Uvod u relacione baze podataka

Save this PDF as:

Size: px
Start display at page:

Download "Uvod u relacione baze podataka"

Transcription

1 Uvod u relacione baze podataka Ana Spasić 2. čas 1 Mala studentska baza dosije (indeks, ime, prezime, datum rodjenja, mesto rodjenja, datum upisa) predmet (id predmeta, sifra, naziv, bodovi) ispitni rok (godina roka, oznaka roka, naziv) ispit (indeks, id predmeta, godina roka, oznaka roka, ocena, datum ispita,bodovi) 2 Relacioni račun 1. Izdvojiti naziv i broj bodova za sve predmete koji se predaju na fakultetu., px.bodovi 2. Izdvojiti sve detalje o studentima rodenim u Beogradu.,, dx.datum_rodjenja, dx.mesto_rodjenja, dx.datum_upisa where dx.mesto_rodjenja = Beograd 3. Prikazati detalje svih parova student ispit takvih da je student polagao taj ispit.,, dx.datum_rodjenja, dx.mesto_rodjenja, ix.id_predmeta, ix.ocena, ix.datum_ispita, ix.godina_roka, ix.oznaka_roka where ix.indeks = 1

2 4. Prikazati ime i prezime studenta koji je polagao predmet čiji identifikator je where exists ix(ix.indeks = and ix.id_predmeta = 2001) 5. Izdvojiti brojeve indeksa studenata koji su polagali sve predmete. where forall px( exists ix( ix.indeks = where not exists px( not exists ix( ix.indeks = 6. Prikazati ime i prezime studenta koji je položio najmanje 1 predmet koji nosi 6 bodova. where exists px( px.bodovi = 6 and exists ix( ix.indeks = and ix.ocena > 5 where exists ix(ix.indeks = and ix.ocena > 5 and exists px(ix.id_predmeta = px.id_predmeta and px.bodovi = 6)) 2

3 7. Prikazati brojeve indeksa studenta koji su položili bar one različite predmete koje je polagao student sa brojem indeksa where forall px(if exists ix(ix.indeks = and px.id_predmeta = ix.id_predmeta ) then exists ix(ix.indeks = and px.id_predmeta = ix.id_predmeta and ix.ocena > 5)) range of iy is ispit where forall ix(if ix.indeks = then exists iy(iy.indeks = and iy.ocena > 5 and ix.id_predmeta = iy.id_predmeta)) range of iy is ispit where forall ix( ix.indeks <> or exists iy(iy.indeks = and iy.ocena > 5 and iy.id_predmeta = ix.id_predmeta)) range of iy is ispit where not exists ix(ix.indeks = and not exists iy(iy.indeks = and ix.id_predmeta = iy.id_predmeta and iy.ocena > 5) 8. Izdvojiti nazive svih predmeta koje su položili svi studenti koji su upisali fakultet godine. where forall dx(if > and <

4 then exists ix( ix.indeks = and ix.ocena > 5 where forall dx( < or > or exists ix( ix.indeks = and ix.ocena > 5 where not exists dx( > and < and not exists ix(ix.indeks = and ix.id_predmeta = px.id_predmeta and ix.ocena > 5)) 9. Izdvojiti ime i prezime za svakog od studenata koji nisu polagali predmet čiji identifikator je where not exists ix(ix.indeks= and ix.id_predmet = 1021) where forall ix(if ix.indeks = then ix.id_predmeta <> 1021) 10. Prikazati šifre svih predmeta koji nose 6 bodova ili ih je neko položio u roku Januar px.sifra where px.bodovi = 6 or exists ix( ix.godina_roka = 2015 and ix.oznaka_roka = jan and ix.id_predmeta = px.id_predmeta and ix.ocena > 5) 4

5 11. Izdvojiti nazive svih ispitnih rokova u kojima je polagan predmet Programiranje 1. irx.naziv where exists ix(ix.godina_roka = irx.godina_roka and ix.oznaka_roka = irx.oznaka_roka and exists px(px.id_predmeta=ix.id_predmeta and = Programiranje 1 )) 12. Izlistati spisak identifikatora predmeta koji nose manje bodova od predmeta čiji identifikator je range of py is predmet px.id_predmeta where exists py(py.id_predmeta = 2004 and px.bodovi < py.bodovi) 13. Prikazati imena i prezimena studenata koji imaju položen neki ispit sa ocenom 6, i neki drugi položen sa ocenom 10. where exists ix( ix.ocena = 6 and = ix.indeks) and exists ix( ix.ocena = 10 and = ix.indeks) 14. * Prikazati nazive svih predmeta koje je položio student Nikola Vukovic. where exists ix( ix.ocena>5 and ix.id_predmeta = px.id_predmeta and exists dx( = ix.indeks and dx.ime = Nikola and dx.prezime = Vukovic )) 15. * Napraviti spisak parova brojeva indeksa studenata takvih da su oba rodena u istom gradu. 5

6 range of dy is dosije, dy.indeks where dx.mesto_rodjenja = dy.mesto_rodjenja and < dy.indeks Uvodenjem strogog uredenja na indeksima eliminišu se semantički isti parovi indeksa: A,B i B,A. 16. * Izdvojiti nazive svih predmeta koji su studenti rodeni u Beogradu položili u aprilu where exists ix(ix.ocena>5 and ix.id_predmeta = px.id_predmeta and exists dx( = ix.indeks and dx.mesto_rodjenja = Beograd ) and exists irx(irx.godina_roka = ix.godina_roka and irx.oznaka_roka = ix.oznaka_roka and irx.naziv = April 2015 )) 17. * Prikazati imena i prezimena svih studenata koji su položili najmanje jedan ispit koji je položio student sa indeksom where exists px( exists ix(ix.indeks = and ix.ocena > 5 and ix.id_predmeta = px.id_predmeta) and exists ix(ix.indeks = and ix.ocena >5 18. * Prikazati oznake i godine ispitnih rokova u kojima nijedan student iz Kraljeva nije položio nijedan predmet koji nosi 4 bodova. irx.godina_roka, irx.oznaka_roka where forall dx(if dx.mesto_rodjenja = Kraljevo then not exists ix( ix.indeks = and ix.ocena > 5 and irx.godina_roka = ix.godina_roka 6

7 and irx.oznaka_roka = ix.oznaka_roka and exists px(ix.id_predmeta = px.id_predmeta and px.bodovi = 4)) irx.godina_roka, irx.oznaka_roka where forall dx( dx.mesto_rodjenja <> Kraljevo or not exists ix( ix.indeks = and ix.ocena > 5 and irx.godina_roka = ix.godina_roka and irx.oznaka_roka = ix.oznaka_roka and exists px(ix.id_predmeta = px.id_predmeta and px.bodovi = 4)) irx.godina_roka, irx.oznaka_roka where not exists dx( dx.mesto_rodjenja = Kraljevo and exists ix( ix.indeks = and ix.ocena > 5 and irx.godina_roka = ix.godina_roka and irx.oznaka_roka = ix.oznaka_roka and exists px(ix.id_predmeta = px.id_predmeta and px.bodovi = 4)) 7

Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu

Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu Rešenja zadataka za vežbu na relacionoj algebri i relacionom računu 1. Izdvojiti ime i prezime studenata koji su rođeni u Beogradu. (DOSIJE WHERE MESTO_RODJENJA='Beograd')[IME, PREZIME] where mesto_rodjenja='beograd'

More information

1a select indeks from dosije where mesto_rodjenja='beograd' union select indeks from ispit where ocena=10 order by indeks desc;

1a select indeks from dosije where mesto_rodjenja='beograd' union select indeks from ispit where ocena=10 order by indeks desc; 1a union b intersect c except 2 select d.indeks, count(*) br_ispita d join ispit i on d.indeks=i.indeks group by d.indeks union, 0 d where not exists ( select * i where d.indeks=i.indeks); 3, id_predmeta,

More information

Mathcad sa algoritmima

Mathcad sa algoritmima P R I M J E R I P R I M J E R I Mathcad sa algoritmima NAREDBE - elementarne obrade - sekvence Primjer 1 Napraviti algoritam za sabiranje dva broja. NAREDBE - elementarne obrade - sekvence Primjer 1 POČETAK

More information

TEORIJA SKUPOVA Zadaci

TEORIJA SKUPOVA Zadaci TEORIJA SKUPOVA Zadai LOGIKA 1 I. godina 1. Zapišite simbolima: ( x nije element skupa S (b) d je član skupa S () F je podskup slupa S (d) Skup S sadrži skup R 2. Neka je S { x;2x 6} = = i neka je b =

More information

ALGORITMI I STRUKTURE PODATAKA

ALGORITMI I STRUKTURE PODATAKA Sveučilište u Rijeci ODJEL ZA INFORMATIKU Omladinska 14, Rijeka Akademska 2017/2018. godina ALGORITMI I STRUKTURE PODATAKA Studij: Preddiplomski studij MATEMATIKE (jednopredmetni) Web stranica predmeta:

More information

RELACIONI MODEL PODATAKA

RELACIONI MODEL PODATAKA 1/35 RELACIONI MODEL PODATAKA STRUKTURNI DEO: Domen: jednostavan / kompozitan Relacija (stepena n): R D1xD2x Dn Relacija: tip entiteta E Atributi: imenovani indeksi A1, An Ai: E Di (Ai1,Ai2,,Aik) : E Di1xDi2x

More information

Assessment of surface deformation with simultaneous adjustment with several epochs of leveling networks by using nd relative pedaloid

Assessment of surface deformation with simultaneous adjustment with several epochs of leveling networks by using nd relative pedaloid RMZ - Materials and Geoenvironment, Vol. 53, No. 3, pp. 315-321, 2006 315 Assessment of surface deformation with simultaneous adjustment with several epochs of leveling networks by using nd relative pedaloid

More information

Modified Zagreb M 2 Index Comparison with the Randi} Connectivity Index for Benzenoid Systems

Modified Zagreb M 2 Index Comparison with the Randi} Connectivity Index for Benzenoid Systems CROATICA CHEMICA ACTA CCACAA 7 (2) 83 87 (2003) ISSN-00-3 CCA-2870 Note Modified Zagreb M 2 Index Comparison with the Randi} Connectivity Index for Benzenoid Systems Damir Vuki~evi} a, * and Nenad Trinajsti}

More information

Projektovanje paralelnih algoritama II

Projektovanje paralelnih algoritama II Projektovanje paralelnih algoritama II Primeri paralelnih algoritama, I deo Paralelni algoritmi za množenje matrica 1 Algoritmi za množenje matrica Ovde su data tri paralelna algoritma: Direktan algoritam

More information

On the relation between Zenkevich and Wiener indices of alkanes

On the relation between Zenkevich and Wiener indices of alkanes J.Serb.Chem.Soc. 69(4)265 271(2004) UDC 547.21:54 12+539.6 JSCS 3152 Original scientific paper On the relation between Zenkevich and Wiener indices of alkanes IVAN GUTMAN a*, BORIS FURTULA a, BILJANA ARSI]

More information

Oracle Spatial Koordinatni sustavi, projekcije i transformacije. Dalibor Kušić, mag. ing. listopad 2010.

Oracle Spatial Koordinatni sustavi, projekcije i transformacije. Dalibor Kušić, mag. ing. listopad 2010. Oracle Spatial Koordinatni sustavi, projekcije i transformacije Dalibor Kušić, mag. ing. listopad 2010. Pregled Uvod Koordinatni sustavi Transformacije Projekcije Modeliranje 00:25 Oracle Spatial 2 Uvod

More information

THE PRECISION OF TIME REGISTRATION WITH DANJON ASTROLABE

THE PRECISION OF TIME REGISTRATION WITH DANJON ASTROLABE Serb. Astron. J. 157 (l998), 1 6 UDC 521.938/.95 Original scientific paper THE PRECISION OF TIME REGISTRATION WITH DANJON ASTROLABE G. Perović 1 and Z. Cvetković 2 1 Faculty of Civil Engineering Department

More information

SOLUTION FOR HOMEWORK 11, ACTS 4306

SOLUTION FOR HOMEWORK 11, ACTS 4306 SOLUTION FOR HOMEWORK, ACTS 36 Welcome to your th homework. This is a collection of transformation, Central Limit Theorem (CLT), and other topics.. Solution: By definition of Z, Var(Z) = Var(3X Y.5). We

More information

DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA

DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 1 Status predmeta Web stranica predmeta/merlin Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način

More information

An Algorithm for Computation of Bond Contributions of the Wiener Index

An Algorithm for Computation of Bond Contributions of the Wiener Index CROATICA CHEMICA ACTA CCACAA68 (1) 99-103 (1995) ISSN 0011-1643 CCA-2215 Original Scientific Paper An Algorithm for Computation of Bond Contributions of the Wiener Index Istvan Lukouits Central Research

More information

KLASIFIKACIJA NAIVNI BAJES. NIKOLA MILIKIĆ URL:

KLASIFIKACIJA NAIVNI BAJES. NIKOLA MILIKIĆ   URL: KLASIFIKACIJA NAIVNI BAJES NIKOLA MILIKIĆ EMAIL: nikola.milikic@fon.bg.ac.rs URL: http://nikola.milikic.info ŠTA JE KLASIFIKACIJA? Zadatak određivanja klase kojoj neka instanca pripada instanca je opisana

More information

Kevin James. MTHSC 206 Section 16.4 Green s Theorem

Kevin James. MTHSC 206 Section 16.4 Green s Theorem MTHSC 206 Section 16.4 Green s Theorem Theorem Let C be a positively oriented, piecewise smooth, simple closed curve in R 2. Let D be the region bounded by C. If P(x, y)( and Q(x, y) have continuous partial

More information

Scripture quotations marked cev are from the Contemporary English Version, Copyright 1991, 1992, 1995 by American Bible Society. Used by permission.

Scripture quotations marked cev are from the Contemporary English Version, Copyright 1991, 1992, 1995 by American Bible Society. Used by permission. N Ra: E K B Da a a B a a, a-a- a aa, a a. T, a a. 2009 Ba P, I. ISBN 978-1-60260-296-0. N a a a a a, a,. C a a a Ba P, a 500 a a aa a. W, : F K B Da, Ba P, I. U. S a a a a K Ja V B. S a a a a N K Ja V.

More information

Red veze za benzen. Slika 1.

Red veze za benzen. Slika 1. Red veze za benzen Benzen C 6 H 6 je aromatično ciklično jedinjenje. Njegove dve rezonantne forme (ili Kekuléove structure), prema teoriji valentne veze (VB) prikazuju se uobičajeno kao na slici 1 a),

More information

LOGIKA. Logika. Sveučilište u Rijeci ODJEL ZA INFORMATIKU Radmile Matejčić 2, Rijeka Akademska 2017/2018. godina

LOGIKA. Logika. Sveučilište u Rijeci ODJEL ZA INFORMATIKU Radmile Matejčić 2, Rijeka Akademska 2017/2018. godina Sveučilište u Rijeci ODJEL ZA INFORMATIKU Radmile Matejčić 2, Rijeka Akademska 2017/2018. godina LOGIKA Studij: Preddiplomski studij informatike (jednopredmetni) Godina i semestar: 1. godina, 2. semestar

More information

AIR CURTAINS VAZDU[NE ZAVESE V H

AIR CURTAINS VAZDU[NE ZAVESE V H AIR CURTAINS V 15.000 H 21.000 KLIMA Co. 2 KLIMA Co. Flow and system stress should be known factors in air flow. The flow is gas quantity flowing through the system during given time unit and is measured

More information

u Novom Sadu na Tehnološkom fakultetu od Septembra održava Workshop pod nazivom:

u Novom Sadu na Tehnološkom fakultetu od Septembra održava Workshop pod nazivom: Poštovani, Obaveštavamo Vas da se u okviru COST Projekta MP0701 koji nosi naziv: Composites with novel functional and structural properties by nanoscale materials (Nano Composite Materials NCM) http://www.nanocomposites-cost.eu.

More information

Math 240 Calculus III

Math 240 Calculus III Calculus III Summer 2015, Session II Monday, August 3, 2015 Agenda 1. 2. Introduction The reduction of technique, which applies to second- linear differential equations, allows us to go beyond equations

More information

MIDTERM 1. April 24, 2002

MIDTERM 1. April 24, 2002 MIDTERM April 24, 2002 Instructions. Please show our work. You will receive little or no credit for an answer not accompanied b appropriate explanations, even if the answer is correct. If ou have a question

More information

SOLUTION FOR HOMEWORK 12, STAT 4351

SOLUTION FOR HOMEWORK 12, STAT 4351 SOLUTION FOR HOMEWORK 2, STAT 435 Welcome to your 2th homework. It looks like this is the last one! As usual, try to find mistakes and get extra points! Now let us look at your problems.. Problem 7.22.

More information

Approximation of the attractor of a countable iterated function system 1

Approximation of the attractor of a countable iterated function system 1 General Mathematics Vol. 17, No. 3 (2009), 221 231 Approximation of the attractor of a countable iterated function system 1 Nicolae-Adrian Secelean Abstract In this paper we will describe a construction

More information

Graphs with the Same Detour Matrix

Graphs with the Same Detour Matrix CROATICA CHEMICA ACTA CCACAA 71 (1) 53 68 (1998) ISSN-0011-1643 CCA-2477 Original Scientific Paper Graphs with the Same Detour Matrix Milan Randi}, a Luz M. DeAlba, a and Frank E. Harris b a Department

More information

Slika 1. Slika 2. Da ne bismo stalno izbacivali elemente iz skupa, mi ćemo napraviti još jedan niz markirano, gde će

Slika 1. Slika 2. Da ne bismo stalno izbacivali elemente iz skupa, mi ćemo napraviti još jedan niz markirano, gde će Permutacije Zadatak. U vreći se nalazi n loptica različitih boja. Iz vreće izvlačimo redom jednu po jednu lopticu i stavljamo jednu pored druge. Koliko različitih redosleda boja možemo da dobijemo? Primer

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 EXAM I SPRING 2016 FEBRUARY 25, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

ANALYSIS OF THE RELIABILITY OF THE "ALTERNATOR- ALTERNATOR BELT" SYSTEM

ANALYSIS OF THE RELIABILITY OF THE ALTERNATOR- ALTERNATOR BELT SYSTEM I. Mavrin, D. Kovacevic, B. Makovic: Analysis of the Reliability of the "Alternator- Alternator Belt" System IVAN MAVRIN, D.Sc. DRAZEN KOVACEVIC, B.Eng. BRANKO MAKOVIC, B.Eng. Fakultet prometnih znanosti,

More information

APPROPRIATENESS OF GENETIC ALGORITHM USE FOR DISASSEMBLY SEQUENCE OPTIMIZATION

APPROPRIATENESS OF GENETIC ALGORITHM USE FOR DISASSEMBLY SEQUENCE OPTIMIZATION JPE (2015) Vol.18 (2) Šebo, J. Original Scientific Paper APPROPRIATENESS OF GENETIC ALGORITHM USE FOR DISASSEMBLY SEQUENCE OPTIMIZATION Received: 17 July 2015 / Accepted: 25 Septembre 2015 Abstract: One

More information

Detaljni izvedbeni nastavni plan za kolegij: Uvod u bioanorgansku kemiju

Detaljni izvedbeni nastavni plan za kolegij: Uvod u bioanorgansku kemiju Detaljni izvedbeni nastavni plan za kolegij: Uvod u bioanorgansku kemiju Akademska godina: 2018/2019 Studij: Preddiplomski sveučilišni studij Biotehnologija i istraživanje lijekova Kod kolegija: BIL 106

More information

ANALYSIS OF METEOROLOGICAL AND AGRICULTURAL DROUGHTS IN SERBIA UDC (497.11)= (497.11)=111

ANALYSIS OF METEOROLOGICAL AND AGRICULTURAL DROUGHTS IN SERBIA UDC (497.11)= (497.11)=111 FACTA UNIVERSITATIS Series: Architecture and Civil Engineering Vol. 12, N o 3, 2014, pp. 253-264 DOI: 10.2298/FUACE1403253M ANALYSIS OF METEOROLOGICAL AND AGRICULTURAL DROUGHTS IN SERBIA UDC 551.577.3(497.11)=111

More information

NAPREDNI FIZIČKI PRAKTIKUM II studij Geofizika MODUL ELASTIČNOSTI

NAPREDNI FIZIČKI PRAKTIKUM II studij Geofizika MODUL ELASTIČNOSTI NAPREDNI FIZIČKI PRAKTIKUM II studij Geofizika MODUL ELASTIČNOSTI studij Geofizika NFP II 1 ZADACI 1. Izmjerite ovisnost savijenosti šipki o: primijenjenoj sili debljini šipke širini šipke udaljenosti

More information

Problem Max. Possible Points Total

Problem Max. Possible Points Total MA 262 Exam 1 Fall 2011 Instructor: Raphael Hora Name: Max Possible Student ID#: 1234567890 1. No books or notes are allowed. 2. You CAN NOT USE calculators or any electronic devices. 3. Show all work

More information

STAT 516 Midterm Exam 3 Friday, April 18, 2008

STAT 516 Midterm Exam 3 Friday, April 18, 2008 STAT 56 Midterm Exam 3 Friday, April 8, 2008 Name Purdue student ID (0 digits). The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

EXAM # 3 PLEASE SHOW ALL WORK!

EXAM # 3 PLEASE SHOW ALL WORK! Stat 311, Summer 2018 Name EXAM # 3 PLEASE SHOW ALL WORK! Problem Points Grade 1 30 2 20 3 20 4 30 Total 100 1. A socioeconomic study analyzes two discrete random variables in a certain population of households

More information

Temperature dependence of the Kovats retention indices for alkyl 1,3-diketones on a DB-5 capillary column

Temperature dependence of the Kovats retention indices for alkyl 1,3-diketones on a DB-5 capillary column J. Serb. Chem. Soc. 69 (10) 759 767 (2004) UDC 547.313.442:66 948.3:536.74 JSCA 3202 Original scientific paper Temperature dependence of the Kovats retention indices for alkyl 1,3-diketones on a DB-5 capillary

More information

Tablica 2: Opis predmeta 1. OPĆE INFORMACIJE Nositelj predmeta: Marko Katić Davor Zvizdić

Tablica 2: Opis predmeta 1. OPĆE INFORMACIJE Nositelj predmeta: Marko Katić Davor Zvizdić OBRAZAC 1. Vrednovanje sveucilišnih studijskih programa preddiplomskih, diplomskih i integriranih preddiplomskih i diplomskih studija te strucnih studija Tablica 2: Opis predmeta 1.1. Nositelj predmeta:

More information

INTRODUCTION TO LOW FREQUENCY LOCAL PLASMONS IN BULK EXTRINSIC SEMICONDUCTORS UDC 538.9; Yuri Kornyushin

INTRODUCTION TO LOW FREQUENCY LOCAL PLASMONS IN BULK EXTRINSIC SEMICONDUCTORS UDC 538.9; Yuri Kornyushin FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 2, N o 5, 2003, pp. 253-258 INTRODUCTION TO LOW FREQUENCY LOCAL PLASMONS IN BULK EXTRINSIC SEMICONDUCTORS UDC 538.9; 621.315.5 Yuri Kornyushin

More information

Solution/Correction standard, second Test Mathematics A + B1; November 7, 2014.

Solution/Correction standard, second Test Mathematics A + B1; November 7, 2014. Solution/Correction standard, second Test Mathematics A + B1; November 7, 014. Kenmerk : Leibniz/toetsen/Re-Exam-Math-A-B1-141-Solutions Course : Mathematics A + B1 (Leibniz) Vakcode : 1911010 Date : November

More information

2010 GCE A Level H2 Maths Solution Paper 2 Section A: Pure Mathematics. 1i) x 2 6x + 34 = 0 6 ± x = 2

2010 GCE A Level H2 Maths Solution Paper 2 Section A: Pure Mathematics. 1i) x 2 6x + 34 = 0 6 ± x = 2 00 GCE A Level H Maths Solution Paper Section A: Pure Mathematics i) x 6x + 34 0 6 ± 36 36 x 6 ± 0i 3 ± 5i (ii) Since the coefficients are all real, another root of the equation is x i. [ x ( + i) ] [

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

Sveučilište u Rijeci University of Rijeka

Sveučilište u Rijeci University of Rijeka DIPLOMSKI SVEUČILIŠNI STUDIJ DISKRETNA MATEMATIKA I PRIMJENE POPIS MODULA/PREDMETA Godina studija: 1. Semestar: zimski MODUL PREDMET NOSITELJ P V S ECTS STATUS 1 Vektorski prostori 1 30 30 0 6 O Mjera

More information

Zbirka ispitnih zadataka iz Baza Podataka 1 Ispiti i kolokvijumi u periodu

Zbirka ispitnih zadataka iz Baza Podataka 1 Ispiti i kolokvijumi u periodu Beogradski univerzitet Elektrotehnički fakultet Miloš Cvetanović Zbirka ispitnih zadataka iz Baza Podataka 1 Ispiti i kolokvijumi u periodu 2007-2011 Beograd, Januar 2012 Ispiti... 3 Januarski ispitni

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

Unit 1 Matrices Notes Packet Period: Matrices

Unit 1 Matrices Notes Packet Period: Matrices Algebra 2/Trig Unit 1 Matrices Notes Packet Name: Period: # Matrices (1) Page 203 204 #11 35 Odd (2) Page 203 204 #12 36 Even (3) Page 211 212 #4 6, 17 33 Odd (4) Page 211 212 #12 34 Even (5) Page 218

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

Mass transfer between a fluid and an immersed object in liquid solid packed and fluidized beds

Mass transfer between a fluid and an immersed object in liquid solid packed and fluidized beds J. Serb. Chem. Soc. 70 (11) 1373 1379 (2005) UDC 66.021.3:66.040.36:66.096.5 JSCS 3377 Original scientific paper Mass transfer between a fluid and an immersed object in liquid solid packed and fluidized

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

Aromaticity of Carbon Nanotubes*

Aromaticity of Carbon Nanotubes* CROATICA CHEMICA ACTA CCACAA 80 (2) 233 237 (2007) ISSN-0011-1643 CCA-3165 Original Scientific Paper Aromaticity of Carbon Nanotubes* István Lukovits, Franciska H. Kármán, Péter M. Nagy, and Erika Kálmán**

More information

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/ STA263/25//24 Tutorial letter 25// /24 Distribution Theor ry II STA263 Semester Department of Statistics CONTENTS: Examination preparation tutorial letterr Solutions to Assignment 6 2 Dear Student, This

More information

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods.

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods. 4.7.1 Multiple Integrals Chapter 4 Section 7 4.7.2 Double Integral R f ( x, y) da 4.7.3 Double Integral Apply Simpson s rule twice R [ a, b] [ c, d] a x, x,..., x b, c y, y,..., y d 0 1 n 0 1 h ( b a)

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009. OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK Summer Examination 2009 First Engineering MA008 Calculus and Linear Algebra

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Lecture 7: The Beam Element Equations.

Lecture 7: The Beam Element Equations. 4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Statistical Learning Theory

Statistical Learning Theory Statistical Learning Theory Part I : Mathematical Learning Theory (1-8) By Sumio Watanabe, Evaluation : Report Part II : Information Statistical Mechanics (9-15) By Yoshiyuki Kabashima, Evaluation : Report

More information

ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013)

ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013) MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) Vol. XIX (3)(2013), 35-44 ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013) Nenad O. Vesi 1 Du²an

More information

ZBIRKA ZADATAKA IZ DISKRETNIH MATEMATIQKIH STRUKTURA

ZBIRKA ZADATAKA IZ DISKRETNIH MATEMATIQKIH STRUKTURA Vesna Manojlovi Mirjana Qangalovi Vladimir Balti ZBIRKA ZADATAKA IZ DISKRETNIH MATEMATIQKIH STRUKTURA Fakultet organizacionih nauka B E O G R A D 2014. Autori: dr Vesna Manojlovi, dr Mirjana Qangalovi,

More information

FIZIČKI PRAKTIKUM 3 SMJER: PROFESOR FIZIKE MJERENJE MALIH OTPORA

FIZIČKI PRAKTIKUM 3 SMJER: PROFESOR FIZIKE MJERENJE MALIH OTPORA FIZIČKI PRAKTIKUM 3 SMJER: PROFESOR FIZIKE MJERENJE MALIH OTPORA PROFESOR FIZIKE FP3 1 ZADACI 1. Mjerenjem geometrijskih dimenzija i otpora bakrene šipke odredite otpornost bakra. Napomena: Izmjerite V

More information

Analysis of Experimental Designs

Analysis of Experimental Designs Analysis of Experimental Designs p. 1/? Analysis of Experimental Designs Gilles Lamothe Mathematics and Statistics University of Ottawa Analysis of Experimental Designs p. 2/? Review of Probability A short

More information

Ekosustav slobodnog softvera u geoinformatici

Ekosustav slobodnog softvera u geoinformatici Ekosustav slobodnog softvera u geoinformatici Draºen Odoba²i *, Damir Medak*, Bo²ko Pribi evi ** Katedra za geoinformatiku * Katedra za hidrograju ** Geodetski fakultet, Sveu ili²te u Zagrebu Ka i eva

More information

Electron content of rings of fully benzenoid hydrocarbons

Electron content of rings of fully benzenoid hydrocarbons J. Serb. Chem. Soc. 70 (10) 1199 1204 (2005) UDC 547.53:537.12 JSCS 3357 Original scientific paper Electron content of rings of fully benzenoid hydrocarbons IVAN GUTMAN 1,*#, BORIS FURTULA 1, SVETLANA

More information

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički MJERENJE MALIH OTPORA

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički MJERENJE MALIH OTPORA NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički MJERENJE MALIH OTPORA studij Matematika i fizika; smjer nastavnički NFP 1 1 ZADACI 1. Mjerenjem geometrijskih dimenzija i otpora

More information

Solutions 1. Introduction to Coding Theory - Spring 2010 Solutions 1. Exercise 1.1. See Examples 1.2 and 1.11 in the course notes.

Solutions 1. Introduction to Coding Theory - Spring 2010 Solutions 1. Exercise 1.1. See Examples 1.2 and 1.11 in the course notes. Solutions 1 Exercise 1.1. See Exaples 1.2 and 1.11 in the course notes. Exercise 1.2. Observe that the Haing distance of two vectors is the iniu nuber of bit flips required to transfor one into the other.

More information

ELABORAT O STUDIJSKOM PROGRAMU

ELABORAT O STUDIJSKOM PROGRAMU S V E U Č I L I Š T E U S P L I T U Prirodoslovno-matematički fakultet Sveučilišta u Splitu ELABORAT O STUDIJSKOM PROGRAMU Preddiplomski sveučilišni studij Matematika i informatika SPLIT, 2017. 1 OSNOVNE

More information

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2 COMPSCI 650 Applied Information Theory Jan 21, 2016 Lecture 2 Instructor: Arya Mazumdar Scribe: Gayane Vardoyan, Jong-Chyi Su 1 Entropy Definition: Entropy is a measure of uncertainty of a random variable.

More information

Points-to Analysis using Types

Points-to Analysis using Types CS618: Program Analysis 2016-17 I st Semester Points-to Analysis using Types Amey Karkare karkare@cse.iitk.ac.in karkare@cse.iitb.ac.in Department of CSE, IIT Kanpur/Bombay karkare, CSE, IITK/B CS618 1/10

More information

J.Serb.Chem.Soc. 68(7) (2003) UDC : : Original scientific paper

J.Serb.Chem.Soc. 68(7) (2003) UDC : : Original scientific paper J.Serb.Chem.Soc. 68(7)557 564(2003) UDC 547 304.9:543.544.3:66 948.3 JSCS 3073 Original scientific paper Gas chromatograpic retention indices for N-substituted amino s-triazines on capillary columns. Part

More information

Dynamic holdup in a countercurrent gas - flowing solids - packed bed contactors

Dynamic holdup in a countercurrent gas - flowing solids - packed bed contactors J.Serb.Chem.Soc. 69(1)77 84(004) UDC 66.040.3/4:66.017 JSCS 313 Original scientific paper Dynamic holdup in a countercurrent gas - flowing solids - packed bed contactors NIKOLA M. NIKA^EVI] 1*, ALEKSANDAR

More information

YOU MAY USE YOUR OWN BLANK SO AS NOT TO DISTURB OTHER COHERENTLY, OR THEY RISK NOT YOU MAY WRITE SOLUTIONS ON THE

YOU MAY USE YOUR OWN BLANK SO AS NOT TO DISTURB OTHER COHERENTLY, OR THEY RISK NOT YOU MAY WRITE SOLUTIONS ON THE MATH 1A FINAL (PRACTICE 1) PROFESSOR PAULIN DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO. CALCULATORS ARE NOT PERMITTED YOU MAY USE YOUR OWN BLANK PAPER FOR ROUGH WORK SO AS NOT TO DISTURB OTHER STUDENTS,

More information

MIL-DTL-5015 Style Circular Connectors

MIL-DTL-5015 Style Circular Connectors --01 y i oo /- i ooi --01 /- i i oi i --01 oi iio oo. io oiio o, oi i o i o o - -o-. /- i i oi i 12 i o iz o 10 o, i o o iz o #1 o #0 7 i o i o oo i iy o iio. o, i oo, i, oiio i i i o y oi --01, - o: i

More information

Final Exam Review Part I: Unit IV Material

Final Exam Review Part I: Unit IV Material Final Exam Review Part I: Unit IV Material Math114 Department of Mathematics, University of Kentucky April 26, 2017 Math114 Lecture 37 1/ 11 Outline 1 Conic Sections Math114 Lecture 37 2/ 11 Outline 1

More information

Conditional stability of Larkin methods with non-uniform grids

Conditional stability of Larkin methods with non-uniform grids Theoret. Appl. Mech., Vol.37, No., pp.139-159, Belgrade 010 Conditional stability of Larkin methods with non-uniform grids Kazuhiro Fukuyo Abstract Stability analysis based on the von Neumann method showed

More information

Complex Analysis - Final exam - Answers

Complex Analysis - Final exam - Answers Complex Analysis - Final exam - Answers Exercise : (0 %) Let r, s R >0. Let f be an analytic function defined on D(0, r) and g be an analytic function defined on D(0, s). Prove that f +g is analytic on

More information

NAPREDNI FIZIČKI PRAKTIKUM II studij Geofizika POLARIZACIJA SVJETLOSTI

NAPREDNI FIZIČKI PRAKTIKUM II studij Geofizika POLARIZACIJA SVJETLOSTI NAPREDNI FIZIČKI PRAKTIKUM II studij Geofizika POLARIZACIJA SVJETLOSTI studij Geofizika NFP II 1 ZADACI 1. Izmjerite ovisnost intenziteta linearno polarizirane svjetlosti o kutu jednog analizatora. Na

More information

Chapter 10: Moments of Inertia

Chapter 10: Moments of Inertia Chapter 10: Moments of Inertia Chapter Objectives To develop a method for determining the moment of inertia and product of inertia for an area with respect to given x- and y-axes. To develop a method for

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information

or we could divide the total time T into N steps, with δ = T/N. Then and then we could insert the identity everywhere along the path.

or we could divide the total time T into N steps, with δ = T/N. Then and then we could insert the identity everywhere along the path. D. L. Rubin September, 011 These notes are based on Sakurai,.4, Gottfried and Yan,.7, Shankar 8 & 1, and Richard MacKenzie s Vietnam School of Physics lecture notes arxiv:quanth/0004090v1 1 Path Integral

More information

Lab 3: measurement of Laser Gaussian Beam Profile Lab 3: basic experience working with laser (1) To create a beam expander for the Argon laser (2) To

Lab 3: measurement of Laser Gaussian Beam Profile Lab 3: basic experience working with laser (1) To create a beam expander for the Argon laser (2) To Lab 3: measurement of Laser Gaussian Beam Profile Lab 3: basic experience working with laser (1) To create a beam expander for the Argon laser () To measure the spot size and profile of the Argon laser

More information

Elementary ODE Review

Elementary ODE Review Elementary ODE Review First Order ODEs First Order Equations Ordinary differential equations of the fm y F(x, y) () are called first der dinary differential equations. There are a variety of techniques

More information

FP1 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP1 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP1 Mar Schemes from old P4, P5, P6 and FP1, FP, FP papers (bac to June 00) Please note that the following pages contain mar schemes for questions from past papers which were not written at an AS standard

More information

Algebraic structure count of linear phenylenes and their congeners *

Algebraic structure count of linear phenylenes and their congeners * J.Serb.Chem.Soc. 68(4 5)391 399(2003) UDC 517.986.9:547.77 JSCS 3054 Original scientific paper Algebraic structure count of linear phenylenes and their congeners * IVAN GUTMAN # Faculty of Science, University

More information

VARIS DODATNA OPREMA. Alu naplatak Podium anthracite. Alu naplatak 15 11, Light Grey PZ49P-B0671-CE. Sigumosne matice. Krovni nosac (3 vrata)

VARIS DODATNA OPREMA. Alu naplatak Podium anthracite. Alu naplatak 15 11, Light Grey PZ49P-B0671-CE. Sigumosne matice. Krovni nosac (3 vrata) VARIS DODATNA OPREMA TOYOTA ALWAYS A BETTER WAY Alu naplatak 15 11 Podium anthracite PZ406-B067B-ZG 3.029,85kn 390,00kn Samo za vozila sa original 15" naplatcima. Cijena za 4 naplatka 3.419,85 kn Alu naplatak

More information

IZVEXTAJ. 1. Biografija kandidata. 2. Nauqni i struqni rad. Nastavno nauqnom ve u Matematiqkog fakulteta Univerziteta u Beogradu

IZVEXTAJ. 1. Biografija kandidata. 2. Nauqni i struqni rad. Nastavno nauqnom ve u Matematiqkog fakulteta Univerziteta u Beogradu Nastavno nauqnom ve u Matematiqkog fakulteta Univerziteta u Beogradu Na 339. toj sednici Nastavno nauqnog ve a Matematiqkog fakulteta, odrжanoj 24. februara 2017. godine, određeni smo za qlanove komisije

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~ST104B ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ST104B ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

The existence theorem for the solution of a nonlinear least squares problem

The existence theorem for the solution of a nonlinear least squares problem 61 The existence theorem for the solution of a nonlinear least squares problem Dragan Jukić Abstract. In this paper we prove a theorem which gives necessary and sufficient conditions which guarantee the

More information

The temperature dependence of the disproportionation reaction of iodous acid in aqueous sulfuric acid solutions

The temperature dependence of the disproportionation reaction of iodous acid in aqueous sulfuric acid solutions J. Serb. Chem. Soc. 67(5)347 351(2002) UDC 542.9:546.155+535.243:536.5 JSCS-2955 Original scientific paper The temperature dependence of the disproportionation reaction of iodous acid in aqueous sulfuric

More information

MATH 52 MIDTERM 1. April 23, 2004

MATH 52 MIDTERM 1. April 23, 2004 MATH 5 MIDTERM April 3, Student ID: Signature: Instructions: Print your name and student ID number and write your signature to indicate that you accept the honor code. During the test, you may not use

More information

BOSNA I HERCEGOVINA TRŽIŠTE OSIGURANJA 2009

BOSNA I HERCEGOVINA TRŽIŠTE OSIGURANJA 2009 BOSNA I HERCEGOVINA TRŽIŠTE OSIGURANJA 2009 OSTVARENA PREMIJA OSIGURANJA ZA 2009. GODINU U BOSNI I HERCEGOVINI u EUR Društvo za osiguranje 31.12.2009 Premija na dan 31.12.2008 Indeks rasta Ukupno neživot

More information

Mathematics for Economists

Mathematics for Economists Mathematics for Economists Victor Filipe Sao Paulo School of Economics FGV Metric Spaces: Basic Definitions Victor Filipe (EESP/FGV) Mathematics for Economists Jan.-Feb. 2017 1 / 34 Definitions and Examples

More information

NIPP. Implementing rules for metadata. Ivica Skender NSDI Working group for technical standards.

NIPP. Implementing rules for metadata. Ivica Skender NSDI Working group for technical standards. Implementing rules for metadata Ivica Skender NSDI Working group for technical standards ivica.skender@gisdata.com Content Working group for technical standards INSPIRE Metadata implementing rule Review

More information

FP1 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP1 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP Mar Schemes from old P4, P5, P6 and FP, FP, FP papers (bac to June 00) Please note that the following pages contain mar schemes for questions from past papers which were not written at an AS standard

More information

DESIGN AND CALCULATION OF RING SPRINGS AS SPRING ELEMENTS OF THE WAGON BUFFER UDC : Jovan Nešović

DESIGN AND CALCULATION OF RING SPRINGS AS SPRING ELEMENTS OF THE WAGON BUFFER UDC : Jovan Nešović FACTA UNIVERSITATIS Series: Mechanical Engineering Vol.1, N o 9, 2002, pp. 1127-1133 DESIGN AND CALCULATION OF RING SPRINGS AS SPRING ELEMENTS OF THE WAGON BUFFER UDC 62-272.43:623.435 Jovan Nešović Faculty

More information

Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel

Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel J. Serb. Chem. Soc. 70 (2) 269 276 (2005) UDC 541.135.5:543.554:546.562+546.742 JSCS 3271 Original scientific paper Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel

More information

ANALYSIS OF UNEVENLY SPACED TIME SERIES DATA IN HIGHLY DISTRIBUTED AND UNRELIABLE NETWORKS

ANALYSIS OF UNEVENLY SPACED TIME SERIES DATA IN HIGHLY DISTRIBUTED AND UNRELIABLE NETWORKS UNIVERSITY OF SPLIT FACULTY OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE MASTER THESIS ANALYSIS OF UNEVENLY SPACED TIME SERIES DATA IN HIGHLY DISTRIBUTED AND UNRELIABLE NETWORKS

More information

cauchy s integral theorem: examples

cauchy s integral theorem: examples Physics 4 Spring 17 cauchy s integral theorem: examples lecture notes, spring semester 17 http://www.phys.uconn.edu/ rozman/courses/p4_17s/ Last modified: April 6, 17 Cauchy s theorem states that if f

More information

3. If a choice is broken down into two successive choices, the original H should be the weighted sum of the individual values of H.

3. If a choice is broken down into two successive choices, the original H should be the weighted sum of the individual values of H. Appendix A Information Theory A.1 Entropy Shannon (Shanon, 1948) developed the concept of entropy to measure the uncertainty of a discrete random variable. Suppose X is a discrete random variable that

More information

IDENTIFICATION OF DONOR LINES FOR IMPROVING FRUIT YIELD OF K 35 x K 12 EGGPLANT HYBRID

IDENTIFICATION OF DONOR LINES FOR IMPROVING FRUIT YIELD OF K 35 x K 12 EGGPLANT HYBRID UDC 575.827; 635.64 Original scientific paper IDENTIFICATION OF DONOR LINES FOR IMPROVING FRUIT YIELD OF K 35 x K 12 EGGPLANT HYBRID Jelena DAMNJANOVIĆ 1, Maja VRAČAREVIĆ 1, Gordana ŠURLAN- MOMIROVIĆ 2,

More information