DAY 1 (Nov. 6, 2012) Technical Presentations

Size: px
Start display at page:

Download "DAY 1 (Nov. 6, 2012) Technical Presentations"

Transcription

1 Presentation Sam Johnson Jeanne Hardebeck DAY 1 (Nov. 6, 2012) Technical Presentations Key points/action items : Consider vertical rates as transitory and localized Review Mann publications and consider sidewall rip-out process. o There is a rip-out that is being translated; need to ask Vicki, Janet about defining limits. Consider asymptotic fault branching geometries (Casmalia, Shoreline, Los Osos) for dynamic rupture modeling Consider changes to lateral slip rate along strike at fault intersections (e.g., addition to south from Piedras Blancas, subtraction to south from Los Osos). OADC algorithm plus consideration of first motions constrains preferred Hosgri fault dip to range p. 1

2 Janet Watt from 76 to 89 degrees east. No dip less than 70 is acceptable fit. Shoreline fault dip degrees southwest. : Jeanne can send map of where the OADC plane is located and where it projects to surface. Jeanne indicates up-dip projection is not preferred location for source-site distance. Reconcile/compare Johnson and Watt fault trends with Estero bay seismicity Track progress by Jeanne to find an improved way to consider microseismicity patterns using focal mechanism data. Hosgri may be vertical to steeply east dipping Langenheim: gravity data indicate east dip to 3 km depth Shoreline fault bends to north as it approaches Hosgri p. 2

3 Hans AbramsonWard Doug Hamilton Action Items Test San Luis Bay fault location and dip along magnetic low offshore of Rattlesnake. Consider likely challenges to getting a well constrained model with a blind fault. Alternative northern ends to Hosgri fault source hampered by sparse data; lack of study (Comment emphasized by S. Johnson) Point Buchon fault is the preferred northward extension of Shoreline fault Evaluate possible soft segment boundaries along Hosgri-San Gregorio-San Andreas faults. Keep track of S. Johnson plan to evaluate high-resolution seismicreflection data along Big Sur coast. Prefers NE dipping thrust faulting as principal driver of Irish Hills uplift p. 3

4 Marcia McLaren Considers likely surface trace across San Luis Obispo Bay, blind and impinging on Shoreline, then emergent at N40W/Pt. Buchon East fault and out along Islay Shelf. Considers very recent development of Shoreline fault and resulting truncation of westward continuation of San Luis Bay thrust. Considers rock shelf out to Hosgri to have been uplifted by San Luis Bay thrust, only stopped recently. Consider fault location, geometry and slip rate uncertainty Consider tests for fault location, uplift rate boundary predictions, Consider limitations of using microseismicity locations to define faults (e.g., Hauksson 2010 paper, Hardebeck fault style approach in SSC-2 presentation) Patterns of seismicity beneath Irish Hills do not constrain preferred p. 4

5 Bill Lettis Presentation Russ Graymer fault planes Consider limitations of microseismicity to define faults (e.g., Hauksson paper, Hardebeck SSC-2 presentation) Key models (1) transpressional shear, or (2) NE-directed crustal shortening, inform characterization of fault geometry and slip rate Test models with stress/strain directions inferred from GPS velocities and focal mechanism inversions DAY 2 (Nov. 7, 2012) Technical Presentations Key points/action items Magnetic and gravity constraints critical for viable cross-section solutions 2 episodes of deformation; Q faulting on San Miguelito per faulted Squire p. 5

6 Consider Edna and San Miguelito Favors current shortening as seen in finite strain Test with new mapping; seismic data Test with marine terraces for vertical deformation Test with velocity field Consider forward modeling with new data Vicki Langenheim Lithosphere publication Southern end of Hosgri has undisrupted gravity low; gravity does not favor continuation of Hosgri to south Given Ma initiation of fault (J. Clark) long-term rates higher than present but same pattern Data cannot show/explain km drop in slip rate past Pt. Buchon. Difficult to reconcile strike-slip p. 6

7 deficit by shortening; lacks good alternative Consider Lithosphere paper; implications for tectonic model Chris Sorlien Consider publications; block models Consider transfer of slip to west onto Southwest Channel-Ferrelo fault? Consider alternative concepts for slip stepping west onto Santa Lucia bank; Develop tests for hypothesis Obtain data from Chris / locations of subsidence interpreted from Sta Maria Kathryn Hanson Slip rate for San Gregorio may be 3 to 4.5 mm/yr (between Frijoles and Seal Cove sites) p. 7

8 San Simeon terraces best defined by Osos terraces 0.7 to 2.6; 200 ky Consider uncertainties of basal gravel of airport offset 1.2 to 2.9; Ka Consider Piedras Blancas onland strand for activity evaluation Upper limit of 6 mm/yr considered too high for geologic data what additional data could be gained to keep it? Lower limit of 0.5 mm/yr considered too low not enough data to support losing 0.5 mm/yr by time we get to plant but deferring judgment until more studies performed Explore uncertainty in onset, shear direction of Piedras Blancas shortening Tim Dawson UCERF3 description of how geodetic modeling and geologic p. 8

9 rates are considered Consider datasets and approaches; be weary of direct use of results Chuck DeMets Jessica Murray We can trust that he did it right Pacific Plate motion uncertainties from islands off Mexco; what is start of Pacific plate margin 3 mm/yr approximate for Hosgri Get data from Mexican islands; is pacific plate deforming from thermal contraction. May subtract 1.5 mm/yr? Consider maximum limit perhaps by looking at total west of Rinconada? Challenge to use GPS to resolve closely spaced faults mm/yr range for Hosgri p. 9

10 Preferred model? Residuals suggest NE-SW shortening (fits most models) Evaluate 1857? More modeling? What is preferred? Recommends FEM Peter Bird 2 mm/yr dextral Hosgri+Rinconada+West Huasna; 1.2 Hosgri alone; result dependent on assumed Euler pole 2-3 mm/yr shortening; result prefers shortening for faults east of Hosgri. Refine the FE grid Modify fault dips Test several compilations of GPS data Test Euler Poles Reconsider geologic prior rates p. 10

11 Refine Geometry Optimize weights Vary mu (rigidity); concern about criteria Hans AbramsonWard Steve Thompson Resolves two platforms; interprets different uplift rates Uplift rate boundary coincides with San Luis Bay fault zone; crosses Shoreline fault Uncertainty within model? Epistemic? Slip rate on Shoreline uncertainties Vertical rate of zero Seismicity rate a minimum? Rattlesnake hypothesis a minimum for fault (due to continuation of South segment) Shoreline fault may not show a lot of accumulated slip comment from John Stamatakos. p. 11

12 Bill Lettis Presentation Jeanne Hardebeck Alternative models must fit firstorder observations of coastal terrace uplift rates, localized basins, trench data Slip rate ranges consider observations for vertical and lateral Incorporate Edna Valley results Day 3 (Nov. 8, 2012) Technical Presentations Key points/action items Defined segment, multi-segment fault ruptures as specific predictions of rupture endpoints. Critique of PGE (2011) Shoreline Report segmentation of Shoreline, Hosgri, and lack of Hosgri-Shoreline linked rupture. Historical examples Jeanne considers GI methodology to be mature; incorporating constraints is not (Agreement by M. Page). p. 12

13 David Schwartz Segmentation is not useful as simplifying assumption ACTION ITEMS Consider effects of segmentation hot spots and anti-hot spots Consider grand inversion-type approach for a sub-set of area; simplified fault locations away from site M. Page considers main uncertainty is epistemic uncertainty going into the model Glenn UCERF3 can fit global average; need to consider agreement at site. Consider linked rupture of Hosgri and Shoreline; Hosgri and others; backwards rupture as well Segmentation is real Review of Static, Dynamic criteria Wasatch and Denali examples reviewed Consider Denali-Totschunda intersection; fault branch with sub- p. 13

14 Craig depolo equal slip rates ACTION Consider getting more MRE timing, slip data Review paleoseismic data on SAFN, SG, and SS faults Consider uncertainty in actual segmentation point Considers behavioral information, slip rate information most critical. Geometry plays a role. Morgan Page: Regarding slip rate change considerations, consider looking at frequency of linked ruptures with Hosgri from perspective of Shoreline and Los Osos slip rates. Consider primary, or core fault segment concept (Carpenter et al., 2012) Consider length scales of separate fault zones; details about rupture ends are less significant Consider Biasi, Wesnousky papers p. 14

15 Glenn Biasi Consider multiple rupture scenarios Consider single-event displacements Consider importance of paleoseismic data. Emphasized value of Wesnousky s (2006) maps Consider UCERF3 appendices expanding on Wesnousky (2006) plus rupture endpoint data. 75% anchored at least one end; 33% at both ends. Implementation of this as a constraint in UCERF3 is non-trivial, but may be used as a check; Glenn suggests it needs to be explored. Morgan Page considered as possible improbability constraint; not required Size of step may not matter up to maximum (~5 km; data being compiled by student at UNR) Consider dynamic rupture informing question. ~5 km limit may scale with p. 15

16 Discussion seismogenic thickness Strike-slip faults don t jump faultto-fault very often (18%), but preferentially jump to other strikeslip faults; less frequently jump SS to reverse. Consider whether affected by rupture direction. Stress Matters Consider insights from historical reverse faults Segments may anticipate multievent ruptures Consider Coulomb for geometric compatibility; need rupture direction and amplitude assumptions Consider Lozos et al. (2011) dynamic rupture results. Consider scales of simulations considered WILLS: RE: UCERF2-style: For A faults only, not B. Morgan uncertainty is healthy with lack of data. Steve W. Consider aspect ratio p. 16

17 Norm Abrahamson (Recurrence rate) Tom Rockwell (Recurrence rate) with widths of Jackson counterpoint with understanding of width Thompson: Concern that quality of mapping of historic ruptures plus retrospective lens may suggests some stepovers may have thrugoing faults that would be discoverable with more detailed mapping; i.e., limitations or uncertainties in defining a step predictively. Consider incorporating uncertainty now so we can be within uncertainty bounds later reject it later. Consider not only assuming Poisson. Presenting data from San Jacinto fault n= and 0.7 COV typical of CA studied faults. Rare 0.2 (Turkey, not applicable due to lacks networks of faults). p. 17

18 Dave Jackson (recurrence rate) Morgan Page Glenn low COV of southern Alpine fault; basically supporting Tom s result. Recommends high COV for DCPP Curse of Retrospective confirmation and its applicability Consider Kagan and Jackson, 1991 GJI Always give randomness its respect. Evidence for and against Characteristic behavior of faults GR Hypothesis constant B; rate may change through time Consider Page et al. (2011). Observations on southern SAF o PE opinion these are changes in rate; informed by ETAS simulations ETAS simulations suggest we are likely to underestimate long-term rate Insights from U3 GR implied on faults; doesn t work p. 18

19 Norm Abrahamson well fit state-wide. Not enough budget for background. If it is correct, need 20-30% increase in seismicity rate (historic rate too low?) or lower b-value Slip COV of characteristic branch ~0.5 median; mean higher for GR Branch Consider exploring ETAS to inform us about Characteristic MFD Multi-fault ruptures needed for buldge problem Speculates (insight, not study result) that order of magnitude changes in a-value between a snapshot versus mean (for a fault; including aftershocks); consider Landers. Consider Hecker et al as insight to deviation from GR at high magnitudes. Data fit Y&C, exponential models that limit Mmax; don t favor larger Mmax with GR. p. 19

20 Dave Jackson Paleoseimologists: Address the Consider bias in the observations Dave J. comment; directed at geotypes: Consider site effects as affecting low COV observation ; near-surface phenomenon Stochastic model Big earthquakes prefer faults, but some occur off of known faults. Blend faults and smoothed seismicity Consider geodesy, paleoseismology Consider applicability for sitespecific studies, calibrate parameters as appropriate. Consider site data. Probed, challenged about larger earthquake possibly occurring off of faults. Consideration: really big earthquakes on faults are rare; really big earthquakes not on recognized fault still rarer. Examples: New Zealand; El Mayor- p. 20

21 Bruce Shaw Tom Hanks Cucapah. Review M-A relations considered for UCERF Shaw (2009) considers Third regime saturation of width effect; constant stress drop. Consider surface slip information and an alternative slip-length scaling for slip rate balancing. Allows for possibility of deeper slip. Considers relation as appropriate for dip-slip faults Consider adding epistemic uncertainty; Ellsworth B should not be precluded? Uncertainty in W important consideration; bias in W estimates from pre-event seismicity. Norm concern: Want to know it works at a median value; can add standard deviations. Don t want models that don t fit the median values. Notes slip data suggest better p. 21

22 behavior (x3) at large magnitudes; slip data suggest more variability at shorter lengths (x10). Does not favor Ellsworth B for magnitude 5-7 range. Review Consider Stirling and Goded report for GEMS; probe Mark for his rationale for selection of relations Consider whether use of Ellsworth B should be correlated with higher stress drops in GMC Consider Diablo model 1.25 Log A + 3.3, A > 537 km^2 Recommends need for updated dataset Dave Jackson consider Kagan s work at rupture zones of global M>7 events; linear fit between length to cube root of Moment p. 22

Overview of Seismic Source Characterization for the Diablo Canyon Power Plant

Overview of Seismic Source Characterization for the Diablo Canyon Power Plant Overview of Seismic Source Characterization for the Diablo Canyon Power Plant Steve Thompson (LCI and SSC TI Team), for SWUS GMC Workshop 1, March 19, 2013 Questions from TI Team Summarize tectonic setting.

More information

Fault Models SSC TI Team Evaluation Hans AbramsonWard

Fault Models SSC TI Team Evaluation Hans AbramsonWard 1 Fault Models SSC TI Team Evaluation Hans AbramsonWard PG&E DCPP SSHAC Study 2 Outline Constraints on location of active faults: Uplift of ranges Quaternary fault map Constraints on Depth of seismogenic

More information

Hosgri-San Simeon Fault Zone Geologic Slip Rate

Hosgri-San Simeon Fault Zone Geologic Slip Rate Hosgri-San Simeon Fault Zone Geologic Slip Rate Insert picture(s) here Kathryn Hanson AMEC E&I Diablo Canyon SSHAC Project SSC Workshop 2 November 7, 2012 What insights have your geologic investigations

More information

8.0 SUMMARY AND CONCLUSIONS

8.0 SUMMARY AND CONCLUSIONS 8.0 SUMMARY AND CONCLUSIONS In November 2008, Pacific Gas and Electric (PG&E) informed the U.S. Nuclear Regulatory Commission (NRC) that preliminary results from the Diablo Canyon Power Plant (DCPP) Long

More information

Kinematics of the Southern California Fault System Constrained by GPS Measurements

Kinematics of the Southern California Fault System Constrained by GPS Measurements Title Page Kinematics of the Southern California Fault System Constrained by GPS Measurements Brendan Meade and Bradford Hager Three basic questions Large historical earthquakes One basic question How

More information

San Andreas and Other Fault Sources; Background Source

San Andreas and Other Fault Sources; Background Source 1 San Andreas and Other Fault Sources; Background Source SSC TI Team Evaluation Steve Thompson Diablo Canyon SSHAC Level 3 PSHA Workshop #3 Feedback to Technical Integration Team on Preliminary Models

More information

Offshore Evidence for Uplift Rate Boundaries. Hans AbramsonWard Diablo Canyon SSHAC SSC Workshop 2 November 7, 2012

Offshore Evidence for Uplift Rate Boundaries. Hans AbramsonWard Diablo Canyon SSHAC SSC Workshop 2 November 7, 2012 Offshore Evidence for Uplift Rate Boundaries Hans AbramsonWard Diablo Canyon SSHAC SSC Workshop 2 November 7, 2012 Questions asked by the TI team Discuss your ability to distinguish and correlate offshore

More information

Diablo Canyon SSHAC Level 3 Study

Diablo Canyon SSHAC Level 3 Study 1 Diablo Canyon SSHAC Level 3 Study Workshop 1 Summary of SSC Hazard Significant Issues and Data Needed William Lettis November 29 to December 1, 2011 PG&E DCPP SSHAC Study 2 Hosgri Hosgri Location Hosgri

More information

Regional deformation and kinematics from GPS data

Regional deformation and kinematics from GPS data Regional deformation and kinematics from GPS data Jessica Murray, Jerry Svarc, Elizabeth Hearn, and Wayne Thatcher U. S. Geological Survey Acknowledgements: Rob McCaffrey, Portland State University UCERF3

More information

Hosgri Fault Location and Dip SSC TI Team Evaluation Hans AbramsonWard

Hosgri Fault Location and Dip SSC TI Team Evaluation Hans AbramsonWard 1 Hosgri Fault Location and Dip SSC TI Team Evaluation Hans AbramsonWard PG&E DCPP SSHAC Study 2 Key Data Sources PE Models: Johnson WS2 presentation Hardebeck WS2 presentation Watt WS2 presentation AbramsonWard

More information

John Baldwin and Brian Gray Lettis Consultants International, Inc. Alexis Lavine AMEC Josh Goodman and Janet Sowers Fugro Consultants, Inc.

John Baldwin and Brian Gray Lettis Consultants International, Inc. Alexis Lavine AMEC Josh Goodman and Janet Sowers Fugro Consultants, Inc. John Baldwin and Brian Gray Lettis Consultants International, Inc. Alexis Lavine AMEC Josh Goodman and Janet Sowers Fugro Consultants, Inc. December 1, 2011 Pacific Gas & Electric SSHAC Workshop 1 San

More information

Central Coast Seismicity Locations. Jeanne Hardebeck US Geological Survey Menlo Park, CA

Central Coast Seismicity Locations. Jeanne Hardebeck US Geological Survey Menlo Park, CA Central Coast Seismicity Locations Jeanne Hardebeck US Geological Survey Menlo Park, CA 11/29/2011 Seismic Network Issues for Earthquake Location: - Many stations are single-component, difficult to identify

More information

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for?

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for? GM1) What magnitude earthquake is DCPP designed for? The new design ground motions for DCPP were developed after the discovery of the Hosgri fault. In 1977, the largest magnitude of the Hosgri fault was

More information

SCEC Community Fault and Velocity Models and how they might contribute to the DCPP seismic hazard assessment. Andreas Plesch Harvard University

SCEC Community Fault and Velocity Models and how they might contribute to the DCPP seismic hazard assessment. Andreas Plesch Harvard University SCEC Community Fault and Velocity Models and how they might contribute to the DCPP seismic hazard assessment Andreas Plesch Harvard University SCEC Unified Structural Representation (USR) The SCEC USR

More information

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions Bruce E. Shaw Lamont Doherty Earth Observatory, Columbia University Statement of the Problem In UCERF2

More information

Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station

Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station Overview of the Seismic Source Characterization for the Palo Verde Nuclear Generating Station Scott Lindvall SSC TI Team Lead Palo Verde SSC SSHAC Level 3 Project Tuesday, March 19, 2013 1 Questions from

More information

John Shaw CRUSTAL DEFORMATION MODEL: OBLIQUE CONVERGENCE IN THE INNER CALIFORNIA BORDERLANDS ACCOMMODATED BY ACTIVE STRIKE-SLIP AND REVERSE FAULTS

John Shaw CRUSTAL DEFORMATION MODEL: OBLIQUE CONVERGENCE IN THE INNER CALIFORNIA BORDERLANDS ACCOMMODATED BY ACTIVE STRIKE-SLIP AND REVERSE FAULTS CRUSTAL DEFORMATION MODEL: OBLIQUE CONVERGENCE IN THE INNER CALIFORNIA BORDERLANDS ACCOMMODATED BY ACTIVE STRIKE-SLIP AND REVERSE FAULTS August 2013 SONGS SSC SSHAC Workshop # 2 (August 12-14, 2013) Crustal

More information

Today: Basic regional framework. Western U.S. setting Eastern California Shear Zone (ECSZ) 1992 Landers EQ 1999 Hector Mine EQ Fault structure

Today: Basic regional framework. Western U.S. setting Eastern California Shear Zone (ECSZ) 1992 Landers EQ 1999 Hector Mine EQ Fault structure Today: Basic regional framework Western U.S. setting Eastern California Shear Zone (ECSZ) 1992 Landers EQ 1999 Hector Mine EQ Fault structure 1 2 Mojave and Southern Basin and Range - distribution of strike-slip

More information

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION 6-1 6: EARTHQUAKE FOCAL MECHANISMS AND PLATE MOTIONS Hebgen Lake, Montana 1959 Ms 7.5 1 Stein & Wysession, 2003 Owens Valley, California 1872 Mw ~7.5 EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE

More information

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C January 11, 2016

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C January 11, 2016 UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 Mr. Edward D. Halpin Senior Vice President and Chief Nuclear Officer Pacific Gas and Electric Company P.O. Box 56 Mail Code 104/6

More information

Appendix O: Gridded Seismicity Sources

Appendix O: Gridded Seismicity Sources Appendix O: Gridded Seismicity Sources Peter M. Powers U.S. Geological Survey Introduction The Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3) is a forecast of earthquakes that fall

More information

50 or 500? Current Issues in Estimating Fault Rupture Length. David P. Schwartz USGS Menlo Park

50 or 500? Current Issues in Estimating Fault Rupture Length. David P. Schwartz USGS Menlo Park 50 or 500? Current Issues in Estimating Fault Rupture Length David P. Schwartz USGS Menlo Park Kondo et al (in press) Rockwell and Okumura (2010) 6.2 5 Hire Tom Rockwell! 4.9 5.1 5.2 4.5 5 4.7 6.1 North

More information

Jack Loveless Department of Geosciences Smith College

Jack Loveless Department of Geosciences Smith College Geodetic constraints on fault interactions and stressing rates in southern California Jack Loveless Department of Geosciences Smith College jloveless@smith.edu Brendan Meade Department of Earth & Planetary

More information

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region Regional Geodesy Shimon Wdowinski University of Miami Rowena Lohman, Kim Outerbridge, Tom Rockwell, and Gina Schmalze

More information

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions UCERF3 Task R- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions Bruce E. Shaw Lamont Doherty Earth Observatory, Columbia University Statement of the Problem In UCERF Magnitude-Area

More information

Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault

Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault David R. Shelly USGS, Menlo Park Shelly and Hardebeck, GRL, 2010 Collaborators: Jeanne Hardebeck

More information

The Length to Which an Earthquake will go to Rupture. University of Nevada, Reno 89557

The Length to Which an Earthquake will go to Rupture. University of Nevada, Reno 89557 The Length to Which an Earthquake will go to Rupture Steven G. Wesnousky 1 and Glenn P. Biasi 2 1 Center of Neotectonic Studies and 2 Nevada Seismological Laboratory University of Nevada, Reno 89557 Abstract

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara EFFECT OF SHORELINE FAULT ZONE SEGMENTATIONS ON SIMULATION

More information

Splay Fault Considerations

Splay Fault Considerations Splay Fault Considerations Katie Wooddell 24 October 2013 SPLAY FAULT SCENARIOS: THIN CASE: (W=15 km) 9 Scenarios 32 Realizations per Scenario 3 Methods 87 Stations 75,168 Seismograms THICK CASE: (W=22

More information

Shoreline Fault Zone Report, Section 2 Data Collection Page 2-1

Shoreline Fault Zone Report, Section 2 Data Collection Page 2-1 2. DATA COLLECTION Continued seismic monitoring and the acquisition of high-resolution potential field (magnetics and gravity), seismic reflection, bathymetric, and topographic data have significantly

More information

SONGS SSC. Tom Freeman GeoPentech PRELIMINARY RESULTS

SONGS SSC. Tom Freeman GeoPentech PRELIMINARY RESULTS SONGS SSC Tom Freeman GeoPentech PRELIMINARY RESULTS Focused Questions Summarize the tectonic setting What is the seismogenic thickness? Are you including deep ruptures in the upper mantle (~30 km)? Do

More information

Measurements in the Creeping Section of the Central San Andreas Fault

Measurements in the Creeping Section of the Central San Andreas Fault Measurements in the Creeping Section of the Central San Andreas Fault Introduction Duncan Agnew, Andy Michael We propose the PBO instrument, with GPS and borehole strainmeters, the creeping section of

More information

PROGRESS REPORT ON THE ANALYSIS OF THE SHORELINE FAULT ZONE, CENTRAL COASTAL CALIFORNIA. Report to the U.S. Nuclear Regulatory Commission January 2010

PROGRESS REPORT ON THE ANALYSIS OF THE SHORELINE FAULT ZONE, CENTRAL COASTAL CALIFORNIA. Report to the U.S. Nuclear Regulatory Commission January 2010 PROGRESS REPORT ON THE ANALYSIS OF THE SHORELINE FAULT ZONE, CENTRAL COASTAL CALIFORNIA Report to the U.S. Nuclear Regulatory Commission January 2010 1.0 INTRODUCTION In November 2008, PG&E informed the

More information

WAACY Magnitude PSF Model (Wooddell, Abrahamson, Acevedo-Cabrera, and Youngs) Norm Abrahamson DCPP SSC workshop #3 Mar 25, 2014

WAACY Magnitude PSF Model (Wooddell, Abrahamson, Acevedo-Cabrera, and Youngs) Norm Abrahamson DCPP SSC workshop #3 Mar 25, 2014 WAACY Magnitude PSF Model (Wooddell, Abrahamson, Acevedo-Cabrera, and Youngs) Norm Abrahamson DCPP SSC workshop #3 Mar 25, 2014 UCERF3 Allowing larger magnitudes by linking rupture segments Grand inversion

More information

to: Interseismic strain accumulation and the earthquake potential on the southern San

to: Interseismic strain accumulation and the earthquake potential on the southern San Supplementary material to: Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system by Yuri Fialko Methods The San Bernardino-Coachella Valley segment of the

More information

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction H. Sekiguchi Disaster Prevention Research Institute, Kyoto University, Japan Blank Line 9 pt Y. Kase Active Fault and Earthquake

More information

Geo736: Seismicity and California s Active Faults Introduction

Geo736: Seismicity and California s Active Faults Introduction Geo736: Seismicity and California s Active Faults Course Notes: S. G. Wesnousky Spring 2018 Introduction California sits on the boundary of the Pacific - North American plate boundary (Figure 1). Relative

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo739 Supplementary Information to variability and distributed deformation in the Marmara Sea fault system Tobias Hergert 1 and Oliver Heidbach 1,* 1 Geophysical

More information

Magnitude-Area Scaling of Strike-Slip Earthquakes. Paul Somerville, URS

Magnitude-Area Scaling of Strike-Slip Earthquakes. Paul Somerville, URS Magnitude-Area Scaling of Strike-Slip Earthquakes Paul Somerville, URS Scaling Models of Large Strike-slip Earthquakes L Model Scaling (Hanks & Bakun, 2002) Displacement grows with L for L > > Wmax M

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

Earthquake Tectonics and Hazards on the Continents June Recognizing and characterizing strike-slip faults and earthquakes in USA

Earthquake Tectonics and Hazards on the Continents June Recognizing and characterizing strike-slip faults and earthquakes in USA 2464-4 Earthquake Tectonics and Hazards on the Continents 17-28 June 2013 Recognizing and characterizing strike-slip faults and earthquakes in USA S. G. Wesnousky Univ. of Nevada USA Strike-slip Faults

More information

RECORD OF REVISIONS Rev. Reason for Revision 0 Initial Report. This worked is tracked under SAPNs (Greene) and Graham ( )

RECORD OF REVISIONS Rev. Reason for Revision 0 Initial Report. This worked is tracked under SAPNs (Greene) and Graham ( ) Page 2 of 178 RECORD OF REVISIONS Rev. No. Reason for Revision 0 Initial Report. This worked is tracked under SAPNs 505100993 (Greene) and Graham (50533445) Revision Date 7/27/2014 Page 3 of 178 TABLE

More information

EVALUATION OF TSUNAMI RISK FOR COASTAL SOUTHERN CALIFORNIA CITIES. Appendix A - Figures

EVALUATION OF TSUNAMI RISK FOR COASTAL SOUTHERN CALIFORNIA CITIES. Appendix A - Figures EVALUATION OF TSUNAMI RISK FOR COASTAL SOUTHERN CALIFORNIA CITIES Appendix A - Figures Figure 1.Map showing major faults of the southern California region. Northwest-trending faults are rightslip in character.

More information

SCEC Earthquake Gates Workshop Central Death Valley Focus Area

SCEC Earthquake Gates Workshop Central Death Valley Focus Area SCEC Earthquake Gates Workshop Central Death Valley Focus Area Fault Gates: Rheology, fault geometry, stress history or directionality? How do we recognize or suspect a fault gate? Paleoseismic or historic

More information

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Introduction Our proposal focuses on the San Andreas fault system in central and northern California.

More information

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth.

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth. Global Tectonics Kearey, Philip ISBN-13: 9781405107778 Table of Contents Preface. Acknowledgments. 1. Historical perspective. 1.1 Continental drift. 1.2 Sea floor spreading and the birth of plate tectonics.

More information

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University 3D Viscoelastic Earthquake Cycle Models Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere Kaj M. Johnson Indiana University In collaboration with:

More information

The Bridge from Earthquake Geology to Earthquake Seismology

The Bridge from Earthquake Geology to Earthquake Seismology The Bridge from Earthquake Geology to Earthquake Seismology Computer simulation Earthquake rate Fault slip rate Magnitude distribution Fault geometry Strain rate Paleo-seismology David D. Jackson djackson@g.ucla.edu

More information

Lab 1: Plate Tectonics April 2, 2009

Lab 1: Plate Tectonics April 2, 2009 Name: Lab 1: Plate Tectonics April 2, 2009 Objective: Students will be introduced to the theory of plate tectonics and different styles of plate margins and interactions. Introduction The planet can be

More information

Surface Faulting and Deformation Assessment & Mitigation

Surface Faulting and Deformation Assessment & Mitigation Surface Faulting and Deformation Assessment & Mitigation Summary of a Shlemon Specialty Conference sponsored by the Association of Environmental & Engineering Geologists convened on February 19 & 20, 2009

More information

Earthquakes and Seismotectonics Chapter 5

Earthquakes and Seismotectonics Chapter 5 Earthquakes and Seismotectonics Chapter 5 What Creates Earthquakes? The term Earthquake is ambiguous: Applies to general shaking of the ground and to the source of the shaking We will talk about both,

More information

Seismic Issues for California's Nuclear Power Plants. Norman Abrahamson University of California, Berkeley

Seismic Issues for California's Nuclear Power Plants. Norman Abrahamson University of California, Berkeley Seismic Issues for California's Nuclear Power Plants Norman Abrahamson University of California, Berkeley From UCERF 2 Seismic Setting for California s Nuclear Power Plants Major Offshore Strike-Slip Faults

More information

Updated Graizer-Kalkan GMPEs (GK13) Southwestern U.S. Ground Motion Characterization SSHAC Level 3 Workshop 2 Berkeley, CA October 23, 2013

Updated Graizer-Kalkan GMPEs (GK13) Southwestern U.S. Ground Motion Characterization SSHAC Level 3 Workshop 2 Berkeley, CA October 23, 2013 Updated Graizer-Kalkan GMPEs (GK13) Southwestern U.S. Ground Motion Characterization SSHAC Level 3 Workshop 2 Berkeley, CA October 23, 2013 PGA Model Our model is based on representation of attenuation

More information

Lab 9: Satellite Geodesy (35 points)

Lab 9: Satellite Geodesy (35 points) Lab 9: Satellite Geodesy (35 points) Here you will work with GPS Time Series data to explore plate motion and deformation in California. This lab modifies an exercise found here: http://www.unavco.org:8080/cws/pbonucleus/draftresources/sanandreas/

More information

MAR110 Lecture #5 Plate Tectonics-Earthquakes

MAR110 Lecture #5 Plate Tectonics-Earthquakes 1 MAR110 Lecture #5 Plate Tectonics-Earthquakes Figure 5.0 Plate Formation & Subduction Destruction The formation of the ocean crust from magma that is upwelled into a pair of spreading centers. Pairs

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lecture 18, 16 Nov. 2017 www.geosc.psu.edu/courses/geosc508 Earthquake Magnitude and Moment Brune Stress Drop Seismic Spectra & Earthquake Scaling laws Scaling and

More information

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building 1) A(n) fault has little or no vertical movements of the two blocks. A) stick slip B) oblique slip C) strike slip D) dip slip 2) In a(n) fault,

More information

Description of faults

Description of faults GLG310 Structural Geology Description of faults Horizontal stretch Crustal thickness Regional elevation Regional character Issues Normal Thrust/reverse Strike-slip >1 1 in one direction and < 1 in

More information

Active Tectonics. Earthquakes, Uplift, and Landscape. Edward A. Keller University of California, Santa Barbara

Active Tectonics. Earthquakes, Uplift, and Landscape. Edward A. Keller University of California, Santa Barbara Prentice Hall Earth Science Series SUB Gottingen 214 80416X, im ^, 2002 A 7883 lllllllilwii Active Tectonics Earthquakes, Uplift, and Landscape Second Edition V Edward A. Keller University of California,

More information

Structural deformation across the southwest Mina deflection, California-Nevada: Field studies in the Huntoon Springs area.

Structural deformation across the southwest Mina deflection, California-Nevada: Field studies in the Huntoon Springs area. Structural deformation across the southwest Mina deflection, California-Nevada: Field studies in the Huntoon Springs area. Eliya R. Hogan Advisor: Jeff Lee Introduction and purpose of study: The Mina deflection

More information

Activity Pacific Northwest Tectonic Block Model

Activity Pacific Northwest Tectonic Block Model Activity Pacific Northwest Tectonic Block Model The Cascadia tectonic margin is caught between several tectonic forces, during the relentless motions of the giant Pacific Plate, the smaller subducting

More information

1. Name at least one place that the mid-atlantic Ridge is exposed above sea level.

1. Name at least one place that the mid-atlantic Ridge is exposed above sea level. Interpreting Tectonic and Bathymetric Maps. The purpose of this lab is to provide experience interpreting the bathymetry of the seafloor in terms of tectonic and geologic settings and processes. Use the

More information

A Senior Project. presented to. The Faculty of the College of Agriculture, Food and Environmental Sciences

A Senior Project. presented to. The Faculty of the College of Agriculture, Food and Environmental Sciences 1 Relationship of Joint Sets to Folded Diatomite Bedding of the Miguelito Member of the Pismo Formation in Montaña de Oro State Park A Senior Project presented to The Faculty of the College of Agriculture,

More information

San Gorgonio Pass Special Fault Study Area

San Gorgonio Pass Special Fault Study Area San Gorgonio Pass Special Fault Study Area Michele Cooke, David Oglesby and Doug Yule Whitney Behr, Kim Blisniuk, Jim Brune, Sarah Carena, Judi Chester, Gary Fuis, Thomas Goebel, Peter Gold, Egill Hauksson,

More information

Evidence of Tectonic Uplift along the Oceanic Fault near San Simeon, San. Luis Obispo County, California

Evidence of Tectonic Uplift along the Oceanic Fault near San Simeon, San. Luis Obispo County, California i Evidence of Tectonic Uplift along the Oceanic Fault near San Simeon, San Luis Obispo County, California A Senior Project presented to the Faculty of the Earth and Soil Science Department California Polytechnic

More information

Jocelyn Karen Campbell

Jocelyn Karen Campbell THE UNCERTAINTIES IN ASSESSING THE IMPACT OF REGIONAL SEISMICITY AT THE WIL SITE Statement of Evidence by Jocelyn Karen Campbell A CANTERBURY FAULTS coded by type CHARACTERISTICS OF THRUST FAULTS IN CANTERBURY

More information

BEM Model of slip on the Channel Islands Thrust, CA

BEM Model of slip on the Channel Islands Thrust, CA BEM Model of slip on the Channel Islands Thrust, CA Credit Where Credit is Due: Michele Cooke Michele Cooke UMass Amherst Has been training students/postdocs to work with and remesh the CFM since at least

More information

Basics of the modelling of the ground deformations produced by an earthquake. EO Summer School 2014 Frascati August 13 Pierre Briole

Basics of the modelling of the ground deformations produced by an earthquake. EO Summer School 2014 Frascati August 13 Pierre Briole Basics of the modelling of the ground deformations produced by an earthquake EO Summer School 2014 Frascati August 13 Pierre Briole Content Earthquakes and faults Examples of SAR interferograms of earthquakes

More information

Yesterday scaling laws. An important one for seismic hazard analysis

Yesterday scaling laws. An important one for seismic hazard analysis Yesterday scaling laws An important one for seismic hazard analysis Estimating the expected size of an earthquake expected on a fault for which the mapped length is known. Wells & Coppersmith, 1994 And

More information

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey Probabilistic Seismic Hazard Maps for Seattle: 3D Sedimentary Basin Effects, Nonlinear Site Response, and Uncertainties from Random Velocity Variations Arthur Frankel, William Stephenson, David Carver,

More information

PROBABILISTIC SURFACE FAULT DISPLACEMENT HAZARD ANALYSIS (PFDHA) DATA FOR STRIKE SLIP FAULTS

PROBABILISTIC SURFACE FAULT DISPLACEMENT HAZARD ANALYSIS (PFDHA) DATA FOR STRIKE SLIP FAULTS PROBABILISTIC SURFACE FAULT DISPLACEMENT HAZARD ANALYSIS (PFDHA) DATA FOR STRIKE SLIP FAULTS PEER SURFACE FAULT DISPLACEMENT HAZARD WORKSHOP U.C. Berkeley May 20-21, 2009 Timothy Dawson California Geological

More information

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise Strain Analysis Introduction Name: The earthquake cycle can be viewed as a process of slow strain accumulation

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

S. Toda, S. Okada, D. Ishimura, and Y. Niwa International Research Institute of Disaster Science, Tohoku University, Japan

S. Toda, S. Okada, D. Ishimura, and Y. Niwa International Research Institute of Disaster Science, Tohoku University, Japan The first surface-rupturing earthquake in 20 years on a HERP major active fault: Mw=6.2 2014 Nagano, Japan, event along the Itoigawa-Shizuoka Tectonic Line is not characteristic S. Toda, S. Okada, D. Ishimura,

More information

6 Source Characterization

6 Source Characterization 6 Source Characterization Source characterization describes the rate at which earthquakes of a given magnitude, and dimensions (length and width) occur at a given location. For each seismic source, the

More information

Slip rates and off-fault deformation in Southern California inferred from GPS data and models

Slip rates and off-fault deformation in Southern California inferred from GPS data and models JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, VOL. 8, 6 66, doi:./jgrb.6, Slip rates and off-fault deformation in Southern California inferred from GPS data and models K. M. Johnson Received 9 December

More information

The Seismic Hazardscape of New Zealand

The Seismic Hazardscape of New Zealand The Seismic Hazardscape of New Zealand Mark Stirling Professor of Earthquake Science Introduction Plate tectonic setting of New Zealand Seismic hazards for University of Otago campuses Kaikoura earthquake

More information

Synthetic Seismicity Models of Multiple Interacting Faults

Synthetic Seismicity Models of Multiple Interacting Faults Synthetic Seismicity Models of Multiple Interacting Faults Russell Robinson and Rafael Benites Institute of Geological & Nuclear Sciences, Box 30368, Lower Hutt, New Zealand (email: r.robinson@gns.cri.nz).

More information

Earthquake stress drop estimates: What are they telling us?

Earthquake stress drop estimates: What are they telling us? Earthquake stress drop estimates: What are they telling us? Peter Shearer IGPP/SIO/U.C. San Diego October 27, 2014 SCEC Community Stress Model Workshop Lots of data for big earthquakes (rupture dimensions,

More information

INGV. Giuseppe Pezzo. Istituto Nazionale di Geofisica e Vulcanologia, CNT, Roma. Sessione 1.1: Terremoti e le loro faglie

INGV. Giuseppe Pezzo. Istituto Nazionale di Geofisica e Vulcanologia, CNT, Roma. Sessione 1.1: Terremoti e le loro faglie Giuseppe Pezzo Istituto Nazionale di Geofisica e Vulcanologia, CNT, Roma giuseppe.pezzo@ingv.it The study of surface deformation is one of the most important topics to improve the knowledge of the deep

More information

Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:!

Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:! Learning Objectives (LO)! Lecture 11: Plate Tectonics II! No Homework!! ** Chapter 3 **! What we ll learn today:! 1. List the three types of tectonic plate boundaries! 2. Describe the processes occurring

More information

Differentiating earthquake tsunamis from other sources; how do we tell the difference?

Differentiating earthquake tsunamis from other sources; how do we tell the difference? Differentiating earthquake tsunamis from other sources; how do we tell the difference? David Tappin (1), Stephan Grilli (2), Jeffrey Harris (2), Timothy Masterlark (3), James Kirby (4), Fengyan Shi Shi

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

PG&E OFFSHORE CENTRAL COASTAL CALIFORNIA SEISMIC IMAGING PROJECT

PG&E OFFSHORE CENTRAL COASTAL CALIFORNIA SEISMIC IMAGING PROJECT PG&E OFFSHORE CENTRAL COASTAL CALIFORNIA SEISMIC IMAGING PROJECT Public Scoping Meeting California State Lands Commission July 21, 2011 Project Area Project Commitments Assessment of the Hosgri, Shoreline,

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. In the process zone, stress amplitudes are poorly determined and much

More information

The Tectonic Setting of New Zealand

The Tectonic Setting of New Zealand The Tectonic Setting of New Zealand we are here Subduction-driven tectonics The New Zealand continent Papua New Guinea Australia 3,000,000 sq km micro-continent back-arc basin trench volcanism faults accretionary

More information

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out 4. Focal Mechanism Solutions A way to investigate source properties of the 2001 sequence is to attempt finding well-constrained focal mechanism solutions to determine if they are consistent with those

More information

The 3 rd SCEC CSM workshop

The 3 rd SCEC CSM workshop The 3 rd SCEC CSM workshop Welcome on behalf of the organizers Jeanne Hardebeck Brad Aagaard David Sandwell Bruce Shaw John Shaw Thorsten Becker Thanks for playing! SCEC Community Stress Model (CSM) Community

More information

Journal of Geophysical Research Letters Supporting Information for

Journal of Geophysical Research Letters Supporting Information for Journal of Geophysical Research Letters Supporting Information for InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan H. Fattahi 1, F. Amelung

More information

Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan

Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan Lateral extrusion and tectonic escape in Ilan Plain of northeastern Taiwan Angelier, J., Chang, T.Y., Hu, J.C., Chang, C.P., Siame, L., Lee, J.C., Deffontaines, B., Chu, H.T, Lu, C.Y., Does extrusion occur

More information

Principles of the Global Positioning System Lecture 24

Principles of the Global Positioning System Lecture 24 12.540 Principles of the Global Positioning System Lecture 24 Prof. Thomas Herring http://geoweb.mit.edu/~tah/12.540 OVERVIEW Examination of results from Earthscope Reference frame definition: SNARF High-rate

More information

Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into

Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into Christchurch, but now moving away (23 December in particular).

More information

Mark Legg COASTAL DEFORMATION AND TECTONIC EVOLUTION OFFSHORE SAN ONOFRE

Mark Legg COASTAL DEFORMATION AND TECTONIC EVOLUTION OFFSHORE SAN ONOFRE COASTAL DEFORMATION AND TECTONIC EVOLUTION OFFSHORE SAN ONOFRE August 2013 Coastal Deformation and Tectonic Evolution Offshore San Onofre Mark R. Legg Legg Geophysical, Inc. The true sign of intelligence

More information

Lecture 20: Slow Slip Events and Stress Transfer. GEOS 655 Tectonic Geodesy Jeff Freymueller

Lecture 20: Slow Slip Events and Stress Transfer. GEOS 655 Tectonic Geodesy Jeff Freymueller Lecture 20: Slow Slip Events and Stress Transfer GEOS 655 Tectonic Geodesy Jeff Freymueller Slow Slip Events From Kristine Larson What is a Slow Slip Event? Slip on a fault, like in an earthquake, BUT

More information

Geodesy (InSAR, GPS, Gravity) and Big Earthquakes

Geodesy (InSAR, GPS, Gravity) and Big Earthquakes Geodesy (InSAR, GPS, Gravity) and Big Earthquakes Mathew Pritchard Teh-Ru A. Song Yuri Fialko Luis Rivera Mark Simons UJNR Earthquake Research Panel, Morioka, Japan - Nov 6, 2002 Goals Accurate and high

More information

Seismic Risk in California Is Changing

Seismic Risk in California Is Changing WHITE PAPER 4 August 2016 Seismic Risk in California Is Changing The Impact of New Earthquake Hazard Models for the State Contributors: Paul C. Thenhaus Kenneth W. Campbell Ph.D Nitin Gupta David F. Smith

More information

Can geodetic strain rate be useful in seismic hazard studies?

Can geodetic strain rate be useful in seismic hazard studies? Can geodetic strain rate be useful in seismic hazard studies? F. Riguzzi 1, R. Devoti 1, G. Pietrantonio 1, M. Crespi 2, C. Doglioni 2, A.R. Pisani 1 Istituto Nazionale di Geofisica e Vulcanologia 2 Università

More information

Manila subduction zone

Manila subduction zone Manila subduction zone Andrew T.S. Lin SSC TI Team Member Taiwan SSHAC Level 3 PSHA Study Workshop #3, June 19 23, 2017 Taipei, Taiwan 1 1 Manila subduction zone Hazard Contribution Geometry Setting interface

More information

Case Study 1: 2014 Chiang Rai Sequence

Case Study 1: 2014 Chiang Rai Sequence Case Study 1: 2014 Chiang Rai Sequence Overview Mw 6.1 earthquake on 5 May 2014 at 11:08:43 UTC Largest recorded earthquake in Thailand Fault Orientation How does the orientation of the fault affect the

More information