of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

Size: px
Start display at page:

Download "of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out"

Transcription

1 4. Focal Mechanism Solutions A way to investigate source properties of the 2001 sequence is to attempt finding well-constrained focal mechanism solutions to determine if they are consistent with those of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out whether the source characteristics of the 2001 sequence have changed since the last sequence of To obtain focal mechanisms of the 2001 sequence I use the FOCMEC algorithm (Snoke et al., 1984). The algorithm accepts not only P wave but also SH wave polarities. This improves focal sphere coverage and provides better-constrained solutions. I organize the earthquakes chronologically keeping the largest events (based on peak to peak amplitude values of the S waves) of a day at the top of the list. Using P and SH wave polarities I calculated focal mechanisms mostly for the largest earthquakes from the list. I also look for earthquakes that have been recorded on as many stations as possible. The greatest number of stations that recorded a single earthquake is 5. The quality of focal mechanism solutions does not solely depend on the number of stations that recorded an event but also upon the projection of those stations onto the focal sphere for the phase being considered. Even with 4 stations yielding 8 data points for an earthquake it is sometimes not possible to obtain a solid solution. The radiation patterns of P and SH waves (Figure 31) for a quadrant might not be always interpreted with a unique source. 60

2 Figure 31. Radiation patterns for (a) P waves and (b) SH waves for a vertical strike-slip. In (a) the + and - indicate the direction of first motion of the P with respect to the source, and the arrows in (b) indicate the first-motion directions for SH. Vectors a and n are the slip direction and the normal to the fault plane, respectively. (Snoke, 1984.) I wrote a SAC script that reads a three-component seismogram, rotates the horizontal components to the great circle path, band-passes the data with a Butterworth 2 pole 1-10 Hz filter and integrates the data obtaining displacement (see Figure 32 for an illustration). P wave polarities are picked together with P wave arrival times. I use the SAC script to additionally pick SH polarities. The chosen filter rejects unwanted frequencies from the transverse seismogram leaving mainly clean SH arrivals. The first motion for P arrivals are picked from the vertical components and SH arrivals from the transverse component. While it is theoretically possible to further constrain focal mechanism solutions using amplitude ratio data as: SV/SH and/or SV/P and/or SH/P, it would be necessary to obtain free-surface amplitude corrections. The high frequency characteristics of the data (even after filtering) make this task quite cumbersome so I could not take the advantage of the amplitude ratio data. 61

3 Figure 32. A three-component accelerogram (top three traces) and displacement (lower three traces) after rotation. From the top of each: radial, transverse and vertical component. Data filtered with 1 10 Hz, 2 pole Butterworth filter. 62

4 Figure 33. The earthquakes with focal mechanism solutions. Pale red dots are earthquakes located using P & S waveform cross correlation and HYPODD. Bright red dots are earthquakes for which focal mechanism solutions are obtained. They also represent earthquake activity up to June 29 (Julian day 180). Blue dots are earthquakes that occurred on July 1 (182 Julian day), the last observed episode of increased seismicity. They also belong to the shallow NE cluster. The purple dot is an earthquake on July 30 (181 Julian day) the day before the last episode of increased seismicity. I tried to find focal mechanisms for some earthquakes using only seismograms recorded on 3 stations (data points: 3 P and 3 SH arrivals). Even though I get more or less consistent solutions for these events, I cannot accept them. 63

5 64 Figure 34. Focal mechanism solutions for the 2001 Enola sequence. The color scheme is the same as in Figure 33 (inset). The focal mechanism on the far left is the mainshock solution by Herrmann et al.

6 For example: If I reject two stations out of five for an earthquake with a wellconstrained solution I get a substantially different focal mechanism (i.e. a strike-slip goes into a thrust motion). I consider a focal mechanism to be acceptably constrained if the earthquake was recorded on at least four stations (data points: 4 P and 4 SH arrivals). Due to occasional portable station rearrangements during the data acquisition of the 2001 sequence, only three stations recorded most of the deeper SW cluster. This number of stations does not allow calculation of many constrained focal mechanisms. In order to obtain good solutions for these events it would be necessary to develop a wave propagation model and organize a detailed study of the deep cluster earthquake focal mechanisms. I here present 15 well-constrained focal mechanism solutions for 15 selected earthquakes. As mentioned earlier in the chronology discussion (see Chapter 3.4) of the 2001 Enola sequence the first recorded earthquakes took place in a dispersed zone below the future shallow NE cluster. During this time four and more stations recorded these events. They are shown as bright red dots in Figure 33 and Figure 34. This period includes events from the first recorded episode of increased seismicity on Julian day 136. When the deep SW cluster was developing (increased seismicity episode on Julian days ) there were only 3 stations recording the events. No focal mechanism solutions are available for these events at the moment. I attempted to find a composite focal mechanism solution for these closely spaced earthquakes but the stations that recorded them appeared as smeared dots on the focal sphere. The stations were far enough from the earthquakes so when plotted on the focal sphere (composite solution) they did not change their position much. It was not possible to obtain a well-constrained solution. 65

7 On Julian day 182, the last recorded episode of increased seismicity, four and more stations had recorded the earthquakes. Focal mechanisms for the shallow NE cluster are shown as blue beach balls. The magenta dot is the focal mechanism of an earthquake on Julian day 181, two hours before the last recorded episode of increased seismicity. The Enola swarm region is a part of the mid-continent stress province (Zobak and Zobak, 1980). The province is under a fairly uniform ENE compressive stress regime that would produce right-lateral motion, on the NE-SW striking faults. The focal mechanisms for the shallow NE cluster (blue dots) are all identical pure strike-slips (Figure 34). One interpretation of the solutions suggests right-lateral faults, with a ~40º NE-SW strike. The other interpretation is just the opposite: NW-SE striking faults would under this stress regime produce left-lateral motion. The mainshock solution is comparable to the focal mechanism solutions of the shallow NE cluster (blue beach balls ). Mapped faults surrounding the swarm area are parallel with the proposed compressive stress axis and are, therefore in this context, likely to be seismically inactive. The very east end of the swarm area is surrounded in part by WNW trending fault segments that could accommodate left-lateral strike. Nevertheless there are no mapped faults within the strict swarm area that would undoubtedly suggest a possibility of any type of faulting. The focal mechanisms for the earthquakes at the beginning of the data acquisition (red dots in Figure 34) are not as uniform as the shallow NE cluster solutions. These earthquakes preceding the 182 Julian day are strike-slip but 6 out of 7 show a small thrust component. 66

8 Even though the clusters together assume a NE-SW trend, the SW cluster exhibits more of an opposite - NW-SE lineation. There is only one calculated focal mechanism from the SW cluster and it agrees (left-lateral strike-slip) with the NW-SE trend. It is necessary to find focal mechanism solutions for the other earthquakes in the cluster and investigate whether this solution is a rule or merely an exception. The 1982 swarm focal mechanisms are very similar to the solutions of the 2001 sequence. Chiu et al., (1984) calculated composite focal mechanism for 6 different groups of earthquakes that could be closely related in space and time (clusters). The focal mechanisms were predominantly strike-slip with a small component of normal dip-slip or with a small component of thrusting. Saikia and Herrmann (1986) found moment-tensor solutions for three 1982 sequence earthquakes by waveform modeling. The focal mechanisms of these events were determined to be predominantly strike-slip, with E to NE trending pressure axes, that is compatible with other earthquake focal mechanisms in the swarm area based on calculations of Chiu et al., (1984) and Haar et al., (1984). The similarity of the focal mechanism solutions for both sequences would suggest that source properties on some level did not change over 20 years. It is also in agreement with the data to assume that the driving force or the ultimate cause of the sequences is the same. It is reasonable to propose that the principle axis of the regional stress field is causing increased swarm-like seismic activity in the Enola region. The focal mechanism solutions certainly do not disagree with the hypothesis. 67

9 To explain the highly localized effects of the principal stress field axis requires recognition of some specific properties of the Enola 8 km 3 crust volume. The absence of mapped faults that would accommodate some of these specific properties in the strict swarm area certainly does not help. Based on the results of Chapter 3.3 the strict swarm area could be a highly localized fractured zone. The refined earthquake relocation schemes (see Chapter 3.3.) could be the first indicators of the fractured character of the Enola crustal volume. It has been proposed that the swarm area is highly fractured (Chiu et al., 1984; Schweig et al., 1991; Booth et al., 1990) based on temporal Vp/Vs ratio changes, a seismic reflection line interpretation and analyses of shear wave splitting. Pujol et al. (1989) showed using the Joint Hypocenter Determination (JHD) technique that lower seismic velocities following a circular pattern are centered in the swarm area in the context of higher velocities of the surrounding crust. Špicák and Horálek (2001) investigated the 1997 earthquake swarm in the West Bohemia/Vogtland region and found two types of constantly occurring focal mechanisms characterizing the sequence. Because the focal mechanisms were similar to those of the earthquakes produced by artificial fluid injection at a 50 km distant borehole, they proposed a possible role of magma and fluids in the seismogenesis of the 1997 swarm. Spatial migration of the swarm activity was interpreted as more evidence for fluid influenced seismicity. They suggested that the regional tectonic stresses were insufficient alone to generate the earthquakes until modified locally by fluids. The earthquake swarms in the Southern Apennines chain in Italy provide more relevant examples. A 1997 seismic sequence demonstrated a variety of focal mechanism solutions 68

10 (Milano et al. 1999). They do not mention a fluid role in the seismogenic processes of the swarms but propose that the variety of the focal mechanism solutions reflect a local stress field controlled by variable fault orientations. Numerous small magnitude (M L < 2.5) earthquakes of the 2001 sequence suggest that local fractures occur under a low stress and a significantly larger fracture is not likely to occur. Identical focal mechanisms for the last observed high rate seismicity episode (day 182) would suggest that these local fractures ruptured following similar orientation. It must be that in the Enola zone some level of fracture similarity exists so that the regional stress field was accommodated equally, producing nearly identical focal mechanisms for the 5 largest earthquakes. These indications might be just the right specific properties needed for this confined crustal volume and no other locality to produce numerous small magnitude earthquakes under the regional stress regime. 69

On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a

On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a 1. Introduction On May 4, 2001, central Arkansas experienced an M=4.4 earthquake followed by a surprisingly large number of small earthquakes. We recorded about 2500 above the ambient noise level on a

More information

3.3. Waveform Cross-Correlation, Earthquake Locations and HYPODD

3.3. Waveform Cross-Correlation, Earthquake Locations and HYPODD 3.3. Waveform Cross-Correlation, Earthquake Locations and HYPODD 3.3.1 Method More accurate relative earthquake locations depend on more precise relative phase arrival observations so I exploit the similarity

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11492 Figure S1 Short-period Seismic Energy Release Pattern Imaged by F-net. (a) Locations of broadband seismograph stations in Japanese F-net used for the 0.5-2.0 Hz P wave back-projection

More information

FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA

FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA Siti Norbaizura MAT SAID Supervisor: Tatsuhiko HARA MEE10505 ABSTRACT Since November 30, 2007, small local earthquakes have been observed

More information

crustal volume of the swarm. This initiated interest and concern that another

crustal volume of the swarm. This initiated interest and concern that another 3. Earthquae locations Data from permanent seismic networs located the 2001 Enola mainshoc within the crustal volume of the 1982-84 swarm. This initiated interest and concern that another 1982-lie sequence

More information

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Edmond Sze, M. Nafi Toksöz, and Daniel R. Burns Earth Resources Laboratory Dept. of Earth, Atmospheric and Planetary Sciences

More information

BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults?

BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults? BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults? What are some of the key parameters which we describe faults? GEOMETRICAL PROPERTIES

More information

THE SEISMICITY OF THE CAMPANIAN PLAIN: PRELIMINARY RESULTS

THE SEISMICITY OF THE CAMPANIAN PLAIN: PRELIMINARY RESULTS THE SEISMICITY OF THE CAMPANIAN PLAIN: PRELIMINARY RESULTS Girolamo Milano Osservatorio Vesuviano, Via Diocleziano 328, 80124 Napoli milano@osve.unina.it INTRODUCTION In areas affected by active volcanism,

More information

Earthquakes and Seismotectonics Chapter 5

Earthquakes and Seismotectonics Chapter 5 Earthquakes and Seismotectonics Chapter 5 What Creates Earthquakes? The term Earthquake is ambiguous: Applies to general shaking of the ground and to the source of the shaking We will talk about both,

More information

DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION IN A PRODUCING INDONESIAN GEOTHERMAL FIELD

DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION IN A PRODUCING INDONESIAN GEOTHERMAL FIELD PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

Earthquake Focal Mechanisms and Waveform Modeling

Earthquake Focal Mechanisms and Waveform Modeling Earthquake Focal Mechanisms and Waveform Modeling Rengin Gök Lawrence Livermore National Laboratory USA RELEMR Workshop İstanbul 2008 Gudmundar E. Sigvaldason The Dynamic Earth, USGS The size of the event

More information

Kinematic inversion of pre-existing faults by wastewater injection-related induced seismicity: the Val d Agri oil field case study (Italy)

Kinematic inversion of pre-existing faults by wastewater injection-related induced seismicity: the Val d Agri oil field case study (Italy) Kinematic inversion of pre-existing faults by wastewater injection-related induced seismicity: the Val d Agri oil field case study (Italy) Buttinelli M., Improta L., Bagh S., Chiarabba C. 1/10 The Val

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

Northern Tanzanian Earthquakes: Fault orientations, and depth distribution

Northern Tanzanian Earthquakes: Fault orientations, and depth distribution Northern Tanzanian Earthquakes: Fault orientations, and depth distribution Stewart Rouse (NC A&T Physics) Penn State University SROP Mentors: Dr. Andy Nyblade & Dr. Rick Brazier July 27, 2005 1.0 Introduction

More information

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION 6-1 6: EARTHQUAKE FOCAL MECHANISMS AND PLATE MOTIONS Hebgen Lake, Montana 1959 Ms 7.5 1 Stein & Wysession, 2003 Owens Valley, California 1872 Mw ~7.5 EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies SEISMIC SOURCE AND PATH CALIBRATION IN THE KOREAN PENINSULA, YELLOW SEA, AND NORTHEAST CHINA Robert B. Herrmann 1, Young-Soo Jeon 1, William R. Walter 2, and Michael E. Pasyanos 2 Saint Louis University

More information

MIGRATING SWARMS OF BRITTLE-FAILURE EARTHQUAKES IN THE LOWER CRUST BENEATH MAMMOTH MOUNTAIN, CALIFORNIA

MIGRATING SWARMS OF BRITTLE-FAILURE EARTHQUAKES IN THE LOWER CRUST BENEATH MAMMOTH MOUNTAIN, CALIFORNIA MIGRATING SWARMS OF BRITTLE-FAILURE EARTHQUAKES IN THE LOWER CRUST BENEATH MAMMOTH MOUNTAIN, CALIFORNIA David Shelly and David Hill GRL, October 2011 Contents Tectonic Setting Long Valley Caldera Mammoth

More information

Seismological Study of Earthquake Swarms in South-Eastern Puerto Rico

Seismological Study of Earthquake Swarms in South-Eastern Puerto Rico Seismological Study of Earthquake Swarms in South-Eastern Puerto Rico Principal Investigator: Lillian Soto-Cordero [1] Co-Investigators: Victor Huérfano 1, Leonardo Cano [2], Robert Watts [3], and Christa

More information

IMPLEMENT ROUTINE AND RAPID EARTHQUAKE MOMENT-TENSOR DETERMINATION AT THE NEIC USING REGIONAL ANSS WAVEFORMS

IMPLEMENT ROUTINE AND RAPID EARTHQUAKE MOMENT-TENSOR DETERMINATION AT THE NEIC USING REGIONAL ANSS WAVEFORMS Final Technical Report Award number: 05HQGR0062 IMPLEMENT ROUTINE AND RAPID EARTHQUAKE MOMENT-TENSOR DETERMINATION AT THE NEIC USING REGIONAL ANSS WAVEFORMS Lupei Zhu Saint Louis University Department

More information

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II PEAT8002 - SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling P-wave first-motions

More information

revised October 30, 2001 Carlos Mendoza

revised October 30, 2001 Carlos Mendoza Earthquake Sources in the circum-caribbean Region Puerto Rico Tsunami Mitigation and Warning Program Federal Emergency Management Agency Preliminary Report: Task 3 revised October 30, 2001 Carlos Mendoza

More information

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan.

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan. Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan Masahiro Kosuga 1 1. Corresponding Author. Professor, Graduate School of

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

OCEAN/ESS 410. Lab 12. Earthquake Focal Mechanisms. You can write your answers to all be (e) on this paper.

OCEAN/ESS 410. Lab 12. Earthquake Focal Mechanisms. You can write your answers to all be (e) on this paper. Lab 1. Earthquake Focal Mechanisms You can write your answers to all be (e) on this paper. In this class we are going to use P-wave first motions to obtain a double-couple focal mechanism for a subduction

More information

The seismotectonic significance of the seismic swarm in the Brabant Massif (Belgium)

The seismotectonic significance of the seismic swarm in the Brabant Massif (Belgium) The seismotectonic significance of the 2008-2010 seismic swarm in the Brabant Massif (Belgium) Koen VAN NOTEN, Thomas LECOCQ, Thierry CAMELBEECK Seismology-Gravimetry, Royal Observatory of Belgium, Brussels,

More information

Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes

Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes T. Matsuzawa, N. Uchida, T. Igarashi *, N. Umino, and A. Hasegawa

More information

SEISMIC MONITORING OF EGS STIMULATION TESTS AT THE COSO GEOTHERMAL FIELD, CALIFORNIA, USING MICROEARTHQUAKE LOCATIONS AND MOMENT TENSORS

SEISMIC MONITORING OF EGS STIMULATION TESTS AT THE COSO GEOTHERMAL FIELD, CALIFORNIA, USING MICROEARTHQUAKE LOCATIONS AND MOMENT TENSORS PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 SEISMIC MONITORING OF EGS STIMULATION TESTS AT THE COSO

More information

Microearthquake Focal Mechanisms

Microearthquake Focal Mechanisms Microearthquake Focal Mechanisms A Tool for Monitoring Geothermal Systems By Bruce R. Julian (U. S. Geological Survey - Menlo Park, CA) and Gillian R. Foulger (University of Durham - Durham, United Kingdom)

More information

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL 1 Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL Hideo AOCHI

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

S e i s m i c W a v e s

S e i s m i c W a v e s Project Report S e i s m i c W a v e s PORTLAND STATE UNIVERSITY PHYSICS 213 SPRING TERM 2005 Instructor: Dr. Andres La Rosa Student Name: Prisciliano Peralta-Ramirez Table Of Contents 1. Cover Sheet 2.

More information

! EN! EU! NE! EE.! ij! NN! NU! UE! UN! UU

! EN! EU! NE! EE.! ij! NN! NU! UE! UN! UU A-1 Appendix A. Equations for Translating Between Stress Matrices, Fault Parameters, and P-T Axes Coordinate Systems and Rotations We use the same right-handed coordinate system as Andy Michael s program,

More information

Seismic Source Mechanism

Seismic Source Mechanism Seismic Source Mechanism Yuji Yagi (University of Tsukuba) Earthquake Earthquake is a term used to describe both failure process along a fault zone, and the resulting ground shaking and radiated seismic

More information

Calculation of Focal mechanism for Composite Microseismic Events

Calculation of Focal mechanism for Composite Microseismic Events Calculation of Focal mechanism for Composite Microseismic Events Hongliang Zhang, David W. Eaton Department of Geoscience, University of Calgary Summary It is often difficult to obtain a reliable single-event

More information

Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin

Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin Paige Snelling*, Cameron Wilson, MicroSeismic Inc., Calgary, AB, Canada psnelling@microseismic.com Neil Taylor, Michael de

More information

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength. Earthquakes Vocabulary: Stress Strain Elastic Deformation Plastic Deformation Fault Seismic Wave Primary Wave Secondary Wave Focus Epicenter Define stress and strain as they apply to rocks. Distinguish

More information

Magnitude 7.6 & 7.4 SOLOMON ISLANDS

Magnitude 7.6 & 7.4 SOLOMON ISLANDS A magnitude 7.6 earthquake struck near the Solomon Islands on Sunday morning local time; there were no immediate reports of damage. The earthquake was centered 100 km (60 miles) south of Kira Kira, a town

More information

Earthquake. What is it? Can we predict it?

Earthquake. What is it? Can we predict it? Earthquake What is it? Can we predict it? What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. Rocks under stress accumulate

More information

Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault

Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault David R. Shelly USGS, Menlo Park Shelly and Hardebeck, GRL, 2010 Collaborators: Jeanne Hardebeck

More information

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results Earthquake patterns in the Flinders Ranges - Temporary network 2003-2006, preliminary results Objectives David Love 1, Phil Cummins 2, Natalie Balfour 3 1 Primary Industries and Resources South Australia

More information

Data Repository: Seismic and Geodetic Evidence For Extensive, Long-Lived Fault Damage Zones

Data Repository: Seismic and Geodetic Evidence For Extensive, Long-Lived Fault Damage Zones DR2009082 Data Repository: Seismic and Geodetic Evidence For Extensive, Long-Lived Fault Damage Zones Fault Zone Trapped Wave Data and Methods Fault zone trapped waves observed for 2 shots and 5 local

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

Global geophysics and wave propagation

Global geophysics and wave propagation Global geophysics and wave propagation Reading: Fowler p76 83 Remote sensing Geophysical methods Seismology Gravity and bathymetry Magnetics Heat flow Seismology: Directly samples the physical properties

More information

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 016 Mw 7.0 Kumamoto Earthquake Heng-Yi Su 1 *, Aitaro Kato 1 Department of Earth Sciences, National Central University, Taoyuan

More information

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes Earthquakes 1 Topic 4 Content: Earthquakes Presentation Notes Earthquakes are vibrations within the Earth produced by the rapid release of energy from rocks that break under extreme stress. Earthquakes

More information

FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT THE GEYSERS GEOTHERMAL FIELD

FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT THE GEYSERS GEOTHERMAL FIELD PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT

More information

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation. In the process zone, stress amplitudes are poorly determined and much

More information

Microseismic monitoring is a valuable

Microseismic monitoring is a valuable SPECIAL SECTION: M i c r o s e i s m i c moment tensors: A path to understanding frac growth ADAM BAIG and TED URBANCIC, Engineering Seismology Group Canada monitoring is a valuable tool in understanding

More information

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring Bruce R. Julian U. S. Geological Survey, Menlo Park, CA 94025 USA julian@usgs.gov Gillian R. Foulger Dept. Earth

More information

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction

Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction Fault Specific, Dynamic Rupture Scenarios for Strong Ground Motion Prediction H. Sekiguchi Disaster Prevention Research Institute, Kyoto University, Japan Blank Line 9 pt Y. Kase Active Fault and Earthquake

More information

Magnitude, scaling, and spectral signature of tensile microseisms

Magnitude, scaling, and spectral signature of tensile microseisms Magnitude, scaling, and spectral signature of tensile microseisms David W. Eaton Department of Geoscience, University of Calgary Summary The spatial dimensions and rupture characteristics of microseismic

More information

Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa.

Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa. 2053-11 Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa 17-28 August 2009 Seismic monitoring on volcanoes in a multi-disciplinary context Jürgen

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

Earthquakes.

Earthquakes. Earthquakes http://quake.usgs.gov/recenteqs/latestfault.htm An earthquake is a sudden motion or shaking of the Earth's crust, caused by the abrupt release of stored energy in the rocks beneath the surface.

More information

Figure Diagram of earth movements produced by (a) P-waves and (b) S-waves.

Figure Diagram of earth movements produced by (a) P-waves and (b) S-waves. Geology 101 Name(s): Lab 10: Earthquakes When the stresses in a rock (which may or may not already be faulted) exceed the tensile strength of the rock, the rock ruptures at a point called the focus or

More information

Dangerous tsunami threat off U.S. West Coast

Dangerous tsunami threat off U.S. West Coast Earthquakes Ch. 12 Dangerous tsunami threat off U.S. West Coast Earthquakes What is an Earthquake? It s the shaking and trembling of the Earth s crust due to plate movement. The plates move, rocks along

More information

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone Genda Chen*, Ph.D., P.E., and Mostafa El-Engebawy Engebawy,, Ph.D. *Associate Professor of Civil Engineering Department of Civil, Architecture

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Negative repeating doublets in an aftershock sequence

Negative repeating doublets in an aftershock sequence LETTER Earth Planets Space, 65, 923 927, 2013 Negative repeating doublets in an aftershock sequence X. J. Ma and Z. L. Wu Institute of Geophysics, China Earthquake Administration, 100081 Beijing, China

More information

Determining the Earthquake Epicenter: Japan

Determining the Earthquake Epicenter: Japan Practice Name: Hour: Determining the Earthquake Epicenter: Japan Measuring the S-P interval There are hundreds of seismic data recording stations throughout the United States and the rest of the world.

More information

Lab 6: Earthquake Focal Mechanisms (35 points)

Lab 6: Earthquake Focal Mechanisms (35 points) Lab 6: Earthquake Focal Mechanisms (35 points) Group Exercise 1. Drawing Nodal Planes (8 pts) The outline map below labeled Figure 4.60a shows the positions of two earthquakes recorded on the Mid-Atlantic

More information

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge GSA Data Repository Item: 2007183 Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge Brian J. demartin 1*, Robert

More information

Oil and natural gas production from shale formations

Oil and natural gas production from shale formations SPECIAL Passive SECTION: seismic Pand a s s ive microseismic Part and microseismic Part 2 2 Source characteristics of seismicity associated with underground wastewater disposal: A case study from the 2008

More information

Peter Shearer 1, Robin Matoza 1, Cecily Wolfe 2, Guoqing Lin 3, & Paul Okubo 4

Peter Shearer 1, Robin Matoza 1, Cecily Wolfe 2, Guoqing Lin 3, & Paul Okubo 4 Characterizing fault zones and volcanic conduits at Kilauea and Mauna Loa volcanoes by large-scale mapping of earthquake stress drops and high precision relocations Peter Shearer 1, Robin Matoza 1, Cecily

More information

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL INFORMATION GSA DATA REPOSITORY 2013310 A.M. Thomas et al. MOMENT TENSOR SOLUTIONS SUPPLEMENTAL INFORMATION Earthquake records were acquired from the Northern California Earthquake Data Center. Waveforms are corrected

More information

What is an Earthquake?

What is an Earthquake? Earthquakes What is an Earthquake? Earthquake - sometimes violent shaking of ground caused by movement of Earth s tectonic plates; creates seismic waves Often followed by smaller earthquakes (aftershocks);

More information

Depth-dependent slip regime on the plate interface revealed from slow earthquake activities in the Nankai subduction zone

Depth-dependent slip regime on the plate interface revealed from slow earthquake activities in the Nankai subduction zone 2010/10/11-14 Earthscope Workshop Depth-dependent slip regime on the plate interface revealed from slow earthquake activities in the Nankai subduction zone Kazushige Obara, ERI, Univ. Tokyo Recurrence

More information

Measuring seismicity in the Groningen Field. Bernard Dost, Elmer Ruigrok, Jesper Spetzler, Gert-Jan van den Hazel, Jordi Domingo

Measuring seismicity in the Groningen Field. Bernard Dost, Elmer Ruigrok, Jesper Spetzler, Gert-Jan van den Hazel, Jordi Domingo Measuring seismicity in the Groningen Field Bernard Dost, Elmer Ruigrok, Jesper Spetzler, Gert-Jan van den Hazel, Jordi Domingo Monitoring induced seismicity in the Netherlands. Instrumentation and network

More information

Magnitude 7.9 SE of KODIAK, ALASKA

Magnitude 7.9 SE of KODIAK, ALASKA A magnitude 7.9 earthquake occurred at 12:31 am local time 181 miles southeast of Kodiak at a depth of 25 km (15.5 miles). There are no immediate reports of damage or fatalities. Light shaking from this

More information

Seismic anisotropy of the upper crust and response to dynamic stress around Mount Fuji, Japan

Seismic anisotropy of the upper crust and response to dynamic stress around Mount Fuji, Japan Seismic anisotropy of the upper crust and response to dynamic stress around Mount Fuji, Japan mainly from KR Araragi, MK Savage, T Ohminato and Y Aoki, Seismic anisotropy of the upper crust around Mount

More information

Earthquakes in Barcelonnette!

Earthquakes in Barcelonnette! Barcelonnette in the Ubaye valley : the landscape results of large deformations during the alpine orogene (40 5 Myr in this area) and the succession of Quaternary glaciations. The sedimentary rocks are

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1992 Seismic detection of an active subglacial magmatic complex in Marie Byrd Land, Antarctica TABLE OF CONTENTS 1. Additional Study Information 1.1 Station Locations

More information

COGEAR MODULE 2: Seismotectonics of the Valais

COGEAR MODULE 2: Seismotectonics of the Valais COGEAR MODULE 2: Seismotectonics of the Valais Del. No.: 2a.1.2 Authors: Marschall I., and Deichmann N. Swiss Seismological Service SED/COGEAR/R/011/20120712 July 12, 2012 Seismotectonics of the Valais

More information

Coupling between deformation and fluid flow: impacts on ore genesis in fracture-controlled hydrothermal systems

Coupling between deformation and fluid flow: impacts on ore genesis in fracture-controlled hydrothermal systems Coupling between deformation and fluid flow: impacts on ore genesis in fracture-controlled hydrothermal systems Stephen F Cox Research School of Earth Sciences The Australian National University INTRODUCTION

More information

LAB 6: Earthquakes & Faults

LAB 6: Earthquakes & Faults Name School LAB 6: Earthquakes & Faults An earthquake is what happens when two blocks of the earth suddenly slip past one another. The surface where they slip is called the fault or fault plane. The location

More information

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey Probabilistic Seismic Hazard Maps for Seattle: 3D Sedimentary Basin Effects, Nonlinear Site Response, and Uncertainties from Random Velocity Variations Arthur Frankel, William Stephenson, David Carver,

More information

Ground displacement in a fault zone in the presence of asperities

Ground displacement in a fault zone in the presence of asperities BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 2, pp. 95-110; JUNE 2000 Ground displacement in a fault zone in the presence of asperities S. SANTINI (1),A.PIOMBO (2) and M. DRAGONI (2) (1) Istituto

More information

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane.

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane. The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 28: Preliminary identification of the fault plane. J. Zahradnik 1, E. Sokos 2, A.Serpetsidaki 2, and G A.Tselentis 2 1 Charles University in

More information

DATA REPOSITORY SUPPLEMENTARY MATERIAL. We analyzed focal mechanism solutions for aftershocks of the Loma Prieta

DATA REPOSITORY SUPPLEMENTARY MATERIAL. We analyzed focal mechanism solutions for aftershocks of the Loma Prieta GSA Data Repository item 2007141 DATA REPOSITORY SUPPLEMENTARY MATERIAL DR.1 Selection of aftershock sets and subsets We analyzed focal mechanism solutions for aftershocks of the Loma Prieta earthquake

More information

Teleseismic waveform modelling of the 2008 Leonidio event

Teleseismic waveform modelling of the 2008 Leonidio event The 6 January 2008 (Mw6.2) Leonidio (southern Greece) intermediate depth earthquake: teleseismic body wave modelling Anastasia Kiratzi and Christoforos Benetatos Department of Geophysics, Aristotle University

More information

SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE

SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE GARFAGNANA-NORTH (NORTHERN TUSCANY) LINE. Eva Claudio 1, Eva Elena 2, Scafidi Davide 1, Solarino Stefano 2, Turino Chiara 1 1 Dipartimento

More information

Seismic techniques for imaging fractures, cracks and faults in the Earth. Michael Kendall

Seismic techniques for imaging fractures, cracks and faults in the Earth. Michael Kendall Seismic techniques for imaging fractures, cracks and faults in the Earth Michael Kendall Issues and Challanges Geometry (aspect ratio, size, orientation, density) Non-uniqueness (e.g., single set of aligned

More information

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS ROCK DEFORMATION Tectonic forces exert different types of stress on rocks in different geologic environments. STRESS The first, called confining stress

More information

An Earthquake is a rapid vibration or shaking of the Earth s crust created by a release in energy from sudden movement of a part of a plate along a

An Earthquake is a rapid vibration or shaking of the Earth s crust created by a release in energy from sudden movement of a part of a plate along a An Earthquake is a rapid vibration or shaking of the Earth s crust created by a release in energy from sudden movement of a part of a plate along a fault. Energy released radiates in all directions from

More information

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES Vilma Castillejos Hernandez Supervisor: Tatsuhiko Hara MEE10508 ABSTRACT We performed time domain moment tensor

More information

An Investigation on the Effects of Different Stress Regimes on the Magnitude Distribution of Induced Seismic Events

An Investigation on the Effects of Different Stress Regimes on the Magnitude Distribution of Induced Seismic Events An Investigation on the Effects of Different Stress Regimes on the Magnitude Distribution of Induced Seismic Events Afshin Amini, Erik Eberhardt Geological Engineering, University of British Columbia,

More information

What We Know (and don t know)

What We Know (and don t know) What We Know (and don t know) about the M5.1 La Habra Earthquake Dr. Robert Graves U.S. Geological Survey In collaboration with: Dr. Egill Hauksson and Dr. Thomas Göbel Caltech Dr. Elizabeth Cochran U.S.

More information

Chapter 2. Earthquake and Damage

Chapter 2. Earthquake and Damage EDM Report on the Chi-Chi, Taiwan Earthquake of September 21, 1999 2.1 Earthquake Fault 2.1.1 Tectonic Background The island of Taiwan is located in the complex junction where the Eurasian and Philippine

More information

Effect of earth structure and source time function on inversion of singlestation regional surface waves for rupture mechanism and focal depth

Effect of earth structure and source time function on inversion of singlestation regional surface waves for rupture mechanism and focal depth JOURNAL OF THE BALKAN GEOPHYSICAL SOCIETY, Vol. 4, No 4, November 2001, p. 69-90, 14 figs. Effect of earth structure and source time function on inversion of singlestation regional surface waves for rupture

More information

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions

UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions UCERF3 Task R2- Evaluate Magnitude-Scaling Relationships and Depth of Rupture: Proposed Solutions Bruce E. Shaw Lamont Doherty Earth Observatory, Columbia University Statement of the Problem In UCERF2

More information

Determination of prominent crustal discontinuities from waveforms of local earthquakes Pavla Hrubcová Václav Vavryčuk Alena Boušková Josef Horálek

Determination of prominent crustal discontinuities from waveforms of local earthquakes Pavla Hrubcová Václav Vavryčuk Alena Boušková Josef Horálek Determination of prominent crustal discontinuities from waveforms of local earthquakes avla Hrubcová Václav Vavryčuk Alena Boušková Josef Horálek Institute of Geophysics, Academy of ciences, rague, Czech

More information

Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code.

Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code. Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code. J. Zahradnik 1), F. Gallovic 1), E. Sokos 2) G-A. Tselentis 2) 1) Charles University

More information

of the San Jacinto Fault Zone and detailed event catalog from spatially-dense array data

of the San Jacinto Fault Zone and detailed event catalog from spatially-dense array data Shallow structure s of the San Jacinto Fault Zone and detailed event catalog from spatially-dense array data Yehuda Ben-Zion, University of Southern California, with F. Vernon, Z. Ross, D. Zigone, Y. Ozakin,

More information

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L24619, doi:10.1029/2004gl021228, 2004 An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake Changjiang

More information

Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications

Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications Bulletin of the Seismological Society of America, Vol. 85, No. 5, pp. 1513-1517, October 1995 Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications by

More information

The Solid Earth Chapter 4 Answers to selected questions. (1) Love waves involve transverse motion, generally arrive before Rayleigh waves.

The Solid Earth Chapter 4 Answers to selected questions. (1) Love waves involve transverse motion, generally arrive before Rayleigh waves. The Solid Earth Chapter 4 Answers to selected questions (1) Love waves involve transverse motion, generally arrive before Rayleigh waves. () (a) T = 10 s, v ~4 kms -1, so wavelength is ~40 km. (b) T =

More information

Monitoring induced microseismic events usually

Monitoring induced microseismic events usually SPECIAL M i c r SECTION: o s e i s m M i ci c r o s e i s m i c Beyond the dots in the box: microseismicity-constrained fracture models for reservoir simulation Leo Eisner, Sherilyn Williams-Stroud, Andrew

More information

Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment

Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment Coulomb stress changes due to Queensland earthquakes and the implications for seismic risk assessment Abstract D. Weatherley University of Queensland Coulomb stress change analysis has been applied in

More information