Stability Of Structures: Continuous Models

Size: px
Start display at page:

Download "Stability Of Structures: Continuous Models"

Transcription

1 5 Stabilit Of Structures: Continuous Models SEN 311 ecture 5 Slide 1

2 Objective SEN Structures This ecture covers continuous models for structural stabilit. Focus is on aiall loaded columns with various end support conditions. Columns are treated with inearized reuckling () analsis assumptions to set up the equilibrium equation in a perturbed shape. Formulas for beam deflection (art 3 of course) reused. Equilibrium equation is a linear second order ODE - ma be homogeneous or not. Seeking nontrivial ODE solutions leads to a trascendental eigenproblem, from which critical loads and buckling mode shapes can be obtained. For prismatic columns with standard C, the stabilit analsis can be entirel done b hand. SEN 311 ecture 5 Slide

3 Three Eample roblems SEN Structures Three column buckling problems are worked out in this ecture: 1. The Euler column: a prismatic, elastic, aiall loaded column pinned (same as SS) at both ends. The pinned-fied column: a prismatic, elastic, aiall loaded column pinned at one end and fied at the other 3. The pinned-elasticall-restrained column: a prismatic, elastic, aiall loaded column SS at both ends but connected to a torsional spring at the other These 3 C cases were tested Frida, and are used in Eercise 10.6 of HW#10 SEN 311 ecture 5 Slide 3

4 The Three C Cases Treated in This ecture elastic constant EI constant EI constant EI elastic elastic k inned-pinned (a.k.a Euler column) inned-fied inned-restrained SEN 311 ecture 5 Slide 4

5 The inned-inned (Euler) Column elastic constant EI (b) X v() X' assumed buckled shape (c) X v() X' M() = v() (+ as drawn) SEN 311 ecture 5 Slide 5

6 inned-inned Column: ssumed uckling Shape Figure (b) of Slide 4, reproduced on the right for convenience, is a FD done in an admissible perturbed configuration for the Euler column. It shows reactions at end, which reduce to just a vertical force balancing. There are no end moment reactions because the column is hinged at both and. Furthermore, taking moments with respect to and shows that both horizontal reactions (along ) vanish. X v() X' assumed buckled shape SEN 311 ecture 5 Slide 6

7 inned-inned Column: FD at Variable Net, do the FD of a segment X, with X located at distance from, as shown in (c) of last slide, reproduced on the right for convenience. The displaced X is labeled X', and the distance from X to X' is the lateral column deflection v(). t this cross section we will have a bending moment M (), which is positive as drawn z z (reason: a positive M () compresses the "beam top surface", which b convention lies on the + side.) Taking moments with respect to X' for convenience, equilibrium requires X v() X' M() = v (+ as drawn) z M () + v() = 0 z ut according to beam deflection theor (developed in art 3 of the course) M () = E I v''() = E I v''() zz SEN 311 ecture 5 Slide 7

8 inned-inned Column: ODE Derivation Here I = I zz denotes the minimum moment of inertia of the column cross-section. This defines the z direction. The ais is taken normal to and z forming a right-handed RCC frame. The column will buckle in the direction; that is, the deflected shape will be in the - plane. Replacing M () = E I v''() gives z E I v''() + v() = 0 This is the ODE that governs stabilit analsis. It is a linear, homogeneous, second-order ODE in the deflection v(). For convenience in the reduction to standard (canonical) form, introduce λ def = + EI Replacing b E I λ and dividing through b E I ields the canonical ODE form v''() + λ v() = 0 SEN 311 ecture 5 Slide 8

9 inned-inned Column: General ODE Solution The general solution of the foregoing ODE is v() = cos λ + sin λ Coefficients and are determined from the kinematic C of simple support at both ends: v(0)=0 and v() =0. The first one requires = 0, whence the general solution reduces to v() = sin λ This is called a characteristic solution. Two cases can be distinguished: = 0 0 v() = 0: the column remains straight for an load v() 0: the column buckles with shape sin λ These are called the trivial and nontrivial solutions, respectivel, in the literature. Since the case = 0 or v() = 0 is that of the reference (undeformed) state at 0 load, it represents the primar equilibrium path. SEN 311 ecture 5 Slide 9

10 inned-inned Column: Critical oads SEN Structures The critical loads are the values of at which nontrivial solutions are possible. These are determined b appling the second end condition v() = 0. Since is nonzero (else we would get a trivial solution) we must have sin λ = 0 This characteristic equation is actuall a trascendental eigenproblem in λ. Its solutions are λ = n π, in which n = 1,,... is a positive integer. Square both sides for convenience: λ = n π, replace λ b /(E I), solve for, and tag those loads as critical: cr,n = n π EI, n = 1,,... s can be observed, there is an infinite number of critical loads. These are the nontrivial solutions of the characteristic equation. SEN 311 ecture 5 Slide 10

11 inned-inned Column: Critical oad The lowest critical load, denoted simpl b, corresponds to n = 1: cr = = cr cr,1 π EI This is called the Euler critical load. The buckling mode shapes associated with the set of critical loads are given b v c cr,n r,n() = sin n π If n = 1 the mode shape is a half sine wave, similar to the one pictured as assumed mode shape. If n =, we get a complete sine wave, if n = 3 a one-and-a-half sine wave, etc. Those buckling shapes are drawn for n = 1,, 3 in the net slide. SEN 311 ecture 5 Slide 11

12 inned-inned Column: uckling Mode Shapes for n = 1,,3 SEN Structures = = cr cr1 π E I cr= / 4 π E I cr3= /3 9 π E I /3 / /3 Mode shape 1 (n=1) Mode shape (n=) Mode shape 3 (n=3) SEN 311 ecture 5 Slide 1

13 inned-inned Column: Determinant Form of Stabilit Equation The boundar condition equations = 0 and sin λ = 0 can be recast in matri form as = 0 sin λ 0 For a nontrivial solution in which and are not simultaneoul zero the matri determinant, which is simpl sin λ, must be zero. Thus we recover the characteristic equation sin λ = 0. For this particular problem this detour is a waste of time. ut for more complicated cases it can shortcut error prone hand derivations especiall with the help of a computer algebra sstem (CS), which can directl compute and simplif the determinant. SEN 311 ecture 5 Slide 13

14 inned-fied Column: ssumed uckling Shape (a) (b) (c) elastic X constant EI R X v() M X' assumed buckled shape R = R R X v() X' R M() (+ as drawn) In the configuration shown in (a) the column is pinned at and fied at. The FD of a kinematicall admissible buckling shape is illustrated in (b). The most notable difference with respect to the pinned-pinned column case is the presence of additional reaction forces: the lateral reactions R and R, and the fied end moment M. These are positive as pictured above. SEN 311 ecture 5 Slide 14

15 inned-fied Column: ODE and its Solution Equilibrium of forces in (b) of the previous slide is satisfied b the vertical reaction R = at. Equilibrium of forces gives R = R. Equilibrium of moments taken with respect to either or ields M = R, or R = M /. For now M will be kept as an unknown until the ODE is solved. Net consider the FD of the portion X shown in (c) of the previous slide Moment equilibrium with respect to X' gives the non-homogeneous ODE E I v''() + v() = R = M / The HS is the same as that of the pinned-pinned column, but the RHS is no longer zero. Dividing through b E I and setting λ = /(EI) gives the canonical form v''() + λ v() = M /(E I ) = λ M /( ) The general solution of this ODE is the sum of the homogeneous solution v H() = cos λ + sin λ and the particular solution v () = λ M /(λ ) = M /( ): v() = cos λ + sin λ + M /( ) SEN 311 ecture 5 Slide 15

16 inned-fied Column: Critical oad The three kinematic C are v = v(0) = 0, v = v() = 0, and v' = v'() = 0. These provide 3 equations. One is trivial: = 0, but the other two are not M M cos λ + sin λ + = 0, λ sin λ + λ cos λ = 0 Soving these equations simultaneousl gives the characteristic equation tan λ = λ The smallest root of this trascendental equation, to 4 places, is λ = The corresponding critical load is cr = 0.19 EI Since 0.19 ~.05 π, this critical load is approimatel twice that of the pinned-pinned Euler column. Thus fiing one end has substantiall increased the critical load. SEN 311 ecture 5 Slide 16

17 inned-fied Column: Determinant Form of Stabilit Equation SEN Structures The three boundar condition equations of the previous slide can be recast in matri form as cos λ sin λ 1/ = 0 λ cos λ λ sin λ 1/() M 0 For a nontrivial solution in which, and M are not all simultaneousl zero the matri determinant must vanish. Epanding gives ( sin λ λ cos λ ) / ( ) = 0 Since and are nonzero, the factor 1 / ( ) ma be removed. That leaves sin λ = λ cos λ. Dividing through b cos λ we recover the characteristic equation tan λ = λ which was found in the previous slide b an elimination method SEN 311 ecture 5 Slide 17

18 The inned-elasticall Restrained Column (a) (b) (c) (d) R constant EI v() elastic,v R M()= v+r X R beam-column k M = k θ C elastic beam θ R This is relevant to one of the C tested in ab 4: the restraining elastic beam can be replaced b an equivalent torsional spring For analsis details, see Sec 4 of ecture 5 SEN 311 ecture 5 Slide 18

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

Lecture 10: Fourier Sine Series

Lecture 10: Fourier Sine Series Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. ecture : Fourier Sine Series

More information

Chapter 5 Compression Member

Chapter 5 Compression Member Chapter 5 Compression Member This chapter starts with the behaviour of columns, general discussion of buckling, and determination of the axial load needed to buckle. Followed b the assumption of Euler

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHTER MECHNICS OF MTERILS 10 Ferdinand. Beer E. Russell Johnston, Jr. Columns John T. DeWolf cture Notes: J. Walt Oler Texas Tech University 006 The McGraw-Hill Companies, Inc. ll rights reserved. Columns

More information

Elastic Stability Of Columns

Elastic Stability Of Columns Elastic Stability Of Columns Introduction: Structural members which carry compressive loads may be divided into two broad categories depending on their relative lengths and cross-sectional dimensions.

More information

Chapter 12 Elastic Stability of Columns

Chapter 12 Elastic Stability of Columns Chapter 12 Elastic Stability of Columns Axial compressive loads can cause a sudden lateral deflection (Buckling) For columns made of elastic-perfectly plastic materials, P cr Depends primarily on E and

More information

Basic principles of steel structures. Dr. Xianzhong ZHAO

Basic principles of steel structures. Dr. Xianzhong ZHAO Basic principles of steel structures Dr. Xianzhong ZHAO.zhao@mail.tongji.edu.cn www.sals.org.cn 1 Introduction Resistance of cross-section Compression members Outlines Overall stabilit of uniform (solid

More information

9.1 Introduction to bifurcation of equilibrium and structural

9.1 Introduction to bifurcation of equilibrium and structural Module 9 Stability and Buckling Readings: BC Ch 14 earning Objectives Understand the basic concept of structural instability and bifurcation of equilibrium. Derive the basic buckling load of beams subject

More information

LATERAL BUCKLING ANALYSIS OF ANGLED FRAMES WITH THIN-WALLED I-BEAMS

LATERAL BUCKLING ANALYSIS OF ANGLED FRAMES WITH THIN-WALLED I-BEAMS Journal of arine Science and J.-D. Technolog, Yau: ateral Vol. Buckling 17, No. Analsis 1, pp. 9-33 of Angled (009) Frames with Thin-Walled I-Beams 9 ATERA BUCKING ANAYSIS OF ANGED FRAES WITH THIN-WAED

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information

Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

More information

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns. CHAPTER OBJECTIVES Discuss the behavior of columns. Discuss the buckling of columns. Determine the axial load needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods

More information

Conceptual question Conceptual question 12.2

Conceptual question Conceptual question 12.2 Conceptual question 12.1 rigid cap of weight W t g r A thin-walled tank (having an inner radius of r and wall thickness t) constructed of a ductile material contains a gas with a pressure of p. A rigid

More information

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication S D Rajan, Introduction to Structural Analsis & Design ( st Edition) Errata Sheet for S D Rajan, Introduction to Structural Analsis & Design ( st Edition) John Wile & Sons Publication Chapter Page Correction

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

A study of the critical condition of a battened column and a frame by classical methods

A study of the critical condition of a battened column and a frame by classical methods University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 003 A study of the critical condition of a battened column and a frame by classical methods Jamal A.H Bekdache

More information

Chapter 7. ELASTIC INSTABILITY Dr Rendy Thamrin; Zalipah Jamellodin

Chapter 7. ELASTIC INSTABILITY Dr Rendy Thamrin; Zalipah Jamellodin Chapter 7 ESTIC INSTIITY Dr Rendy Thamrin; Zalipah Jamellodin 7. INTRODUCTION TO ESTIC INSTIITY OF COUN ND FRE In structural analysis problem, the aim is to determine a configuration of loaded system,

More information

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002 REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

More information

Part D: Frames and Plates

Part D: Frames and Plates Part D: Frames and Plates Plane Frames and Thin Plates A Beam with General Boundary Conditions The Stiffness Method Thin Plates Initial Imperfections The Ritz and Finite Element Approaches A Beam with

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

Moment Area Method. 1) Read

Moment Area Method. 1) Read Moment Area Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Area method. 2) Derive the Moment Area method theorems using mechanics and mathematics.

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are:

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are: Curved beams. Introduction Curved beams also called arches were invented about ears ago. he purpose was to form such a structure that would transfer loads, mainl the dead weight, to the ground b the elements

More information

M.S Comprehensive Examination Analysis

M.S Comprehensive Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs Chapter 3 Higher Order Linear ODEs Advanced Engineering Mathematics Wei-Ta Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 3.1 Homogeneous Linear ODEs 3 Homogeneous Linear ODEs An ODE is of

More information

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions Deflection of Beams Equation of the Elastic Curve The governing second order differential equation for the elastic curve of a beam deflection is EI d d = where EI is the fleural rigidit, is the bending

More information

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60. 162 3. The linear 3-D elasticity mathematical model The 3-D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides

More information

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly .3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Geometric Stiffness Effects in 2D and 3D Frames

Geometric Stiffness Effects in 2D and 3D Frames Geometric Stiffness Effects in D and 3D Frames CEE 41. Matrix Structural Analsis Department of Civil and Environmental Engineering Duke Universit Henri Gavin Fall, 1 In situations in which deformations

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

Section 6: PRISMATIC BEAMS. Beam Theory

Section 6: PRISMATIC BEAMS. Beam Theory Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are Bernoulli-Euler beam theory Timoshenko beam theory One learns the details of Bernoulli-Euler beam

More information

1.571 Structural Analysis and Control Prof. Connor Section 5: Non-linear Analysis of Members. π -- γ. v 2. v 1. dx du. v, x. u, x.

1.571 Structural Analysis and Control Prof. Connor Section 5: Non-linear Analysis of Members. π -- γ. v 2. v 1. dx du. v, x. u, x. 5. Deformation nalysis Y.57 Structural nalysis and Control rof. Connor Section 5: Non-linear nalysis of Members dy ( + ε y )dy π -- γ y ( + ε ) X 5.. Deformation of a fiber initially aligned with. u u

More information

MECHANICS OF MATERIALS REVIEW

MECHANICS OF MATERIALS REVIEW MCHANICS OF MATRIALS RVIW Notation: - normal stress (psi or Pa) - shear stress (psi or Pa) - normal strain (in/in or m/m) - shearing strain (in/in or m/m) I - area moment of inertia (in 4 or m 4 ) J -

More information

Comb Resonator Design (2)

Comb Resonator Design (2) Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

Aircraft Structures Structural & Loading Discontinuities

Aircraft Structures Structural & Loading Discontinuities Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Structural & Loading Discontinuities Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

More information

Elastic Buckling Behavior of Beams ELASTIC BUCKLING OF BEAMS

Elastic Buckling Behavior of Beams ELASTIC BUCKLING OF BEAMS Elastic Buckling Behavior of Beams CE579 - Structural Stability and Design ELASTIC BUCKLING OF BEAMS Going back to the original three second-order differential equations: 3 Therefore, z z E I v P v P 0

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

All parabolas through three non-collinear points

All parabolas through three non-collinear points ALL PARABOLAS THROUGH THREE NON-COLLINEAR POINTS 03 All parabolas through three non-collinear points STANLEY R. HUDDY and MICHAEL A. JONES If no two of three non-collinear points share the same -coordinate,

More information

The CR Formulation: BE Plane Beam

The CR Formulation: BE Plane Beam 6 The CR Formulation: BE Plane Beam 6 Chapter 6: THE CR FORMUATION: BE PANE BEAM TABE OF CONTENTS Page 6. Introduction..................... 6 4 6.2 CR Beam Kinematics................. 6 4 6.2. Coordinate

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Second-Order Linear Differential Equations C 2

Second-Order Linear Differential Equations C 2 C8 APPENDIX C Additional Topics in Differential Equations APPENDIX C. Second-Order Homogeneous Linear Equations Second-Order Linear Differential Equations Higher-Order Linear Differential Equations Application

More information

ON THE DESIGN CURVES FOR BUCKLING PROBLEMS

ON THE DESIGN CURVES FOR BUCKLING PROBLEMS EUROSTEEL 008, 3-5 September 008, Gra, Austria O THE DESIG CURVES FOR BUCKLIG PROBLES Jósef Salai a, Ferenc Papp b a KÉSZ Ltd., Budapest, Hungar b Budapest Universit of technolog and Economics, Department

More information

SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION METHOD SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

More information

Structural Mechanics Column Behaviour

Structural Mechanics Column Behaviour Structural Mechanics Column Behaviour 008/9 Dr. Colin Caprani, 1 Contents 1. Introduction... 3 1.1 Background... 3 1. Stability of Equilibrium... 4. Buckling Solutions... 6.1 Introduction... 6. Pinned-Pinned

More information

torsion equations for lateral BucKling ns trahair research report r964 July 2016 issn school of civil engineering

torsion equations for lateral BucKling ns trahair research report r964 July 2016 issn school of civil engineering TORSION EQUATIONS FOR ATERA BUCKING NS TRAHAIR RESEARCH REPORT R96 Jul 6 ISSN 8-78 SCHOO OF CIVI ENGINEERING SCHOO OF CIVI ENGINEERING TORSION EQUATIONS FOR ATERA BUCKING RESEARCH REPORT R96 NS TRAHAIR

More information

ARCH 631 Note Set 2.1 F2010abn. Statics Primer

ARCH 631 Note Set 2.1 F2010abn. Statics Primer RCH 631 Note Set.1 F010abn Statics Primer Notation: a = name for acceleration = area (net = with holes, bearing = in contact, etc...) (C) = shorthand for compression d = perpendicular distance to a force

More information

Moving Reference Frame Kinematics Homework

Moving Reference Frame Kinematics Homework Chapter 3 Moving Reference Frame Kinematics Homework Freeform c 2016 3-1 3-2 Freeform c 2016 Homework 3. Given: n L-shaped telescoping arm is pinned to ground at point. The arm is rotating counterclockwise

More information

LATERAL-TORSIONAL BUCKLING OF STRUCTURES WITH MONOSYMMETRIC CROSS-SECTIONS. Matthew J. Vensko. B.S. Pennsylvania State University, 2003

LATERAL-TORSIONAL BUCKLING OF STRUCTURES WITH MONOSYMMETRIC CROSS-SECTIONS. Matthew J. Vensko. B.S. Pennsylvania State University, 2003 ATERA-TORSIONA BUCKING OF STRUCTURES WITH MONOSYMMETRIC CROSS-SECTIONS b Matthew J. Vensko B.S. Pennslvania State Universit, Submitted to the Graduate Facult of the Swanson School of Engineering in partial

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The Slope-Deflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student

More information

Comb resonator design (2)

Comb resonator design (2) Lecture 6: Comb resonator design () -Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

More information

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a).

APPLIED MECHANICS I Resultant of Concurrent Forces Consider a body acted upon by co-planar forces as shown in Fig 1.1(a). PPLIED MECHNICS I 1. Introduction to Mechanics Mechanics is a science that describes and predicts the conditions of rest or motion of bodies under the action of forces. It is divided into three parts 1.

More information

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS By John J. Zahn, 1 M. ASCE ABSTRACT: In the analysis of the lateral buckling of simply supported beams, the ends are assumed to be rigidly restrained

More information

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics CH.7. PLANE LINEAR ELASTICITY Multimedia Course on Continuum Mechanics Overview Plane Linear Elasticit Theor Plane Stress Simplifing Hpothesis Strain Field Constitutive Equation Displacement Field The

More information

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES 14.1 GENERAL REMARKS In structures where dominant loading is usually static, the most common cause of the collapse is a buckling failure. Buckling may

More information

Analysis III for D-BAUG, Fall 2017 Lecture 11

Analysis III for D-BAUG, Fall 2017 Lecture 11 Analysis III for D-BAUG, Fall 2017 Lecture 11 Lecturer: Alex Sisto (sisto@math.ethz.ch) 1 Beams (Balken) Beams are basic mechanical systems that appear over and over in civil engineering. We consider a

More information

C6 Advanced design of steel structures

C6 Advanced design of steel structures C6 Advanced design of steel structures prepared b Josef achacek List of lessons 1) Lateral-torsional instabilit of beams. ) Buckling of plates. 3) Thin-walled steel members. 4) Torsion of members. 5) Fatigue

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCETER OLYTECHNIC INTITUTE MECHANICAL ENGINEERING DEARTMENT DGN OF MACHINE ELEMENT ME-330, B 018 Lecture 08-09 November 018 Examples w Eccentric load Concentric load w Examples Vestas V80-.0 MWatt Installing

More information

Example: Inverted pendulum on cart

Example: Inverted pendulum on cart Chapter 11 Eample: Inverted pendulum on cart The figure to the right shows a rigid body attached by an frictionless pin (revolute) joint to a cart (modeled as a particle). Thecart slides on a horizontal

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

1C8 Advanced design of steel structures. prepared by Josef Machacek

1C8 Advanced design of steel structures. prepared by Josef Machacek 1C8 Advanced design of steel structures prepared b Josef achacek List of lessons 1) Lateral-torsional instabilit of beams. ) Buckling of plates. 3) Thin-walled steel members. 4) Torsion of members. 5)

More information

Chapter 6 2D Elements Plate Elements

Chapter 6 2D Elements Plate Elements Institute of Structural Engineering Page 1 Chapter 6 2D Elements Plate Elements Method of Finite Elements I Institute of Structural Engineering Page 2 Continuum Elements Plane Stress Plane Strain Toda

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative

More information

DESIGN OF BEAM-COLUMNS - II

DESIGN OF BEAM-COLUMNS - II DESIGN OF BEA-COLUNS-II 14 DESIGN OF BEA-COLUNS - II 1.0 INTRODUCTION Beam-columns are members subjected to combined bending and axial compression. Their behaviour under uniaxial bending, biaxial bending

More information

Point Equilibrium & Truss Analysis

Point Equilibrium & Truss Analysis oint Equilibrium & Truss nalsis Notation: b = number of members in a truss () = shorthand for compression F = name for force vectors, as is X, T, and F = name of a truss force between joints named and,

More information

Statics and Strength of Materials For Architecture and Building Construction

Statics and Strength of Materials For Architecture and Building Construction Insstructor s Manual to accompan Statics and Strength of Materials For rchitecture and Building Construction Fourth Edition Barr S. Onoue Upper Saddle River, New Jerse Columbus, Ohio Copright 2012 b Pearson

More information

Introduction to Finite Element Method. Dr. Aamer Haque

Introduction to Finite Element Method. Dr. Aamer Haque Introduction to Finite Element Method 4 th Order Beam Equation Dr. Aamer Haque http://math.iit.edu/~ahaque6 ahaque7@iit.edu Illinois Institute of Technology July 1, 009 Outline Euler-Bernoulli Beams Assumptions

More information

MEM202 Engineering Mechanics - Statics MEM

MEM202 Engineering Mechanics - Statics MEM E Engineering echanics - Statics E hapter 6 Equilibrium of Rigid odies k j i k j i R z z r r r r r r r r z z E Engineering echanics - Statics Equilibrium of Rigid odies E Pin Support N w N/m 5 N m 6 m

More information

Section 8.5 Parametric Equations

Section 8.5 Parametric Equations 504 Chapter 8 Section 8.5 Parametric Equations Man shapes, even ones as simple as circles, cannot be represented as an equation where is a function of. Consider, for eample, the path a moon follows as

More information

Chapter 14 Truss Analysis Using the Stiffness Method

Chapter 14 Truss Analysis Using the Stiffness Method Chapter 14 Truss Analsis Using the Stiffness Method Structural Mechanics 2 ept of Arch Eng, Ajou Univ Outline undamentals of the stiffness method Member stiffness matri isplacement and force transformation

More information

CHAPTER 5. Beam Theory

CHAPTER 5. Beam Theory CHPTER 5. Beam Theory SangJoon Shin School of Mechanical and erospace Engineering Seoul National University ctive eroelasticity and Rotorcraft Lab. 5. The Euler-Bernoulli assumptions One of its dimensions

More information

Beams on elastic foundation

Beams on elastic foundation Beams on elastic foundation I Basic concepts The beam lies on elastic foundation when under the applied eternal loads, the reaction forces of the foundation are proportional at every point to the deflection

More information

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation The Stress Equilibrium Equation As we mentioned in Chapter 2, using the Galerkin formulation and a choice of shape functions, we can derive a discretized form of most differential equations. In Structural

More information

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FINAL EXAMINATION. (CE130-2 Mechanics of Materials) UNIVERSITY OF CLIFORNI, ERKELEY FLL SEMESTER 001 FINL EXMINTION (CE130- Mechanics of Materials) Problem 1: (15 points) pinned -bar structure is shown in Figure 1. There is an external force, W = 5000N,

More information

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis LECTURE 3: FLOWS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharr Sstems Analsis, Modelling & Prediction Group www.eng.o.ac.uk/samp patrick@mcsharr.net Tel: +44 83 74 Numerical integration Stabilit analsis

More information

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are *12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are very small,

More information

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon. Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 ecture 15: Beam

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

Space frames. b) R z φ z. R x. Figure 1 Sign convention: a) Displacements; b) Reactions

Space frames. b) R z φ z. R x. Figure 1 Sign convention: a) Displacements; b) Reactions Lecture notes: Structural Analsis II Space frames I. asic concepts. The design of a building is generall accomplished b considering the structure as an assemblage of planar frames, each of which is designed

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

Moment Distribution Method

Moment Distribution Method Moment Distribution Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Distribution Method. 2) Derive the Moment Distribution Method equations using mechanics

More information

Axial force-moment interaction in the LARSA hysteretic beam element

Axial force-moment interaction in the LARSA hysteretic beam element Axial force-moment interaction in the LARSA hsteretic beam element This document briefl discusses the modeling of tri-axial interaction (i.e. between axial force and bending moments) in the LARSA beam

More information

7. FORCE ANALYSIS. Fundamentals F C

7. FORCE ANALYSIS. Fundamentals F C ME 352 ORE NLYSIS 7. ORE NLYSIS his chapter discusses some of the methodologies used to perform force analysis on mechanisms. he chapter begins with a review of some fundamentals of force analysis using

More information

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS Koung-Heog LEE 1, Subhash C GOEL 2 And Bozidar STOJADINOVIC 3 SUMMARY Full restrained beam-to-column connections in steel moment resisting frames have been

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

Stability Analysis of a Geometrically Imperfect Structure using a Random Field Model

Stability Analysis of a Geometrically Imperfect Structure using a Random Field Model Stabilit Analsis of a Geometricall Imperfect Structure using a Random Field Model JAN VALEŠ, ZDENĚK KALA Department of Structural Mechanics Brno Universit of Technolog, Facult of Civil Engineering Veveří

More information