MECHANICS OF MATERIALS

Size: px
Start display at page:

Download "MECHANICS OF MATERIALS"

Transcription

1 CHTER MECHNICS OF MTERILS 10 Ferdinand. Beer E. Russell Johnston, Jr. Columns John T. DeWolf cture Notes: J. Walt Oler Texas Tech University 006 The McGraw-Hill Companies, Inc. ll rights reserved. Columns Stability of Structures Euler s Formula for in-ended Beams Extension of Euler s Formula Sample roblem 10.1 Eccentric Loading; The Secant Formula Sample roblem 10. Design of Columns Under Centric Load Sample roblem 10.4 Design of Columns Under an Eccentric Load 006 The McGraw-Hill Companies, Inc. ll rights reserved. 10-1

2 Stability of Structures In the design of columns, cross-sectional area is selected such that - allowable stress is not exceeded all - deformation falls within specifications δ L E δ spec fter these design calculations, may discover that the column is unstable under loading and that it suddenly becomes sharply curved or buckles. 006 The McGraw-Hill Companies, Inc. ll rights reserved Stability of Structures Consider model with two rods and torsional spring. fter a small perturbation, K( θ ) restoring moment L L sin θ θ destabilizing moment Column is stable (tends to return to aligned orientation) if L θ < K( θ ) 4K < cr L 006 The McGraw-Hill Companies, Inc. ll rights reserved. 10-4

3 Stability of Structures ssume that a load is applied. fter a perturbation, the system settles to a new equilibrium configuration at a finite deflection angle. L sinθ K( θ ) L θ 4K cr sinθ Noting that sinθ < θ, the assumed configuration is only possible if > cr. 006 The McGraw-Hill Companies, Inc. ll rights reserved Euler s Formula for in-ended Beams Consider an axially loaded beam. fter a small perturbation, the system reaches an equilibrium configuration such that d y dx d y + dx M EI EI EI y 0 Solution with assumed configuration can only be obtained if π EI > cr L π E > cr L y ( r ) π E ( L r) 006 The McGraw-Hill Companies, Inc. ll rights reserved. 10-6

4 Euler s Formula for in-ended Beams The value of stress corresponding to the critical load, π EI > cr L π ( L r) ( r ) π E cr L > cr cr E critical stress L slenderness ratio r receding analysis is limited to centric loadings. 006 The McGraw-Hill Companies, Inc. ll rights reserved Extension of Euler s Formula column with one fixed and one free end, will behave as the upper-half of a pin-connected column. The critical loading is calculated from Euler s formula, π EI cr π E cr ( r) L equivalent length 006 The McGraw-Hill Companies, Inc. ll rights reserved

5 Extension of Euler s Formula 006 The McGraw-Hill Companies, Inc. ll rights reserved Sample roblem 10.1 n aluminum column of length L and rectangular cross-section has a fixed end at B and supports a centric load at. Two smooth and rounded fixed plates restrain end from moving in one of the vertical planes of symmetry but allow it to move in the other plane. L 0 in. E 10.1 x 10 6 psi 5 kips FS.5 a) Determine the ratio a/b of the two sides of the cross-section corresponding to the most efficient design against buckling. b) Design the most efficient cross-section for the column. 006 The McGraw-Hill Companies, Inc. ll rights reserved

6 Sample roblem 10.1 SOLUTION: The most efficient design occurs when the resistance to buckling is equal in both planes of symmetry. This occurs when the slenderness ratios are equal. Buckling in xy lane: 1 I ba 1 a r z z ab 1, z 0.7L rz a 1 Buckling in xz lane: 1 I y ab 1 b ry ab 1, y L ry b / 1 rz ry a 1 b 1 Most efficient design:, z, y r r z 0.7L L a 1 b / 1 a b y 0.7 a b The McGraw-Hill Companies, Inc. ll rights reserved Sample roblem 10.1 L 0 in. E 10.1 x 10 6 psi 5 kips FS.5 a/b 0.5 Design: L ry b 1 b cr cr ( 0.5b) ( 0 in) ( FS) (.5)( 5 kips) 1500 lbs cr cr b π ( L r) ( 0.5b) E e 1500 lbs π b b 6 ( psi) π ( 18.6 b) 6 ( psi) ( 18.6 b) b 1.60 in. a 0.5b in. 1.5 kips 006 The McGraw-Hill Companies, Inc. ll rights reserved

7 Eccentric Loading; The Secant Formula Eccentric loading is equivalent to a centric load and a couple. Bending occurs for any nonzero eccentricity. Question of buckling becomes whether the resulting deflection is excessive. The deflection becomes infinite when cr d y y e dx EI π ymax e sec 1 cr Maximum stress ( y + e) c 1+ max max r ec sec r E cr r π EI 006 The McGraw-Hill Companies, Inc. ll rights reserved Eccentric Loading; The Secant Formula ec 1 max Y 1 + sec r E r 006 The McGraw-Hill Companies, Inc. ll rights reserved

8 Sample roblem 10. The uniform column consists of an 8-ft section of structural tubing having the cross-section shown. 6 E 9 10 psi. a) Using Euler s formula and a factor of safety of two, determine the allowable centric load for the column and the corresponding normal stress. b) ssuming that the allowable load, found in part a, is applied at a point 0.75 in. from the geometric axis of the column, determine the horizontal deflection of the top of the column and the maximum normal stress in the column. 006 The McGraw-Hill Companies, Inc. ll rights reserved Sample roblem 10. SOLUTION: Maximum allowable centric load: - Effective length, ( 8 ft) 16 ft 19 in. L e - Critical load, π EI π cr 6.1 kips 6 4 ( 9 10 psi)( 8.0 in ) ( 19 in) 006 The McGraw-Hill Companies, Inc. ll rights reserved. - llowable load, cr all FS 6.1kips 1.1 kips all.54 in all 1.1kips 8.79 ksi

9 Sample roblem 10. Eccentric load: - End deflection, π ym e sec π ( in) sec 1 y m 0.99 in. 1 cr 1.1kips in - Maximum normal stress, ec π m 1 + sec r cr m.0 ksi ( 0.75 in)( in) ( 1.50 in) π sec 006 The McGraw-Hill Companies, Inc. ll rights reserved Design of Columns Under Centric Load revious analyses assumed stresses below the proportional limit and initially straight, homogeneous columns Experimental data demonstrate - for large L e /r, cr follows Euler s formula and depends upon E but not Y. - for small L e /r, cr is determined by the yield strength Y and not E. - for intermediate L e /r, cr depends on both Y and E. 006 The McGraw-Hill Companies, Inc. ll rights reserved

10 Design of Columns Under Centric Load Structural Steel merican Inst. of Steel Construction For L e /r > C c π E cr ( L / r) e FS 1.9 cr all FS For L e /r > C c ( / r) cr Y 1 Cc 5 L / 1 / + e r L e r FS 8 Cc 8 Cc cr all FS t L e /r C c π E 1 cr Y C c Y 006 The McGraw-Hill Companies, Inc. ll rights reserved Design of Columns Under Centric Load luminum luminum ssociation, Inc. lloy 6061-T6 L e /r < 66: all [ ( / r) ] ksi [ ( L / r) ]Ma L e /r > 66: ksi Ma all ( / r) ( / r) lloy 014-T6 L e /r < 55: all [ ( / r) ] ksi [ ( L / r) ]Ma L e /r > 66: ksi 7 10 Ma all ( / r) ( / r) e e 006 The McGraw-Hill Companies, Inc. ll rights reserved

11 Sample roblem 10.4 SOLUTION: With the diameter unknown, the slenderness ratio can not be evaluated. Must make an assumption on which slenderness ratio regime to utilize. Calculate required diameter for assumed slenderness ratio regime. Evaluate slenderness ratio and verify initial assumption. Repeat if necessary. Using the aluminum alloy 014-T6, determine the smallest diameter rod which can be used to support the centric load 60 kn if a) L 750 mm, b) L 00 mm 006 The McGraw-Hill Companies, Inc. ll rights reserved Sample roblem 10.4 For L 750 mm, assume L/r > 55 Determine cylinder radius: all 7 10 Ma ( L r) N 7 10 Ma πc m c/ c 18.44mm c cylinder radius r radius of gyration I 4 πc 4 c πc Check slenderness ratio assumption: L L 750mm 81. > 55 r c / mm ( ) assumption was correct d c 6.9 mm 006 The McGraw-Hill Companies, Inc. ll rights reserved

12 Sample roblem 10.4 For L 00 mm, assume L/r < 55 Determine cylinder radius: L all Ma r N 0. m a / πc c c 1.00mm Check slenderness ratio assumption: L L 00 mm 50 < 55 r c / 1.00 mm ( ) assumption was correct d c 4.0 mm 006 The McGraw-Hill Companies, Inc. ll rights reserved Design of Columns Under an Eccentric Load llowable stress method: Mc + all I Interaction method: Mc I + 1 ( all ) centric ( all ) bending n eccentric load can be replaced by a centric load and a couple M e. Normal stresses can be found from superposing the stresses due to the centric load and couple, + centric max + Mc I bending 006 The McGraw-Hill Companies, Inc. ll rights reserved

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns EMA 370 Mechanics & Materials Science (Mechanics of Materials) Chapter 10 Columns Columns Introduction Columns are vertical prismatic members subjected to compressive forces Goals: 1. Study the stability

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 6 Shearing MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Stresses in Beams and Thin- Walled Members Shearing

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 1 Introduction MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Concept of Stress Contents Concept of Stress

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fifth SI Edition CHTER 1 MECHNICS OF MTERILS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Introduction Concept of Stress Lecture Notes: J. Walt Oler Teas Tech University Contents

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER 6 MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Shearing Stresses in Beams and Thin- Walled Members

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 Th McGraw-Hill Companis, Inc. ll rights rsrvd. T Edition CHTER MECHNICS OF MTERIS Frdinand. Br E. Russll Johnston, Jr. John T. DWolf Columns ctur Nots: J. Walt Olr Txas Tch Univrsit 00 Th McGraw-Hill

More information

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns. CHAPTER OBJECTIVES Discuss the behavior of columns. Discuss the buckling of columns. Determine the axial load needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Shearing Stresses in Beams and Thin- Walled Members 006 The McGraw-Hill

More information

Comb resonator design (2)

Comb resonator design (2) Lecture 6: Comb resonator design () -Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Strength of Materials

Strength of Materials Strngth of Matrials Sssion Column 08 ctur not : ramudiyanto, M.Eng. Strngth of Matrials STBIITY OF STRUCTURE In th dsign of columns, oss-sctional ara is slctd such that - allowabl strss is not xcdd all

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit Transformations of Stress and Strain 006 The McGraw-Hill Companies,

More information

Column Buckling.

Column Buckling. Column Buckling mi@seu.edu.cn Contents Stability and Buckling( 稳定性与失稳 ) Examples of Columns( 压杆应用示例 ) Conventional Design of Columns( 压杆的常规设计方法 ) Euler s Formula for in-ended Columns( 端部铰接压杆欧拉公式 ) Buckling

More information

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. 007 The McGraw-Hill Companies, nc. All rights reserved. Eighth E CHAPTER 9 VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 7 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Transformations of

More information

Critical Load columns buckling critical load

Critical Load columns buckling critical load Buckling of Columns Buckling of Columns Critical Load Some member may be subjected to compressive loadings, and if these members are long enough to cause the member to deflect laterally or sideway. To

More information

Comb Resonator Design (2)

Comb Resonator Design (2) Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit

More information

Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

More information

CIV 207 Winter For practice

CIV 207 Winter For practice CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:

More information

Chapter 12 Elastic Stability of Columns

Chapter 12 Elastic Stability of Columns Chapter 12 Elastic Stability of Columns Axial compressive loads can cause a sudden lateral deflection (Buckling) For columns made of elastic-perfectly plastic materials, P cr Depends primarily on E and

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 009 The McGraw-Hill Companies, nc. All rights reserved. Fifth S E CHAPTER 6 MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas

More information

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012 Lecture Slides Chapter 4 Deflection and Stiffness The McGraw-Hill Companies 2012 Chapter Outline Force vs Deflection Elasticity property of a material that enables it to regain its original configuration

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

Chapter 5 Compression Member

Chapter 5 Compression Member Chapter 5 Compression Member This chapter starts with the behaviour of columns, general discussion of buckling, and determination of the axial load needed to buckle. Followed b the assumption of Euler

More information

STATICS. Bodies VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Bodies VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies 2010 The McGraw-Hill Companies,

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 6 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J.

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Copanies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

PROBLEM 7.1 SOLUTION. σ = 5.49 ksi. τ = ksi

PROBLEM 7.1 SOLUTION. σ = 5.49 ksi. τ = ksi PROBLEM 7.1 For the given state of stress, determine the normal and shearing stresses exerted on the oblique face of the shaded triangular element shon. Use a method of analysis based on the equilibrium

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Equilibrium. Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: STATICS. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies Contents Introduction

More information

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support

STATICS. Bodies. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Design of a support 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies 2010 The McGraw-Hill Companies,

More information

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling In the case of elements subjected to compressive forces, secondary bending effects caused by,

More information

1 of 12. Given: Law of Cosines: C. Law of Sines: Stress = E = G

1 of 12. Given: Law of Cosines: C. Law of Sines: Stress = E = G ES230 STRENGTH OF MATERIALS FINAL EXAM: WEDNESDAY, MAY 15 TH, 4PM TO 7PM, AEC200 Closed book. Calculator and writing supplies allowed. Protractor and compass required. 180 Minute Time Limit You must have

More information

Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

More information

MECHANICS OF MATERIALS Sample Problem 4.2

MECHANICS OF MATERIALS Sample Problem 4.2 Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

More information

Samantha Ramirez, MSE

Samantha Ramirez, MSE Samantha Ramirez, MSE Centroids The centroid of an area refers to the point that defines the geometric center for the area. In cases where the area has an axis of symmetry, the centroid will lie along

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Q. 1 Q. 5 carry one mark each.

Q. 1 Q. 5 carry one mark each. General ptitude G Set-8 Q. 1 Q. 5 carry one mark each. Q.1 The chairman requested the aggrieved shareholders to him. () bare with () bore with (C) bear with (D) bare Q.2 Identify the correct spelling out

More information

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1 MTE STATICS Example Problem P. Beer & Johnston, 004 by Mc Graw-Hill Companies, Inc. The structure shown consists of a beam of rectangular cross section (4in width, 8in height. (a Draw the shear and bending

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The

More information

材料力學 Mechanics of Materials

材料力學 Mechanics of Materials 材料力學 Mechanics of Materials 林峻立博士 國立陽明大學生物醫學工程系教授 Chun-Li Lin, PhD., Professor, Department of Biomedical Engineering National Yang-Ming University 1-1 Cortical bone: 10-20GPa Load Cross section b Moment

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The cgraw-hill Copanies, Inc. All rights reserved. Third E CHAPTER 8 Principle ECHANICS OF ATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Plane Motion of Rigid Bodies: Energy and Momentum Methods. Seventh Edition CHAPTER CHAPTER 7 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Plane Motion of Rigid Bodies: Energy and Momentum Methods

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

Elastic Stability Of Columns

Elastic Stability Of Columns Elastic Stability Of Columns Introduction: Structural members which carry compressive loads may be divided into two broad categories depending on their relative lengths and cross-sectional dimensions.

More information

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. Find: Determine the value of the critical speed of rotation for the shaft. Schematic and

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending Homework Answers

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending Homework Answers EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Homework Answers 100 mm Homework 4.1 For pure bending moment of 5 kn m on hollow beam with uniform wall thickness of 10

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

A concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.

A concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0. 2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Stability Of Structures: Continuous Models

Stability Of Structures: Continuous Models 5 Stabilit Of Structures: Continuous Models SEN 311 ecture 5 Slide 1 Objective SEN 311 - Structures This ecture covers continuous models for structural stabilit. Focus is on aiall loaded columns with various

More information

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez NYIT Instructors: Alfred Sanabria and Rodrigo Suarez Massive stone columns, used from Stonehenge to Ancient Greece were stabilized by their own work With steel and concrete technology columns have become

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information

Structural Mechanics Column Behaviour

Structural Mechanics Column Behaviour Structural Mechanics Column Behaviour 008/9 Dr. Colin Caprani, 1 Contents 1. Introduction... 3 1.1 Background... 3 1. Stability of Equilibrium... 4. Buckling Solutions... 6.1 Introduction... 6. Pinned-Pinned

More information

RODS: THERMAL STRESS AND STRESS CONCENTRATION

RODS: THERMAL STRESS AND STRESS CONCENTRATION RODS: HERML SRESS ND SRESS CONCENRION Example 5 rod of length L, cross-sectional area, and modulus of elasticity E, has been placed inside a tube of the same length L, but of cross-sectional area and modulus

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FINAL EXAMINATION. (CE130-2 Mechanics of Materials) UNIVERSITY OF CLIFORNI, ERKELEY FLL SEMESTER 001 FINL EXMINTION (CE130- Mechanics of Materials) Problem 1: (15 points) pinned -bar structure is shown in Figure 1. There is an external force, W = 5000N,

More information

MECE 3321: Mechanics of Solids Chapter 6

MECE 3321: Mechanics of Solids Chapter 6 MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCETER OLYTECHNIC INTITUTE MECHANICAL ENGINEERING DEARTMENT DGN OF MACHINE ELEMENT ME-330, B 018 Lecture 08-09 November 018 Examples w Eccentric load Concentric load w Examples Vestas V80-.0 MWatt Installing

More information

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

9.1 Introduction to bifurcation of equilibrium and structural

9.1 Introduction to bifurcation of equilibrium and structural Module 9 Stability and Buckling Readings: BC Ch 14 earning Objectives Understand the basic concept of structural instability and bifurcation of equilibrium. Derive the basic buckling load of beams subject

More information

RODS: STATICALLY INDETERMINATE MEMBERS

RODS: STATICALLY INDETERMINATE MEMBERS RODS: STTICLLY INDETERMINTE MEMERS Statically Indeterminate ackground In all of the problems discussed so far, it was possible to determine the forces and stresses in the members by utilizing the equations

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer 00 The McGraw-Hill Companies, nc. All rights reserved. Seventh E CHAPTER VECTOR MECHANCS FOR ENGNEERS: 9 STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Distributed Forces: Lecture Notes: J. Walt Oler

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information

MECHANICS LAB AM 317 EXP 5 COLUMN BEHAVIOR BUCKLING

MECHANICS LAB AM 317 EXP 5 COLUMN BEHAVIOR BUCKLING MECHANICS LAB AM 317 EX 5 COLUMN BEHAVIOR BUCKLING I. OBJECTIVES I.1 To determine the effect the slenderness ratio has on the load carrying capacity of columns of varying lengths. I. To observe short,

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS GE SI CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes: J. Walt Oler Texas Tech University Torsional Loads on Circular Shafts

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

MECHANICS LAB AM 317 EXP 4 TORSION OF CIRCULAR RODS

MECHANICS LAB AM 317 EXP 4 TORSION OF CIRCULAR RODS MECHANICS LAB AM 317 EXP 4 TORSION OF CIRCULAR RODS I. OBJECTIVES I.1 To become familiar with torsion tests of rods with solid circular cross sections. I.2 To observe the relation between shear stress

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

ME 354, MECHANICS OF MATERIALS LABORATORY COMPRESSION AND BUCKLING

ME 354, MECHANICS OF MATERIALS LABORATORY COMPRESSION AND BUCKLING ME 354, MECHANICS OF MATERIALS LABATY COMPRESSION AND BUCKLING PURPOSE 01 January 2000 / mgj The purpose of this exercise is to study the effects of end conditions, column length, and material properties

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

CIV E 205 Mechanics of Solids II. Course Notes

CIV E 205 Mechanics of Solids II. Course Notes Department of Civil Engineering CIV E 205 Mechanics of Solids II Instructor: Tarek Hegazi Email: tarek@uwaterloo.ca Course Notes Mechanics of Materials Objectives: - Solve Problems in a structured systematic

More information