Column Buckling.

Size: px
Start display at page:

Download "Column Buckling."

Transcription

1 Column Buckling

2 Contents Stability and Buckling( 稳定性与失稳 ) Examples of Columns( 压杆应用示例 ) Conventional Design of Columns( 压杆的常规设计方法 ) Euler s Formula for in-ended Columns( 端部铰接压杆欧拉公式 ) Buckling Modes( 失稳模态 ) Extension of Euler s Formula( 欧拉公式的扩展 ) Buckling in Orthogonal lanes( 相互垂直平面内的失稳 ) Ways to Improve Column Stability( 提高压杆稳定性的途径 ) Applicability of Euler s Formula( 欧拉公式的适用范围 ) Failure Diagram of Columns( 压杆的失效总图 ) Critical Stress of Columns( 压杆临界应力的确定 ) Design of Columns( 压杆的稳定性设计方法 ) Eccentrically oaded Columns( 偏心压杆 )

3 Stability and Buckling Stability is characterized as the ability of a structure to maintain its (stable) equilibrium under working conditions. Buckling is the behavior of a structure losing its equilibrium under working conditions. This is another type of failure iterion, in addition to strength (fracture/yielding), stiffness (deformation) and fatigue iteria. Buckling occurs suddenly and results in catastrophic accident. 3

4 Examples of Columns 4

5 Conventional Design of Columns In the design of columns, osssectional area is selected such that - allowable stress is not exceeded A - deformation falls within specifications AE After these design calculations, many discover that the column is unstable under loading and that it suddenly becomes sharply curved or buckles. 5

6 Euler s Formula for in-ended Columns w w w w Consider an axially loaded beam. After a small perturbation, the system reaches a neutral equilibrium configuration such that d w M w dx EI EI dw w 0 dx EI w" k w 0, k EI w Asin kx B cos kx 0w0 w B 0; EIn k n 6

7 Buckling Modes EI 4 9 ; EI ; EI 7

8 Cantilevered Columns A A A column with one fixed and one free end, will behave as the upperhalf of a pin-connected column. B e B The itical loading is calculated from Euler s formula, EI e EI 4 A e E i 4 i e r E equivalent r length 8

9 Columns with Two Fixed Ends The symmetry of the supports and of the loading requires that the shear at C and the horizontal reactions at both ends be zero. The equation of the deflection curve involves sine and cosine functions. oint D must be a point of inflection, where the bending moment is zero. It follows that the portion DE of the column must behave as a pin ended column. EI e EI e 9

10 Columns with One Fixed End and One Free End w w w The differential equation dw dx w Vx EI d w Vx w dx EI EI Vx w Asin kx B cos kx, k EI V 0 w0 w B 0; Asin k V 0 w Ak cos k tan k k k EI EI EIk Equivalent length: e

11 Extension of Euler s Formula e EI e EI E E ; e r r i i equivalent length; length coefficien t 11

12 Sample roblem Assuming the same material and oss-sectional dimension, which of the following four columns is most susceptible to buckling? 5l 7l 9l l (a) (b) (c) (d) EI Euler Formula l 1

13 Sample roblem For the truss shown, F, β, and AC are given. Find 0 < < /, under which column AB and BC reach itical stability simultaneously. Solution: 1. Euler s equation for column AB: F EI EI FAB Fcos lab l cos. Euler s equation for column BC: F BC EI Fsin l F cos F sin EI l cos cot EI l sin EI l sin CB 3. If column AB & BC reach itical stability simultaneously: tan A B C 13

14 Sample roblem Which of the following best desibes the relationship between itical 1 and? (a) 1 = ; (b) 1 < ; (c) 1 > ; (d) not sure. A 0 B A B a a C 1 D C 0 D a a Solution: EI a : FN AD a 1 1 EI EI b : FN AB a a 1 EI a 14

15 Sample roblem For the column shown, find the relationship between the itical loads corresponding to oss-sections desibed by (a), (b) and (c). r r r r l Solution: a b c (a) (b) (c) 4 4 EI a E r E r 64 4 l l l : : 4 EIb E r 1 1 : : l l : 1 : r 4 EI 16 3 c E E r l l 1 l 1 a b c 15

16 Buckling in Orthogonal lanes For the column shown, find the relationship between the itical loads corresponding to buckling in x-y and x-z plane respectively. Solution: l b b y z EI z z zl EI y y yl 3 bb 1 z I z 3 I bb 1 y y 4 What if the oss-section is ineased to b b? 16

17 Buckling in Orthogonal lanes Buckling in x-z: μ y = 1 y EI y z x y y Buckling in x-y: μ z = 0.5 z EI 0.5 z 17

18 Ways to Improve Column Stability Selection of materials. Deease effective column length (μ). Inease moment of inertia for a given oss-sectional area. EI e E i r EI E Coordination of end conditions and moment of inertia in orthogonal planes: For a group of columns, make each one equally stable (avoid the last straw). i i z rz y ry 18

19 Applicability of Euler s Formula Critical buckling stress EI r E Ai E E A A ir A i slenderness ratio Applicability of Euler s formula r E E σ : proportion limit; λ p : itical slenderness ratio. E 06 Ga Q35: Ma Y 35 Ma 19

20 Failure Diagram of Columns Y E i revious analyses assumed stresses below the proportional limit and initially straight, homogeneous columns e Experimental data demonstrate r - for large e /i r, follows Euler s formula and depends upon E but not Y. - for small e /i r, is determined by the yield strength Y and not E. Empirical formulas for intermediate columns - for intermediate e /i r, depends on both Y and E. 0

21 Critical Stress of Columns Y a b or a b E Y Strength analysis Stability analysis O E 1. ong columns: p 3. Short columns: Y Y Y E. Intermediate columns: a Y ab Y p Y b λ 1

22 Sample roblem For the wood column shown, E = 10 Ga, σ p = 9 Ma, σ Y = 13 Ma, = λ for intermediate columns. Find the itical loads for rectangular oss-sections: (1) h = 10 mm, b = 90 mm; () h = b = 104 mm Solution: E p z p 3m y a Y Y 8.6 b l i r p Slender column. EI 79.9 kn l. 100 Intermediate column. = A = (a bλ)a = kn y z

23 Sample roblem For the composite beam and column structure shown, E AB = E BD = E, d AB = d BD = d, :d = 30, λ.bd = 100. Find, under which BD reaches the itical condition. A EI C B EA D Deformation compatibility: 3 Ed Solution: BD : 10 i d 4 F BD EI EI 3EI EA 3 FBD FBD 3

24 Design of Columns Stability analysis of columns - Stability check - Cross-section design - Allowable load/stress 1. Method of safety factor F F F st nst F st A n st n st : safety factor [F st ]: allowable load [σ st ]: allowable stress. Method of discount factor st F A :discount/stability factor 4

25 l z =800 mm l y =770 mm Sample roblem A Q75 steel column is cylindrically pinned at both ends. p = 96, σ Y = 75 Ma, = λ for intermediate columns. Analyze the column stability for F = 60 kn and n st = 3.5. x x F F h =45mm b=0mm l z l y y z Solution: - In x-y plane, both ends are pinned. i z a Y p 96, Y 4 b Iz h zlz mm, z 61.9 A 3 i 1.99 z 5

26 - In x-z plane, both ends are fixed. i y Iy b yly mm, y 66.7 A 3 i 5.77 The column buckling first happens in the x-z plane. F Y z y p y 41 Ma 6 6 A kn 6 kn F F F F n 60 kn < 6 kn The column is stable. y 6

27 Eccentric oading: The Secant Formula Eccentric loading is equivalent to a centric load and a moment. Bending occurs for any nonzero eccentricity. Question of buckling becomes whether the resulting deflection is excessive. The deflection become infinite when = d w w e d w e w dx EI dx EI EI w Asinkx B cos kx e, k EI max 0 w 0 w tan sin cos 1 B e; Asink e 1 cos k A e tan k w e k kx kx w w e tan k sin k cos k 1 eseck 1 e sec 1 EI EI e sec 1., EI e

28 Eccentric oading: The Secant Formula ec i 0 r ec i 1 r max i For small slenderness ratio: e r ec max 1. A ir Maximum stress M c wmax A I A I ec 1 sec A i r max max ec 1 sec A i r EI ec 1 1 sec A i r ir EA Secant Formula A max ec 1 e 1 sec ir ir EA For large slenderness ratio, the curves get very close to Euler s curve, and thus that the effect of the eccentricity of the loading becomes negligible. The secant formula is chiefly useful for intermediate values of slenderness ratio. e c 8

29 Contents Stability and Buckling( 稳定性与失稳 ) Examples of Columns( 压杆应用示例 ) Conventional Design of Columns( 压杆的常规设计方法 ) Euler s Formula for in-ended Columns( 端部铰接压杆欧拉公式 ) Buckling Modes( 失稳模态 ) Extension of Euler s Formula( 欧拉公式的扩展 ) Buckling in Orthogonal lanes( 相互垂直平面内的失稳 ) Ways to Improve Column Stability( 提高压杆稳定性的途径 ) Applicability of Euler s Formula( 欧拉公式的适用范围 ) Failure Diagram of Columns( 压杆的失效总图 ) Critical Stress of Columns( 压杆临界应力的确定 ) Design of Columns( 压杆的稳定性设计方法 ) Eccentrically oaded Columns( 偏心压杆 ) 9

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHTER MECHNICS OF MTERILS 10 Ferdinand. Beer E. Russell Johnston, Jr. Columns John T. DeWolf cture Notes: J. Walt Oler Texas Tech University 006 The McGraw-Hill Companies, Inc. ll rights reserved. Columns

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

More information

Bending Internal Forces.

Bending Internal Forces. ending Internal orces mi@seu.edu.cn Contents Introduction( 弯曲变形简介 ) The orms of Internal orces in eams( 梁中内力的形式 ) Symmetric ending( 对称弯曲 ) Types of eams( 静定梁的分类 ) Types of Supports and Reactions( 梁的支撑种类及相应的支座反力形式

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

Chapter 5 Compression Member

Chapter 5 Compression Member Chapter 5 Compression Member This chapter starts with the behaviour of columns, general discussion of buckling, and determination of the axial load needed to buckle. Followed b the assumption of Euler

More information

Chapter 12 Elastic Stability of Columns

Chapter 12 Elastic Stability of Columns Chapter 12 Elastic Stability of Columns Axial compressive loads can cause a sudden lateral deflection (Buckling) For columns made of elastic-perfectly plastic materials, P cr Depends primarily on E and

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

Lecture English Term Definition Chinese: Public

Lecture English Term Definition Chinese: Public Lecture English Term Definition Chinese: Public A Convert Change between two forms of measurements 变换 A Equilateral Triangle Triangle with equal sides and angles A FPS Units The American system of measurement.

More information

Elastic Stability Of Columns

Elastic Stability Of Columns Elastic Stability Of Columns Introduction: Structural members which carry compressive loads may be divided into two broad categories depending on their relative lengths and cross-sectional dimensions.

More information

Structural Mechanics Column Behaviour

Structural Mechanics Column Behaviour Structural Mechanics Column Behaviour 008/9 Dr. Colin Caprani, 1 Contents 1. Introduction... 3 1.1 Background... 3 1. Stability of Equilibrium... 4. Buckling Solutions... 6.1 Introduction... 6. Pinned-Pinned

More information

Torsion.

Torsion. Torsion mi@seu.edu.cn Contents Introduction to Torsion( 扭转简介 ) Examples of Torsion Shafts( 扭转轴示例 ) Sign Convention of Torque( 扭矩符号规则 ) Torque Diagram( 扭矩图 ) Power & Torque( 功率与扭矩 ) Internal Torque & Stress

More information

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns. CHAPTER OBJECTIVES Discuss the behavior of columns. Discuss the buckling of columns. Determine the axial load needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Bending Deflection.

Bending Deflection. ending Deflection mi@seu.edu.cn ontents The Elastic urve, Deflection & Slope ( 挠曲线 挠度和转角 ) Differential Euation of the Elastic urve( 挠曲线微分方程 ) Deflection & Slope by Integration( 积分法求挠度和转角 ) oundary onditions(

More information

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information

9.1 Introduction to bifurcation of equilibrium and structural

9.1 Introduction to bifurcation of equilibrium and structural Module 9 Stability and Buckling Readings: BC Ch 14 earning Objectives Understand the basic concept of structural instability and bifurcation of equilibrium. Derive the basic buckling load of beams subject

More information

Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

More information

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012 Lecture Slides Chapter 4 Deflection and Stiffness The McGraw-Hill Companies 2012 Chapter Outline Force vs Deflection Elasticity property of a material that enables it to regain its original configuration

More information

Comb resonator design (2)

Comb resonator design (2) Lecture 6: Comb resonator design () -Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Comparison of Euler Theory with Experiment results

Comparison of Euler Theory with Experiment results Comparison of Euler Theory with Experiment results Limitations of Euler's Theory : In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load being applied axially

More information

CIV 207 Winter For practice

CIV 207 Winter For practice CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions

More information

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Chapter 8 Structural Design and Analysis 1 Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Normal Stress Stress is a state when a material is loaded. For normal forces

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES 14.1 GENERAL REMARKS In structures where dominant loading is usually static, the most common cause of the collapse is a buckling failure. Buckling may

More information

Lecture 7: The Beam Element Equations.

Lecture 7: The Beam Element Equations. 4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite

More information

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling In the case of elements subjected to compressive forces, secondary bending effects caused by,

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER 2 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Stress and Strain Axial Loading 2.1 An Introduction

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

Plane Trusses Trusses

Plane Trusses Trusses TRUSSES Plane Trusses Trusses- It is a system of uniform bars or members (of various circular section, angle section, channel section etc.) joined together at their ends by riveting or welding and constructed

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture,

3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 3.032 Problem Set 1 Fall 2007 Due: Start of Lecture, 09.14.07 1. The I35 bridge in Minneapolis collapsed in Summer 2007. The failure apparently occurred at a pin in the gusset plate of the truss supporting

More information

ENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1

ENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1 ENG2000 Chapter 7 Beams ENG2000: R.I. Hornsey Beam: 1 Overview In this chapter, we consider the stresses and moments present in loaded beams shear stress and bending moment diagrams We will also look at

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

More information

Supplement: Statically Indeterminate Frames

Supplement: Statically Indeterminate Frames : Statically Indeterminate Frames Approximate Analysis - In this supplement, we consider another approximate method of solving statically indeterminate frames subjected to lateral loads known as the. Like

More information

Comb Resonator Design (2)

Comb Resonator Design (2) Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

Axial Loading Concept of Stress & Strain.

Axial Loading Concept of Stress & Strain. Axial Loading Concept of Stress & Strain mi@seu.edu.cn Contents Introduction( 拉压变形简介 ) Diagram of Axial Forces( 轴力图 ) Concept of Stresses( 应力的概念 ) General Stress State of a Point( 点的一般应力状态 ) Stresses Acting

More information

The analysis of trusses Mehrdad Negahban (1999)

The analysis of trusses Mehrdad Negahban (1999) The analysis of trusses Mehrdad Negahban (1999) A truss: A truss is a structure made of two force members all pin connected to each other. The method of joints: This method uses the free-body-diagram of

More information

Principia and Design of Heat Exchanger Device 热交换器原理与设计

Principia and Design of Heat Exchanger Device 热交换器原理与设计 Principia and Design of Heat Exchanger Device 热交换器原理与设计 School of Energy and Power Engineering, SDU Presented: 杜文静 E-mail: wjdu@sdu.edu.cn Telephone: 88399000-511 1. Spiral heat exchanger 螺旋板式热交换器 basic

More information

Chapter 7. ELASTIC INSTABILITY Dr Rendy Thamrin; Zalipah Jamellodin

Chapter 7. ELASTIC INSTABILITY Dr Rendy Thamrin; Zalipah Jamellodin Chapter 7 ESTIC INSTIITY Dr Rendy Thamrin; Zalipah Jamellodin 7. INTRODUCTION TO ESTIC INSTIITY OF COUN ND FRE In structural analysis problem, the aim is to determine a configuration of loaded system,

More information

Stability Of Structures: Continuous Models

Stability Of Structures: Continuous Models 5 Stabilit Of Structures: Continuous Models SEN 311 ecture 5 Slide 1 Objective SEN 311 - Structures This ecture covers continuous models for structural stabilit. Focus is on aiall loaded columns with various

More information

Critical Load columns buckling critical load

Critical Load columns buckling critical load Buckling of Columns Buckling of Columns Critical Load Some member may be subjected to compressive loadings, and if these members are long enough to cause the member to deflect laterally or sideway. To

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11. Displacement Method of Analysis Slope Deflection Method Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAALLI - 6113. QUESTION WITH ANSWERS DEARTMENT : CIVIL SEMESTER: V SUB.CODE/ NAME: CE 5 / Strength of Materials UNIT 3 COULMNS ART - A ( marks) 1. Define columns

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5 BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

Moments and Product of Inertia

Moments and Product of Inertia Moments and Product of nertia Contents ntroduction( 绪论 ) Moments of nertia of an Area( 平面图形的惯性矩 ) Moments of nertia of an Area b ntegration( 积分法求惯性矩 ) Polar Moments of nertia( 极惯性矩 ) Radius of Gration

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3 M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We

More information

ME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013

ME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013 Introduction to Solid Mechanics ME C85/CE C30 Fall, 2013 1. Leave an empty seat between you and the person (people) next to you. Unfortunately, there have been reports of cheating on the midterms, so we

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCETER OLYTECHNIC INTITUTE MECHANICAL ENGINEERING DEARTMENT DGN OF MACHINE ELEMENT ME-330, B 018 Lecture 08-09 November 018 Examples w Eccentric load Concentric load w Examples Vestas V80-.0 MWatt Installing

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

MECE 3321: Mechanics of Solids Chapter 6

MECE 3321: Mechanics of Solids Chapter 6 MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

More information

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va ME 323 Examination # 1 February 18, 2016 Name (Print) (Last) (First) Instructor PROBLEM #1 (20 points) A structure is constructed from members 1, 2 and 3, with these members made up of the same material

More information

14. *14.8 CASTIGLIANO S THEOREM

14. *14.8 CASTIGLIANO S THEOREM *14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

More information

材料力學 Mechanics of Materials

材料力學 Mechanics of Materials 材料力學 Mechanics of Materials 林峻立博士 國立陽明大學生物醫學工程系教授 Chun-Li Lin, PhD., Professor, Department of Biomedical Engineering National Yang-Ming University 1-1 Cortical bone: 10-20GPa Load Cross section b Moment

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

More information

Elastic Cylinders Subjected to End Loadings.

Elastic Cylinders Subjected to End Loadings. Elastic Clinders Subjected to End Loadings mi@seu.edu.cn Outline Elastic Clinders with End Loading ( 端部受载柱体 ) Etension of Clinders ( 拉伸 ) Torsion of Clinders ( 扭转 ) Stress Function Formulation ( 应力函数体系

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication S D Rajan, Introduction to Structural Analsis & Design ( st Edition) Errata Sheet for S D Rajan, Introduction to Structural Analsis & Design ( st Edition) John Wile & Sons Publication Chapter Page Correction

More information

QUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1

QUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1 Theory of Structures eterminacy Indeterminacy 1 QUSTION NK 1. The static indeterminacy of the structure shown below (a) (b) 6 (c) 9 (d) 12 2. etermine the degree of freedom of the following frame (a) 1

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Chapter Objectives. Design a beam to resist both bendingand shear loads

Chapter Objectives. Design a beam to resist both bendingand shear loads Chapter Objectives Design a beam to resist both bendingand shear loads A Bridge Deck under Bending Action Castellated Beams Post-tensioned Concrete Beam Lateral Distortion of a Beam Due to Lateral Load

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

More information

Lecture 0. Statics. Module 1. Overview of Mechanics Analysis. IDeALab. Prof. Y.Y.KIM. Solid Mechanics

Lecture 0. Statics. Module 1. Overview of Mechanics Analysis. IDeALab. Prof. Y.Y.KIM. Solid Mechanics Lecture 0. Statics Module 1. Overview of Mechanics Analysis Overview of Mechanics Analysis Procedure of Solving Mechanics Problems Objective : Estimate the force required in the flexor muscle Crandall,

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

BUCKLING OF VARIABLE CROSS-SECTIONS COLUMNS IN THE BRACED AND SWAY PLANE FRAMES

BUCKLING OF VARIABLE CROSS-SECTIONS COLUMNS IN THE BRACED AND SWAY PLANE FRAMES ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 16/016 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach BUCKLING OF VARIABLE CROSS-SECTIONS COLUMNS IN THE BRACED AND SWAY PLANE FRAMES Ružica

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

More information