B, onda je svaka od podformula formula A i svaka potformula formule B ujedno i potformula od F; ako je F = A, onda je svaka potformula formule A ujedno i potformula od F. Neka je A neka formula i C njena potformula. Ako je D neka formula tako da je C D tada je A A[C D].

30 Logičke konstante Proširena azbuka iskazne logike L se dobija dodavanjem dva simbola logičkih konstanti i standardnoj azbuci L. Skup iskaznih formula Form je najmanji skup reči nad azbukom L tako da važi.1 Sva iskazna slova i simboli logičkih konstanti i su iskazne formule;.2 Ako su A i B iskazne formule, onda su to i sledeći izrazi: (A B), (A B), (A B), (A B), ( A)

31 Logičke konstante Proširena azbuka iskazne logike L se dobija dodavanjem dva simbola logičkih konstanti i standardnoj azbuci L. Skup iskaznih formula Form je najmanji skup reči nad azbukom L tako da važi.1 Sva iskazna slova i simboli logičkih konstanti i su iskazne formule;.2 Ako su A i B iskazne formule, onda su to i sledeći izrazi: (A B), (A B), (A B), (A B), ( A) Valuacija τ odnosno odgovarajuća interpretacija v τ iskaznih formula na proširenoj azbuci se definiše na isti način kao na standardnoj azbuci, s tim da za svaku valuaciju τ važi da je v τ ( ) = i v τ ( ) =.

32 Tautologije sa konstantama A A A A A A A A A A A A A A A A A A A A A A A A

33 Jedan primer p q r f

34 Disjunktivna normalna forma Neka istinitosna funkcija f : {, } n {, } nije kontradikcija (tj. nema stalno vrednost ). Tada za sve x 1,..., x n {, } važi: f (x 1,..., x n ) = = {x 1 a 1 x n a n : a 1,..., a n {, } n, f (a 1,..., a n ) = } gde je x i znači x i, a x i znači x i.

35 Konjunktivna normalna forma Neka istinitosna funkcija f : {, } n {, } nije tautologija (tj. nema stalno vrednost ). Tada za sve x 1,..., x n {, } važi: f (x 1,..., x n ) = = {x 1 a 1 x n a n : a 1,..., a n {, } n, f (a 1,..., a n ) = } gde je x i znači x i, a x i znači x i.

36 Baze iskazne algebre Kao posledicu dobijamo: Za svaku iskaznu formulu A postoji njoj ekvivalentna iskazna formula B, koja od logičkih veznika ima samo,, ili, ili, ili,.

37 Baze iskazne algebre Kao posledicu dobijamo: Za svaku iskaznu formulu A postoji njoj ekvivalentna iskazna formula B, koja od logičkih veznika ima samo,, ili, ili, ili,. Definicija Neka je F neki skup istinitosnih funkcija. Kažemo da je F baza iskazne algebre I ako se svaka istinitosna funkcija može dobiti kompozicijom funkcija iz skupa F.

38 Jednoelementne baze Shefferova operacija (ili operacija nand), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q).

39 Jednoelementne baze Shefferova operacija (ili operacija nand), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q). Lukasiewiczeva operacija (ili operacija nor), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q).

40 Jednoelementne baze Shefferova operacija (ili operacija nand), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q). Lukasiewiczeva operacija (ili operacija nor), u oznaci je binarna operacija skupa {, } koja se definiše sa p q := (p q). Teorema Jedine binarne operacije skupa {, } koje, svaka za sebe, čine jednoelementnu bazu iskazne algebre jesu Shefferova operacije odnosno Lukasiewiczeva operacija.

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin Matematika (PITUP) FOI, Varaždin Dio II Bez obzira kako nam se neki teorem činio korektnim, ne možemo biti sigurni da ne krije neku nesavršenost sve dok se nam ne čini prekrasnim G. Boole The moving power

More information

POSLOVNA MATEMATIKA. (smerovi: Agroekonomski i Agroturizam i ruralni razvoj ) 2015., Novi Sad

POSLOVNA MATEMATIKA. (smerovi: Agroekonomski i Agroturizam i ruralni razvoj ) 2015., Novi Sad dr Snežana Matić-Kekić POSLOVNA MATEMATIKA (smerovi: Agroekonomski i Agroturizam i ruralni razvoj ) 2015., Novi Sad EDICIJA OSNOVNI UDŽBENIK Osnivač i izdavač edicije Poljoprivredni fakultet, Novi Sad,

More information

OSNOVE MATEMATIČKE LOGIKE

OSNOVE MATEMATIČKE LOGIKE SVEUČILIŠTE U SPLITU FILOZOFSKI FAKULTET Nives Baranović, predavač OSNOVE MATEMATIČKE LOGIKE Recenzenti: dr. sc. Sanja Rukavina, izv. prof., Sveučilište u Rijeci, Odjel za matematiku dr. sc. Damir Vukičević,

More information

Logika višeg reda i sustav Isabelle

Logika višeg reda i sustav Isabelle Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odjel Tajana Ban Kirigin Logika višeg reda i sustav Isabelle Magistarski rad Zagreb, 2004. Sveučilište u Zagrebu Prirodoslovno-matematički

More information

Red veze za benzen. Slika 1.

Red veze za benzen. Slika 1. Red veze za benzen Benzen C 6 H 6 je aromatično ciklično jedinjenje. Njegove dve rezonantne forme (ili Kekuléove structure), prema teoriji valentne veze (VB) prikazuju se uobičajeno kao na slici 1 a),

More information

Karakterizacija problema zadovoljenja uslova širine 1

Karakterizacija problema zadovoljenja uslova širine 1 UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Aleksandar Prokić Karakterizacija problema zadovoljenja uslova širine 1 -master rad- Mentor: dr Petar Marković

More information

AKSIOME TEORIJE SKUPOVA

AKSIOME TEORIJE SKUPOVA MAT-KOL (Banja Luka) ISSN 0354/6969 XV(1)(2009), 17-25 AKSIOME TEORIJE SKUPOVA Duško Bogdanić 1, Bojan Nikolić 2 i Daniel A. Romano 2 Sažetak: Postoji više od jedne mogućnosti aksiomatizacije teorije skupova.

More information

Uvod u analizu (M3-02) 05., 07. i 12. XI dr Nenad Teofanov. principle) ili Dirihleov princip (engl. Dirichlet box principle).

Uvod u analizu (M3-02) 05., 07. i 12. XI dr Nenad Teofanov. principle) ili Dirihleov princip (engl. Dirichlet box principle). Uvod u analizu (M-0) 0., 07. i. XI 0. dr Nenad Teofanov. Kardinalni broj skupa R U ovom predavanju se razmatra veličina skupa realnih brojeva. Jasno, taj skup ima beskonačno mnogo elemenata. Pokazaće se,

More information

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Ivan Marinković Klasifikacija H-matrica metodom skaliranja i njena primena u odred ivanju oblasti konvergencije

More information

Metrički prostori i Riman-Stiltjesov integral

Metrički prostori i Riman-Stiltjesov integral Metrički prostori i Riman-Stiltjesov integral Sadržaj 1 Metrički prostori 3 1.1 Primeri metričkih prostora................. 3 1.2 Konvergencija nizova i osobine skupova...................... 12 1.3 Kantorov

More information

AKSIOM IZBORA I EKVIVALENCIJE

AKSIOM IZBORA I EKVIVALENCIJE Sveučilište J.J. Strossmayera Odjel za matematiku Preddiplomski sveučilišni studij matematike Igor Sušić AKSIOM IZBORA I EKVIVALENCIJE Završni rad Osijek, 2013. Sveučilište J.J. Strossmayera Odjel za matematiku

More information

Hamiltonovi grafovi i digrafovi

Hamiltonovi grafovi i digrafovi UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Slobodan Nogavica Hamiltonovi grafovi i digrafovi Master rad Novi Sad, 2016 Sadržaj Predgovor...2 Glava 1. Uvod...3

More information

Uvod u relacione baze podataka

Uvod u relacione baze podataka Uvod u relacione baze podataka Ana Spasić 2. čas 1 Mala studentska baza dosije (indeks, ime, prezime, datum rodjenja, mesto rodjenja, datum upisa) predmet (id predmeta, sifra, naziv, bodovi) ispitni rok

More information

AUTOMATSKE GRUPE I STRUKTURE PREDSTAVLJIVE KONAČNIM AUTOMATIMA

AUTOMATSKE GRUPE I STRUKTURE PREDSTAVLJIVE KONAČNIM AUTOMATIMA AUTOMATSKE GRUPE I STRUKTURE PREDSTAVLJIVE KONAČNIM AUTOMATIMA master teza Autor: Atila Fešiš Mentor: dr Igor Dolinka Novi Sad, 2013. Sadržaj Predgovor iii 1 Osnovni pojmovi 1 1.1 Konačni automati i regularni

More information

Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu

Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu 1. Izdvojiti ime i prezime studenata koji su rođeni u Beogradu. (DOSIJE WHERE MESTO_RODJENJA='Beograd')[IME, PREZIME] where mesto_rodjenja='beograd'

More information

Krive u prostoru Minkovskog

Krive u prostoru Minkovskog UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Maja Jolić Krive u prostoru Minkovskog - master rad - Mentor: dr Sanja Konjik Novi Sad, 2016 Predgovor Na vratima

More information

Projektovanje paralelnih algoritama II

Projektovanje paralelnih algoritama II Projektovanje paralelnih algoritama II Primeri paralelnih algoritama, I deo Paralelni algoritmi za množenje matrica 1 Algoritmi za množenje matrica Ovde su data tri paralelna algoritma: Direktan algoritam

More information

Banach Tarskijev paradoks

Banach Tarskijev paradoks Banach Tarskijev paradoks Matija Bašić Sažetak Banach Tarskijev paradoks je teorem koji kaže da su bilo koje dvije kugle u R 3 jednakorastavljive, u smislu da postoje particije tih kugli u jednak broj

More information

Dr. Željko Jurić: Matematička logika i teorija izračunljivosti Radna skripta za istoimeni kurs na Elektrotehničkom fakultetu u Sarajevu.

Dr. Željko Jurić: Matematička logika i teorija izračunljivosti Radna skripta za istoimeni kurs na Elektrotehničkom fakultetu u Sarajevu. Dr. Željko Jurić: Matematička logika i teorija izračunljivosti Radna skripta za istoimeni kurs na Elektrotehničkom fakultetu u Sarajevu (akademska godina 2015/16) Funkcijske relacije i funkcije (preslikavanja)

More information

Prsten cijelih brojeva

Prsten cijelih brojeva SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ODJEL ZA MATEMATIKU Marijana Pravdić Prsten cijelih brojeva Diplomski rad Osijek, 2017. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ODJEL ZA MATEMATIKU

More information

Formule za udaljenost točke do pravca u ravnini, u smislu lp - udaljenosti math.e Vol 28.

Formule za udaljenost točke do pravca u ravnini, u smislu lp - udaljenosti math.e Vol 28. 1 math.e Hrvatski matematički elektronički časopis Formule za udaljenost točke do pravca u ravnini, u smislu lp - udaljenosti Banachovi prostori Funkcija udaljenosti obrada podataka optimizacija Aleksandra

More information

Danijela Popović PRIMENA DIFERENCIJALNE GEOMETRIJE U TEORIJI RELATIVNOSTI -master rad-

Danijela Popović PRIMENA DIFERENCIJALNE GEOMETRIJE U TEORIJI RELATIVNOSTI -master rad- UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Danijela Popović PRIMENA DIFERENCIJALNE GEOMETRIJE U TEORIJI RELATIVNOSTI -master rad- Mentor: dr Nevena Pušić

More information

KONDICIONALI, KONTEKST I ZNANJE

KONDICIONALI, KONTEKST I ZNANJE UNIVERZITET U BEOGRADU FILOZOFSKI FAKULTET Jelena J. Ostojić KONDICIONALI, KONTEKST I ZNANJE doktorska disertacija Beograd, 2015 UNIVERSITY OF BELGRADE FACULTY OF PHILOSOPHY Jelena J. Ostojić CONDITIONALS,

More information

Upoznavanje s Kategorijama

Upoznavanje s Kategorijama Upoznavanje s Kategorijama Kultura komunikacije Februar 2013. Siže Stefan Panić Ovaj tekst je plod saradnje profesora, asistenta i grupe studenata koji su pohad ali kurs iz predmeta Kultura komunikacije

More information

THEORIA 3 UDK 1 TRI PARADOKSA

THEORIA 3 UDK 1 TRI PARADOKSA THEORIA 3 UDK 1 BIBLID 0351 2274 : (2009) : 52 : p. 5-16 Originalni naučni rad Original Scientific Paper Vladan Đorđević TRI PARADOKSA APSTRAKT: Mada na prvi pogled izgleda da tri paradoksa kojima ću se

More information

KVADRATNE INTERPOLACIJSKE METODE ZA JEDNODIMENZIONALNU BEZUVJETNU LOKALNU OPTIMIZACIJU 1

KVADRATNE INTERPOLACIJSKE METODE ZA JEDNODIMENZIONALNU BEZUVJETNU LOKALNU OPTIMIZACIJU 1 MAT KOL (Banja Luka) ISSN 0354 6969 (p), ISSN 1986 5228 (o) Vol. XXII (1)(2016), 5 19 http://www.imvibl.org/dmbl/dmbl.htm KVADRATNE INTERPOLACIJSKE METODE ZA JEDNODIMENZIONALNU BEZUVJETNU LOKALNU OPTIMIZACIJU

More information

Jedna familija trokoračnih postupaka šestog reda za rešavanje nelinearnih jednačina

Jedna familija trokoračnih postupaka šestog reda za rešavanje nelinearnih jednačina UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Ester Jambor Jedna familija trokoračnih postupaka šestog reda za rešavanje nelinearnih jednačina master rad

More information

University of East Sarajevo Mathematical Society of the Republic of Srpska. PROCEEDINGS Trebinje, June 2014

University of East Sarajevo Mathematical Society of the Republic of Srpska. PROCEEDINGS Trebinje, June 2014 Redakcija Prof. dr Milenko Pikula, Univerzitet u Istočnom Sarajevu, BiH Prof. dr Žarko Mijajlović, Matematički fakultet Beograd, Republika Srbija Akademik prof. dr Svjetlana Terzić, Univerzitet Crne Gore,

More information

VREMENSKE SERIJE U FINANSIJAMA: ARCH I GARCH

VREMENSKE SERIJE U FINANSIJAMA: ARCH I GARCH UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Zoranka Desnica VREMENSKE SERIJE U FINANSIJAMA: ARCH I GARCH -završni rad - Novi Sad, oktobar 009. PREDGOVOR

More information

Modified Zagreb M 2 Index Comparison with the Randi} Connectivity Index for Benzenoid Systems

Modified Zagreb M 2 Index Comparison with the Randi} Connectivity Index for Benzenoid Systems CROATICA CHEMICA ACTA CCACAA 7 (2) 83 87 (2003) ISSN-00-3 CCA-2870 Note Modified Zagreb M 2 Index Comparison with the Randi} Connectivity Index for Benzenoid Systems Damir Vuki~evi} a, * and Nenad Trinajsti}

More information

Matrice traga nula math.e Vol. 26. math.e. Hrvatski matematički elektronički časopis. Matrice traga nula. komutator linearna algebra. Sažetak.

Matrice traga nula math.e Vol. 26. math.e. Hrvatski matematički elektronički časopis. Matrice traga nula. komutator linearna algebra. Sažetak. 1 math.e Hrvatski matematički elektronički časopis komutator linearna algebra Marijana Kožul i Rajna Rajić Matrice traga nula marijana55@gmail.com, rajna.rajic@rgn.hr Rudarsko-geološko-naftni fakultet,

More information

Logika, skupovi i diskretna matematika

Logika, skupovi i diskretna matematika Logika, skupovi i diskretna matematika Daniel Kressner 1 January 9, 2006 1 kressner@math.hr corrections and suggestions are always welcome. Contents 1 Sets and Functions 1 1.1 Basic definitions and properties

More information

Teorem o reziduumima i primjene. Završni rad

Teorem o reziduumima i primjene. Završni rad Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Matej Petrinović Teorem o reziduumima i primjene Završni rad Osijek, 207. Sveučilište J. J. Strossmayera

More information

Hamiltonov ciklus i Eulerova tura

Hamiltonov ciklus i Eulerova tura Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Maja Ivić Hamiltonov ciklus i Eulerova tura Završni rad Osijek, 2009. Sveučilište J.J. Strossmayera u Osijeku

More information

DYNAMIC HEAT TRANSFER IN WALLS: LIMITATIONS OF HEAT FLUX METERS

DYNAMIC HEAT TRANSFER IN WALLS: LIMITATIONS OF HEAT FLUX METERS DYNAMI EAT TRANFER IN WALL: LIMITATION OF EAT FLUX METER DINAMIČKI PRENO TOPLOTE U ZIDOVIMA: OGRANIČENJA MERAČA TOPLOTNOG PROTOKA (TOPLOTNOG FLUKA) 1 I. Naveros a, b,. Ghiaus a a ETIL UMR58, INA-Lyon,

More information

UOPŠTENI INVERZI PROIZVODA OPERATORA

UOPŠTENI INVERZI PROIZVODA OPERATORA UNIVERZITET U NIŠU PRIRODNO MATEMATIČKI FAKULTET ODSEK ZA MATEMATIKU I INFORMATIKU Nebojša Č. Dinčić UOPŠTENI INVERZI PROIZVODA OPERATORA Doktorska disertacija Niš, 2011. PODACI O AUTORU Nebojša Dinčić

More information

BERNSTEINOV ALGORITAM ZA VERTIKALNU 3NF NORMALIZACIJU SINTEZOM

BERNSTEINOV ALGORITAM ZA VERTIKALNU 3NF NORMALIZACIJU SINTEZOM Matija Varga, mag. inf. univ. spec. oec. Srednja škola Sesvete Učiteljski fakultet Zagreb (vanjski suradnik) maavarga@gmail.com UDK 004.65 Pregledni članak BERNSTEINOV ALGORITAM ZA VERTIKALNU 3NF NORMALIZACIJU

More information

Vrednovanje unit-linked polisa u životnom osiguranju

Vrednovanje unit-linked polisa u životnom osiguranju UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Tamara Raičević Vrednovanje unit-linked polisa u životnom osiguranju -master rad- Novi Sad, 2017. 2 Predgovor

More information

O aksiomu izbora, cipelama i čarapama

O aksiomu izbora, cipelama i čarapama O aksiomu izbora, cipelama i čarapama Aksiom izbora može se izreći u raznim ekvivalentnim formama. Dokazi ekvivalencije aksioma izbora npr. sa Zornovom lemom, ili pak sa Zermelovim teoremom o dobrom uredaju,

More information

Algoritam za množenje ulančanih matrica. Alen Kosanović Prirodoslovno-matematički fakultet Matematički odsjek

Algoritam za množenje ulančanih matrica. Alen Kosanović Prirodoslovno-matematički fakultet Matematički odsjek Algoritam za množenje ulančanih matrica Alen Kosanović Prirodoslovno-matematički fakultet Matematički odsjek O problemu (1) Neka je A 1, A 2,, A n niz ulančanih matrica duljine n N, gdje su dimenzije matrice

More information

1.1 Algoritmi. 2 Uvod

1.1 Algoritmi. 2 Uvod GLAVA 1 Uvod Realizacija velikih računarskih sistema je vrlo složen zadatak iz mnogih razloga. Jedan od njih je da veliki programski projekti zahtevaju koordinisani trud timova stručnjaka različitog profila.

More information

Univerzitet u Beogradu. Matematički fakultet. Master rad. Principi matematičke indukcije i rekurzije u nastavi. Matematike i računarstva

Univerzitet u Beogradu. Matematički fakultet. Master rad. Principi matematičke indukcije i rekurzije u nastavi. Matematike i računarstva Univerzitet u Beogradu Matematički fakultet Master rad Principi matematičke indukcije i rekurzije u nastavi Matematike i računarstva Mentor: dr. Nebojša Ikodinović Kandidat: Ivanka Jovanović Beograd, 2013.

More information

Funkcijske jednadºbe

Funkcijske jednadºbe MEMO pripreme 2015. Marin Petkovi, 9. 6. 2015. Funkcijske jednadºbe Uvod i osnovne ideje U ovom predavanju obradit emo neke poznate funkcijske jednadºbe i osnovne ideje rje²avanja takvih jednadºbi. Uobi

More information

UNIVERZITET U BEOGRADU MATEMATItICI FAKULTET

UNIVERZITET U BEOGRADU MATEMATItICI FAKULTET UNIVERZITET U BEOGRADU MATEMATItICI FAKULTET Radoi V. Bakit PRIMENA ARITMETI(KE FUNKCIJE W U TEORIJI GRUPA Magistarski rad Mentor: Prof. Dr. iarko Mijajlovie Matematidki fakultet Beograd elanovi komisije:

More information

THE BOUNDARY VALUES OF THE PUNCH DIAMETER IN THE TECHNOLOGY OF THE OPENING MANUFACTURE BY PUNCHING UDC

THE BOUNDARY VALUES OF THE PUNCH DIAMETER IN THE TECHNOLOGY OF THE OPENING MANUFACTURE BY PUNCHING UDC FACTA UNIVERSITATIS Series: Mechanical Engineering Vol.1, N o 7, 2000, pp. 887-891 THE BOUNDARY VALUES OF THE PUNCH DIAMETER IN THE TECHNOLOGY OF THE OPENING MANUFACTURE BY PUNCHING UDC 621.962 621.744.52

More information

SITO POLJA BROJEVA. Dario Maltarski PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc. dr. sc.

SITO POLJA BROJEVA. Dario Maltarski PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc. dr. sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Dario Maltarski SITO POLJA BROJEVA Diplomski rad Voditelj rada: Doc. dr. sc. Filip Najman Zagreb, rujan 2014. Ovaj diplomski

More information

Nekoliko kombinatornih dokaza

Nekoliko kombinatornih dokaza MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) http://www.imvibl.org/dmbl/dmbl.htm Vol. XXII (2)(2016), 141-147 Nekoliko kombinatornih dokaza Duško Jojić Prirodno-matematički fakultet, Univerzitet

More information

DISKRETNI LOGARITAM. 1 Uvod. MAT-KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XVII (2)(2011), 43-52

DISKRETNI LOGARITAM. 1 Uvod. MAT-KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XVII (2)(2011), 43-52 MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) Vol. XVII (2)(2011), 43-52 DISKRETNI LOGARITAM Bernadin Ibrahimpašić 1, Dragana Kovačević 2 Abstract U ovom članku se opisuje pojam diskretnog

More information

Hamiltonov princip i parcijalne diferencijalne jednačine

Hamiltonov princip i parcijalne diferencijalne jednačine UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Nikola Dukanović Hamiltonov princip i parcijalne diferencijalne jednačine -master rad- Novi Sad, 2014. Sadržaj

More information

Geometrija (I smer) deo 3: Linije u ravni

Geometrija (I smer) deo 3: Linije u ravni Geometrija (I smer) deo 3: Linije u ravni Srdjan Vukmirović Matematički fakultet, Beograd 30. oktobar 2012. Prava u ravni Prava p je zadata tačkom P(x 0, y 0 ) p i normalnim vektorom n p = (a, b). Odatle

More information

Linearno programiranje i primjene

Linearno programiranje i primjene Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Rebeka Čordaš Linearno programiranje i primjene Diplomski rad Osijek, 2014. Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Rebeka

More information

Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku

Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku Valentina Volmut Ortogonalni polinomi Diplomski rad Osijek, 2016. Sveučilište Josipa Jurja Strossmayera u Osijeku Odjel za matematiku

More information

Nelder Meadova metoda: lokalna metoda direktne bezuvjetne optimizacije

Nelder Meadova metoda: lokalna metoda direktne bezuvjetne optimizacije Osječki matematički list (2), 131-143 Nelder Meadova metoda: lokalna metoda direktne bezuvjetne optimizacije Lucijana Grgić, Kristian Sabo Sažetak U radu je opisana poznata Nelder Meadova metoda, koja

More information

Grafovi. Osnovni algoritmi sa grafovima. Predstavljanje grafova

Grafovi. Osnovni algoritmi sa grafovima. Predstavljanje grafova Grafovi Osnovni algoritmi sa grafovima U ovom poglavlju će biti predstavljene metode predstavljanja i pretraživanja grafova. Pretraživanja grafa podrazumeva sistematično kretanje vezama grafa, tako da

More information

interna skripta OSNOVE POLUVODIČKE DIGITALNE ELEKTRONIKE prof. dr.sc. A. Hamzić

interna skripta OSNOVE POLUVODIČKE DIGITALNE ELEKTRONIKE prof. dr.sc. A. Hamzić prof. dr.sc. A. Hamzić OSNOVE POLUVODIČKE DIGITALNE ELEKTRONIKE Fizički odsjek, Prirodoslovno-matematički fakultet, Zagreb, kolegij: MIKROELEKTRONIKA siječanj, 2010. 1 OSNOVE POLUVODIČKE DIGITALNE ELEKTRONIKE

More information

MATEMATIČKA REZERVA ŽIVOTNIH OSIGURANJA

MATEMATIČKA REZERVA ŽIVOTNIH OSIGURANJA UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET Master rad MATEMATIČKA REZERVA ŽIVOTNIH OSIGURANJA Mentor: Student: Prof. dr Slobodanka Janković Aleksandra Raičević Br. indeksa: 153/213 Beograd, jul 215. Sadržaj

More information

Zadatci sa ciklusima. Zadatak1: Sastaviti progra koji određuje z ir prvih prirod ih rojeva.

Zadatci sa ciklusima. Zadatak1: Sastaviti progra koji određuje z ir prvih prirod ih rojeva. Zadatci sa ciklusima Zadatak1: Sastaviti progra koji određuje z ir prvih prirod ih rojeva. StrToIntDef(tekst,broj) - funkcija kojom se tekst pretvara u ceo broj s tim da je uvedena automatska kontrola

More information

PARALELNI ALGORITMI ZA PROBLEM GRUPIRANJA PODATAKA

PARALELNI ALGORITMI ZA PROBLEM GRUPIRANJA PODATAKA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Anto Čabraja PARALELNI ALGORITMI ZA PROBLEM GRUPIRANJA PODATAKA Diplomski rad Voditelj rada: doc. dr. sc. Goranka Nogo Zagreb,

More information

EXPERIMENTAL INVESTIGATION OF EXTRUSION SPEED AND TEMPERATURE EFFECTS ON ARITHMETIC MEAN SURFACE ROUGHNESS IN FDM- BUILT SPECIMENS

EXPERIMENTAL INVESTIGATION OF EXTRUSION SPEED AND TEMPERATURE EFFECTS ON ARITHMETIC MEAN SURFACE ROUGHNESS IN FDM- BUILT SPECIMENS EXPERIMENTAL INVESTIGATION OF EXTRUSION SPEED AND TEMPERATURE EFFECTS ON ARITHMETIC MEAN SURFACE ROUGHNESS IN FDM- BUILT SPECIMENS Ognjan Lužanin *, Dejan Movrin, Miroslav Plančak University of Novi Sad,

More information

Pojam funkcije u nastavi matematike nekad i danas

Pojam funkcije u nastavi matematike nekad i danas Pojam funkcije u nastavi matematike... Uvod Pojam funkcije u nastavi matematike nekad i danas Mirjana Marjanović Matić 1 Matematika se u školi predaje od davnina pa vjerujemo kako bi se svi složili da

More information

Uvod u algoritamske tehnike

Uvod u algoritamske tehnike Uvod u algoritamske tehnike Tema i nacrt predavanja: Razmatraćemo različite pristupe u rešavanju programerskih problema. Fokusiraćemo se na tehnike za konstrukciju algoritama, na osobine, primenljivost

More information

ИЗБОРНОМ ВЕЋУ ПОЉОПРИВРЕДНОГ ФАКУЛТЕТА УНИВЕРЗИТЕТА У БЕОГРАДУ

ИЗБОРНОМ ВЕЋУ ПОЉОПРИВРЕДНОГ ФАКУЛТЕТА УНИВЕРЗИТЕТА У БЕОГРАДУ ИЗБОРНОМ ВЕЋУ ПОЉОПРИВРЕДНОГ ФАКУЛТЕТА УНИВЕРЗИТЕТА У БЕОГРАДУ Одлуком Изборног већа Пољопривредног факултета од 29.06.2017. године одређени смо у Комисију за писање реферата о кандидатима који учествују

More information

BAJESOVE MREŽE - MODELIRANJE U NETICI I PRIMER PRIMENE NA TENIS

BAJESOVE MREŽE - MODELIRANJE U NETICI I PRIMER PRIMENE NA TENIS UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA NOVI SAD Ivana Dojić BAJESOVE MREŽE - MODELIRANJE U NETICI I PRIMER PRIMENE NA TENIS - master rad - Mentor: dr Jelena Ivetić Novi Sad, 2016. УНИВЕРЗИТЕТ

More information

Pitagorine trojke. Uvod

Pitagorine trojke. Uvod Pitagorine trojke Uvod Ivan Soldo 1, Ivana Vuksanović 2 Pitagora, grčki filozof i znanstvenik, često se prikazuje kao prvi pravi matematičar. Ro - den je na grčkom otoku Samosu, kao sin bogatog i zaslužnog

More information

Bihevioristička ekonomija blagostanja

Bihevioristička ekonomija blagostanja Permission for translation and publication: 22 April 2009. UDC 330.342.146 DOI: 10.2298/PAN1002123B Original scientific paper B. Douglas Bernheim Department of Economics, Stanford University, USA bernheim@stanford.edu

More information

Šta je to mašinsko učenje?

Šta je to mašinsko učenje? MAŠINSKO UČENJE Šta je to mašinsko učenje? Disciplina koja omogućava računarima da uče bez eksplicitnog programiranja (Arthur Samuel 1959). 1. Generalizacija znanja na osnovu prethodnog iskustva (podataka

More information

Zbirka ispitnih zadataka iz Baza Podataka 1 Ispiti i kolokvijumi u periodu

Zbirka ispitnih zadataka iz Baza Podataka 1 Ispiti i kolokvijumi u periodu Beogradski univerzitet Elektrotehnički fakultet Miloš Cvetanović Zbirka ispitnih zadataka iz Baza Podataka 1 Ispiti i kolokvijumi u periodu 2007-2011 Beograd, Januar 2012 Ispiti... 3 Januarski ispitni

More information

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC.

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC. Boolean Expression Forms: Sum-of-products (SOP) Write an AND term for each input combination that produces a 1 output. Write the input variable if its value is 1; write its complement otherwise. OR the

More information

TemidaLib sistem za rad sa velikim brojevima TemidaLib Multiprecision Arithmetic Library

TemidaLib sistem za rad sa velikim brojevima TemidaLib Multiprecision Arithmetic Library TemidaLib sistem za rad sa velikim brojevima TemidaLib Multiprecision Arithmetic Library Jelena Tomašević i Milena Vujošević-Janičić Matematički fakultet, Univerzitet u Beogradu Studentski trg 16, 11000

More information

SINTAKSNA I ALGORITAMSKA NOTACIJA

SINTAKSNA I ALGORITAMSKA NOTACIJA B-1 Prilog B SINTAKSNA I ALGORITAMSKA NOTACIJA B-2 B.1 Sintaksna notacija sa zagradama U osnovi svake sintaksne notacije nalaze se slede}i elementi: sintaksni pojam: leksi~ka konstrukcija koja se defini{e;

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

PREDAVANJA. Igor Vujović. Split, 2016.

PREDAVANJA. Igor Vujović. Split, 2016. SVEUČILIŠTE U SPLITU POMORSKI FAKULTET U SPLITU TEHNIČKI PROGRAMSKI PAKETI PREDAVANJA Igor Vujović Split, 2016. PREDGOVOR Danas se smatra da tehnički obrazovana osoba mora imati određena znanja iz programiranja

More information

Primena metode inverzne poljske notacije i interpolacije u simboličkim izračunavanjima. Doktorska disertacija

Primena metode inverzne poljske notacije i interpolacije u simboličkim izračunavanjima. Doktorska disertacija Primena metode inverzne poljske notacije i interpolacije u simboličkim izračunavanjima Doktorska disertacija Sadržaj Sadržaj Predgovor v vii 1 Uvod 1 1.1 Inverzna poljska notacija............................

More information

ARGO beleške / ARGO Notes

ARGO beleške / ARGO Notes ARGO beleške / ARGO Notes ARGO Grupa za automatsko rezonovanje/automated Reasoning Group Matematički fakultet/faculty of Mathematics Univerzitet u Beogradu/University of Belgrade Studentski trg 16 11000

More information

Teorija haosa i fraktalna analiza biosignala

Teorija haosa i fraktalna analiza biosignala MATEMATIČKI FAKULTET UNIVERZITET U BEOGRADU Teorija haosa i fraktalna analiza biosignala Doktorska disertacija Slađana Z. Spasić Beograd, 2007. Mentor: Prof. dr Aleksandar Jovanović, vanredni profesor

More information

Problem četiri boje. Four colors problem

Problem četiri boje. Four colors problem Osječki matematički list 10(2010), 21 29 21 Problem četiri boje Iva Gregurić, Antoaneta Klobučar Sažetak. U ovom članku pokušat ćemo približiti učenicima srednjih škola jedan od zanimljivijih problema

More information

FOCAL LENGTH DETERMINATION FOR THE 60 cm TELESCOPE AT ASTRONOMICAL STATION VIDOJEVICA

FOCAL LENGTH DETERMINATION FOR THE 60 cm TELESCOPE AT ASTRONOMICAL STATION VIDOJEVICA Serb. Astron. J. 184 (2012), 97-104 UDC 520.2 13 DOI: 10.2298/SAJ1284097C Professional paper FOCAL LENGTH DETERMINATION FOR THE 60 cm TELESCOPE AT ASTRONOMICAL STATION VIDOJEVICA Z. Cvetković, G. Damljanović,

More information

Summary Modeling of nonlinear reactive electronic circuits using artificial neural networks

Summary Modeling of nonlinear reactive electronic circuits using artificial neural networks Summary Modeling of nonlinear reactive electronic circuits using artificial neural networks The problem of modeling of electronic components and circuits has been interesting since the first component

More information

Prvo predavanje iz Teorije skupova 08/10/2005

Prvo predavanje iz Teorije skupova 08/10/2005 Prvo predavanje iz Teorije skupova 08/10/2005 Sadržaj današnjeg predavanja 1. Kratki sadržaj kolegija. 2. Literatura. 3. Kratka povijest nastanka teorije skupova. 4. Osnovne napomene na početku kolegija.

More information

The extraction of Zn(II) in aqueous PEG (1550) (NH 4 ) 2 SO 4 two-phase system using Cl ions as extracting agent

The extraction of Zn(II) in aqueous PEG (1550) (NH 4 ) 2 SO 4 two-phase system using Cl ions as extracting agent J. Serb. Chem. Soc. 72 (3) 289 297 (2007) UDC 66.061+546.47+547.441 036.7:541.12.012 JSCS 3558 Original scientific paper The extraction of Zn(II) in aqueous PEG (1550) (NH 4 ) 2 SO 4 two-phase system using

More information

Statistiqke funkcije dubine i ihova primena u otkriva u autlajera u dvodimenzionom prostoru

Statistiqke funkcije dubine i ihova primena u otkriva u autlajera u dvodimenzionom prostoru UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Katarina Jeremi Statistiqke funkcije dubine i ihova primena u otkriva u autlajera u dvodimenzionom prostoru master rad Beograd, 2017. Sadraj 1 Statistiqke funkcije

More information

Realizacija i ocjena MPPT algoritama u fotonaponskom sistemu napajanja

Realizacija i ocjena MPPT algoritama u fotonaponskom sistemu napajanja INFOTEH-JAHORINA Vol., March. Realizacija i ocjena MPPT algoritama u fotonaponskom sistemu napajanja Srđan Lale, Slobodan Lubura, Milomir Šoja Elektrotehnički fakultet, Univerzitet u Istočnom Sarajevu

More information

The Bond Number Relationship for the O-H... O Systems

The Bond Number Relationship for the O-H... O Systems CROATICA CHEMICA ACTA CCACAA 61 (4) 815-819 (1988) CCA-1828 YU ISSN 0011-1643 UDC 541.571.9 Original Scientific Paper The Bond Number Relationship for the O-H... O Systems Slawomir J. Grabowski Institute

More information

MULTIVERZUM I TOPOLOGIJA VREMENA

MULTIVERZUM I TOPOLOGIJA VREMENA THEORIA 1 BIBLID 0351 2274 : (2013) : 56 : p. 47 57 DOI: 10.2298/THEO1301045J Originalni naučni rad Original Scientific Paper Vladimir Jevtić MULTIVERZUM I TOPOLOGIJA VREMENA APSTRAKT: Savremene kosmološke

More information

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table.

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table. The Laws of Boolean Boolean algebra As well as the logic symbols 0 and 1 being used to represent a digital input or output, we can also use them as constants for a permanently Open or Closed circuit or

More information

ADAPTIVE NEURO-FUZZY MODELING OF THERMAL VOLTAGE PARAMETERS FOR TOOL LIFE ASSESSMENT IN FACE MILLING

ADAPTIVE NEURO-FUZZY MODELING OF THERMAL VOLTAGE PARAMETERS FOR TOOL LIFE ASSESSMENT IN FACE MILLING http://doi.org/10.24867/jpe-2017-01-016 JPE (2017) Vol.20 (1) Original Scientific Paper Kovač, P., Rodić, D., Gostimirović, M., Savković, B., Ješić. D. ADAPTIVE NEURO-FUZZY MODELING OF THERMAL VOLTAGE

More information

AKUSTIKA ZBIRKA REŠENIH ZADATAKA

AKUSTIKA ZBIRKA REŠENIH ZADATAKA Visoka škola elektrotehnke i računarstva - Beograd Dragan Drinčić Petar Pravica AKUSTIKA ZBIRKA REŠENIH ZADATAKA Beograd 2011. AUTORI: Mr Dragan Drinčić, dipl. el. inž. Prof. dr Petar Pravica, dipl. el.

More information

Didaktički aspekti matematičkog modeliranja

Didaktički aspekti matematičkog modeliranja Univerzitet u Novom Sadu Prirodno - matematički fakultet Departman za matematiku i informatiku Silvia Šoš Didaktički aspekti matematičkog modeliranja - master rad - Mentor: Prof. dr Arpad Takači Novi Sad,

More information

Cyclical Surfaces Created by a Conical Helix

Cyclical Surfaces Created by a Conical Helix Professional paper Accepted 23.11.2007. TATIANA OLEJNÍKOVÁ Cyclical Surfaces Created by a Conical Helix Cyclical Surfaces Created by a Conical Helix ABSTRACT The paper describes cyclical surfaces created

More information

Uvod u numericku matematiku

Uvod u numericku matematiku Uvod u numericku matematiku M. Klaricić Bakula Oujak, 2009. Uvod u numericku matematiku 2 1 Uvod Jedan od osnovnih problema numericke matematike je rješavanje linearnih sustava jednadbi. U ovom poglavlju

More information

Omalkhear Salem Almabruk Bleblou. Neke nove mrežno vrednosne algebarske strukture sa komparativnom analizom različitih pristupa

Omalkhear Salem Almabruk Bleblou. Neke nove mrežno vrednosne algebarske strukture sa komparativnom analizom različitih pristupa UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATICKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Omalkhear Salem Almabruk Bleblou Neke nove mrežno vrednosne algebarske strukture sa komparativnom analizom različitih

More information

Nataxa Todorovi STRMOST U SVETLU TEOREME NEHOROXEVA I NjENI NUMERIQKI ASPEKTI NA PRIMERU QETVORODIMENZIONE SIMPLEKTIQKE MAPE

Nataxa Todorovi STRMOST U SVETLU TEOREME NEHOROXEVA I NjENI NUMERIQKI ASPEKTI NA PRIMERU QETVORODIMENZIONE SIMPLEKTIQKE MAPE MATEMATIQKI FAKULTET UNIVERZITETA U BEOGRADU Nataxa Todorovi STRMOST U SVETLU TEOREME NEHOROXEVA I NjENI NUMERIQKI ASPEKTI NA PRIMERU QETVORODIMENZIONE SIMPLEKTIQKE MAPE DOKTORSKA TEZA Beograd 212. 2 Sadrжaj

More information

The proposition p is called the hypothesis or antecedent. The proposition q is called the conclusion or consequence.

The proposition p is called the hypothesis or antecedent. The proposition q is called the conclusion or consequence. The Conditional (IMPLIES) Operator The conditional operation is written p q. The proposition p is called the hypothesis or antecedent. The proposition q is called the conclusion or consequence. The Conditional

More information

GENERALIZIRANI LINEARNI MODELI. PROPENSITY SCORE MATCHING.

GENERALIZIRANI LINEARNI MODELI. PROPENSITY SCORE MATCHING. GENERALIZIRANI LINEARNI MODELI. PROPENSITY SCORE MATCHING. STATISTIƒKI PRAKTIKUM 2 11. VJEšBE GLM ine ²iroku klasu linearnih modela koja obuhva a modele s specijalnim strukturama gre²aka kategorijskim

More information

Virtual Library of Faculty of Mathematics - University of Belgrade

Virtual Library of Faculty of Mathematics - University of Belgrade UNIVERZITET U BEOGRADU V PIATEEATIKI FAKULTET OENA ENTROPIJE TELEPRINTERSKOG JEZIKA I PRIMENA NA KANAL SA PRISLUKIVANJEM MAGISTARSKI RAD Mentor: DR. ZORAN IVKOVI Kandidat: MILAN RADULOVI BEOGRAD 999. OENA

More information

SLIČNOST I HOMOTETIJA. Ivana Major Šomodi PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad

SLIČNOST I HOMOTETIJA. Ivana Major Šomodi PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad SVEUČILIŠTE U ZGREU PRIRODOSLOVNO MTEMTIČKI FKULTET MTEMTIČKI ODSJEK Ivana Major Šomodi SLIČNOST I HOMOTETIJ Diplomski rad Voditelj rada: prof. dr. sc Sanja Varošanec Zagreb, srpanj, 2015. Ovaj diplomski

More information

TRAGANJE ZA POČETKOM SVEMIRA. Ivan Tadić, Split

TRAGANJE ZA POČETKOM SVEMIRA. Ivan Tadić, Split TRAGANJE ZA POČETKOM SVEMIRA Ivan Tadić, Split UDK: 113 (091) Izvorni znanstveni rad Primljeno 2/2008. Sažetak Polazi se od kratkoga pregleda traganja za početkom i počelom svega u grčkoj filozofiji. Potom

More information

ANALYSIS OF THE RELIABILITY OF THE "ALTERNATOR- ALTERNATOR BELT" SYSTEM

ANALYSIS OF THE RELIABILITY OF THE ALTERNATOR- ALTERNATOR BELT SYSTEM I. Mavrin, D. Kovacevic, B. Makovic: Analysis of the Reliability of the "Alternator- Alternator Belt" System IVAN MAVRIN, D.Sc. DRAZEN KOVACEVIC, B.Eng. BRANKO MAKOVIC, B.Eng. Fakultet prometnih znanosti,

More information

ANS: If you are in Kwangju then you are in South Korea but not in Seoul.

ANS: If you are in Kwangju then you are in South Korea but not in Seoul. Math 15 - Spring 2017 - Homework 1.1 and 1.2 Solutions 1. (1.1#1) Let the following statements be given. p = There is water in the cylinders. q = The head gasket is blown. r = The car will start. (a) Translate

More information