Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into

Size: px
Start display at page:

Download "Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into"

Transcription

1 Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into Christchurch, but now moving away (23 December in particular).

2 Slide 2: The NZ National Seismic Hazard Model (NSHM) underpins building code requirements in New Zealand. Canterbury has always had earthquakes, and there has been damage in the past. The current sequence represents a much higher hazard than the long term average, but except for February 22 nd and June 13 th events in the City and Port Hills, the events have been close to code requirements. The different elements of the model are comparable earthquakes and GPS strain look similar and we know the Alpine fault will produce large earthquakes approximately 100 times more frequently than beneath the Canterbury Plains. Central panel shows all of the M>3 earthquakes for a year prior to September 4 th

3 Slide 3: This is the 2002 hazard model for 500 year return period Peak Ground Acceleration (PGA) on class C (average ground). Christchurch is about 30% of gravity, comparable with Nelson or New Plymouth and more than Dunedin, Hamilton, and Auckland. 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 Slide 21: Comparison of PGA s for successive events February and June were really big in the city, December very much smaller (close to code), but further significant damage occurred in some cases because of progressive accumulated damage. 21

22 Slide 22: Shows very active early phase following each major event but activity dies away quickly. 22

23 Slide 23: The blue line is the theory of a perfectly behaved mainshock and aftershock in terms of numbers of aftershocks >3 following the M7.1 Darfield earthquake. The red line is the Canterbury sequence significantly lower than the blue line especially after September 4 th. It seems like we are now getting back to being normal but this is occurring via the rejuvenation events spaced many months apart. The pink or mauve lines are the 2 standard deviations on the perfect curve. The small steps in the standard deviation curve is an artefact due to binning the data. The cumulative number scale is x

24 Slide 24: Offshore survey lines they reveal some faults but with very low average movement rates, and decreasing activity rate from northern Pegasus Bay toward the south. There are no major features (red lines) directly east of Christchurch, but there are a lot of faults in the greywacke bedrock below the red line in the lower panel. The location of this particular seismic line is shown in the upper right panel. 24

25 Slide 25: Shows that the December 23 earthquakes (now re-assessed as M5.8 followed by M 5.9) did not impact very much on the forecast probabilities. This comparison uses the old model we were using last year note the 17% in bold in the left panel. 25

26 Slide 26: These probabilities use the refined model formulation and parameter the 17% from the old model method transforms into 13% in the refined model. So models from last year are now thought to have been a bit conservative (by about 20%, depending on which magnitude range is being looked at). Note also the expected average number and the range corresponding to each probability. For low probabilities it is certainly possible that an earthquake of this size will not occur in the period. 26

27 Slide 27: Same comments as for slide 26. The 50 year model means that behind the scenes some parameter choices and some statistical models perform better over long periods compared with short term ( 1 year ) in the previous slide. There is much more uncertainty about the stability of these results for the long term and of course they will change as the model is trained by earthquakes that are still to occur. 27

The Seismic Hazardscape of New Zealand

The Seismic Hazardscape of New Zealand The Seismic Hazardscape of New Zealand Mark Stirling Professor of Earthquake Science Introduction Plate tectonic setting of New Zealand Seismic hazards for University of Otago campuses Kaikoura earthquake

More information

Preliminary report on the Canterbury Earthquake South Island of New Zealand , M 6.3

Preliminary report on the Canterbury Earthquake South Island of New Zealand , M 6.3 Preliminary report on the Canterbury Earthquake South Island of New Zealand 21.02.2011, M 6.3 Kyriazis Pitilakis and the group of - Aristotle University Thessaloniki, Greece. General 2 General 147 people

More information

Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake

Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake D.C. Lawton* (University of Calgary), M.B. Bertram (University of Calgary), K.W. Hall (University of Calgary), K.L. Bertram

More information

log (N) 2.9<M< <M< <M< <M<4.9 tot in bin [N] = Mid Point M log (N) =

log (N) 2.9<M< <M< <M< <M<4.9 tot in bin [N] = Mid Point M log (N) = Solution Set for Assignment Exercise : Gutenberg-Richter relationship: log() = a + b. M A) For a time period between January, 90 to December 3, 998 tot in bin [] = 450 6 57 22 7 5 Mid Point M 3.5 3.65

More information

The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1

The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1 The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1 Graeme BLICK, John BEAVAN, Chris CROOK, Nic DONNELLY Keywords: Darfield Earthquake, control, survey,

More information

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE Tim Stern and SAHKE team* * VUW, GNS, University of Southern California, University of Tokyo(Japan) SAHKE = Seismic

More information

Time-varying and long-term mean aftershock hazard in Wellington

Time-varying and long-term mean aftershock hazard in Wellington Time-varying and long-term mean aftershock hazard in Wellington A. Christophersen, D.A. Rhoades, R.J. Van Dissen, C. Müller, M.W. Stirling, G.H. McVerry & M.C. Gerstenberger GNS Science, Lower Hutt, New

More information

The Canterbury Earthquakes: Scientific answers to critical questions

The Canterbury Earthquakes: Scientific answers to critical questions OFFICE OF THE PRIME MINISTER S SCIENCE ADVISORY COMMITTEE The Canterbury Earthquakes: Scientific answers to critical questions The Canterbury region has had six months of unexpected and extremely difficult

More information

Comparison between predicted liquefaction induced settlement and ground damage observed from the Canterbury earthquake sequence

Comparison between predicted liquefaction induced settlement and ground damage observed from the Canterbury earthquake sequence Power, P.M. & Jacka, M. (2013) the Canterbury earthquake sequence Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Comparison between predicted liquefaction induced settlement and ground

More information

Hawke s Bay Liquefaction Hazard Report - Frequently Asked Questions

Hawke s Bay Liquefaction Hazard Report - Frequently Asked Questions Hawke s Bay Liquefaction Hazard Report - Frequently Asked Questions What is liquefaction? Liquefaction occurs when an earthquake shakes up water-logged sediments. As a result, the soil behaves like a liquid

More information

Spectra and Pgas for the Assessment and Reconstruction of Christchurch

Spectra and Pgas for the Assessment and Reconstruction of Christchurch Spectra and Pgas for the Assessment and Reconstruction of Christchurch G.H. McVerry, M.C. Gerstenberger, D.A. Rhoades & M.W. Stirling GNS Science, Lower Hutt, New Zealand. 2012 NZSEE Conference ABSTRACT:

More information

This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010.

This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010. 1 of 5 04/12/2012 11:05 a.m. This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010. Why are we getting so many earthquakes?

More information

Jocelyn Karen Campbell

Jocelyn Karen Campbell THE UNCERTAINTIES IN ASSESSING THE IMPACT OF REGIONAL SEISMICITY AT THE WIL SITE Statement of Evidence by Jocelyn Karen Campbell A CANTERBURY FAULTS coded by type CHARACTERISTICS OF THRUST FAULTS IN CANTERBURY

More information

Site-specific hazard analysis for geotechnical design in New Zealand

Site-specific hazard analysis for geotechnical design in New Zealand Site-specific hazard analysis for geotechnical design in New Zealand B. A. Bradley 1 1 Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Ilam, Christchurch,

More information

The IISEE earthquake catalog, Catalog of Damaging Earthquakes in the World, IISEE-NET,, and BRI strong motion observation

The IISEE earthquake catalog, Catalog of Damaging Earthquakes in the World, IISEE-NET,, and BRI strong motion observation The IISEE earthquake catalog, Catalog of Damaging Earthquakes in the World, IISEE-NET,, and BRI strong motion observation Tatsuhiko Hara International Institute of Seismology and Earthquake Engineering,

More information

Design Spectra for the Reconstruction of Christchurch

Design Spectra for the Reconstruction of Christchurch Design Spectra for the Reconstruction of Christchurch G.H. McVerry, M.C Gerstenberger, D.A. Rhoades & M.W. Stirling GNS Science, New Zealand SUMMARY: There have been many challenges in developing new design

More information

What Drives Seismic Risk in New Zealand? Insights from a nextgeneration

What Drives Seismic Risk in New Zealand? Insights from a nextgeneration Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia What Drives Seismic Risk in New Zealand? Insights from

More information

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND A magnitude 6.3 earthquake shook the southern New Zealand city of Christchurch. At least 100 people are reported dead, and there are reports of collapsed buildings, cracked streets and flooding due to

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

Cyclic fatigue demands on structures subjected to the Canterbury Earthquake Sequence

Cyclic fatigue demands on structures subjected to the Canterbury Earthquake Sequence Cyclic fatigue demands on structures subjected to the -11Canterbury Earthquake Sequence J.B. Mander Texas A&M University, College Station, Texas, USA. G.W. Rodgers Dept. of Mechanical Engineering, University

More information

SHAKING AND GROUND FAILURE-INDUCED DAMAGE TO BUILDINGS BY THE 2010 AND 2011 CHRISTCHURCH EARTHQUAKES AND ITS LESSONS

SHAKING AND GROUND FAILURE-INDUCED DAMAGE TO BUILDINGS BY THE 2010 AND 2011 CHRISTCHURCH EARTHQUAKES AND ITS LESSONS Int. Journal for Housing Science, Vol.36, No.3 pp.162-169, 2012 Published in the United States SHAKING AND GROUND FAILURE-INDUCED DAMAGE TO BUILDINGS BY THE 2010 AND 2011 CHRISTCHURCH EARTHQUAKES AND ITS

More information

GROUND MOTION MAPS BASED ON RECORDED MOTIONS FOR THE EARTHQUAKES IN THE CANTERBURY EARTHQUAKE SEQUENCE

GROUND MOTION MAPS BASED ON RECORDED MOTIONS FOR THE EARTHQUAKES IN THE CANTERBURY EARTHQUAKE SEQUENCE GROUND MOTION MAPS BASED ON RECORDED MOTIONS FOR THE EARTHQUAKES IN THE CANTERBURY EARTHQUAKE SEQUENCE Robert Buxton 1, Graeme McVerry 2, Tatiana Goded 3 ABSTRACT: There has been a demand for maps of estimated

More information

Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand

Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand John B. Mander 1 and Geoffrey W. Rodgers 2, David Whittaker 3 1 University

More information

Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard.

Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard. Probabilistic Earthquake Risk Assessment of Newcastle and Lake Macquarie Part 1 Seismic Hazard. T. Dhu, D. Robinson, C. Sinadinovski, T. Jones, A. Jones & J. Schneider Geoscience Australia, Canberra, Australia.

More information

which illustrates how exploration seismic technology can be applied in the case of a societal need. Summary

which illustrates how exploration seismic technology can be applied in the case of a societal need. Summary Post-earthquake seismic reflection survey, Christchurch, New Zealand Don C. Lawton*, Malcolm B. Bertram, Kevin W. Hall, Kevin L. Bertram, University of Calgary; Jarg Pettinga, University of Canterbury

More information

Foundations on Deep Alluvial Soils

Foundations on Deep Alluvial Soils Canterbury Earthquakes Royal Commission Hearings 25 October 2011, Christchurch GEO.CUB.0001.1-35.1 Foundations on Deep Alluvial Soils Misko Cubrinovski, Ian McCahon, Civil and Natural Resources Engineering,

More information

The National Seismic Hazard Model, NZS1170, & the M7.1, 4 Sept 2010 Darfield Earthquake. Mark Stirling, Graeme McVerry, & Matt Gerstenberger

The National Seismic Hazard Model, NZS1170, & the M7.1, 4 Sept 2010 Darfield Earthquake. Mark Stirling, Graeme McVerry, & Matt Gerstenberger The National Seismic Hazard Model, NZS1170, & the M7.1, 4 Sept 2010 Darfield Earthquake Mark Stirling, Graeme McVerry, & Matt Gerstenberger Plate Tectonic Setting Christchurch Earthquake epicentre Crustal

More information

A SUMMARY OF STRONG GROUND MOTIONS OBSERVED IN THE CANTERBURY EARTHQUAKE SEQUENCE

A SUMMARY OF STRONG GROUND MOTIONS OBSERVED IN THE CANTERBURY EARTHQUAKE SEQUENCE New Zealand Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes December -, Paper No. ++++ A SUMMARY OF STRONG GROUND MOTIONS OBSERVED IN THE CANTERBURY EARTHQUAKE SEQUENCE Brendon

More information

DISCLAIMER BIBLIOGRAPHIC REFERENCE

DISCLAIMER BIBLIOGRAPHIC REFERENCE DISCLAIMER This report has been prepared by the Institute of Geological and Nuclear Sciences Limited (GNS Science) exclusively for and under contract to the Earthquake Commission. Unless otherwise agreed

More information

Review of The Canterbury Earthquake Sequence and Implications. for Seismic Design Levels dated July 2011

Review of The Canterbury Earthquake Sequence and Implications. for Seismic Design Levels dated July 2011 SEI.ABR.0001.1 Review of The Canterbury Earthquake Sequence and Implications for Seismic Design Levels dated July 2011 Prepared by Norman Abrahamson* 152 Dracena Ave, Piedmont CA 94611 October 9, 2011

More information

Ground Motion Comparison of the 2011 Tohoku, Japan and Canterbury earthquakes: Implications for large events in New Zealand.

Ground Motion Comparison of the 2011 Tohoku, Japan and Canterbury earthquakes: Implications for large events in New Zealand. Ground Motion Comparison of the 211 Tohoku, Japan and 21-211 Canterbury earthquakes: Implications for large events in New Zealand. B. A. Bradley University of Canterbury, Christchurch, New Zealand. 212

More information

Source studies of the ongoing ( ) sequence of recent large earthquakes in Canterbury

Source studies of the ongoing ( ) sequence of recent large earthquakes in Canterbury Source studies of the ongoing (00-0) sequence of recent large earthquakes in Canterbury C. Holden & J. Beavan GNS Science New Zealand) SUMMARY: On September, 00, a surface rupturing crustal earthquake

More information

Observed Ground Motions in the 4 September 2010 Darfield and 22 February 2011 Christchurch Earthquakes.

Observed Ground Motions in the 4 September 2010 Darfield and 22 February 2011 Christchurch Earthquakes. Observed Ground Motions in the September Darfield and February Christchurch Earthquakes. B. A. Bradley University of Canterbury, Christchurch, New Zealand. NZSEE Conference ABSTRACT: This paper provides

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

Area-wide geotechnical information summary for CERA zoning review panel

Area-wide geotechnical information summary for CERA zoning review panel Area-wide geotechnical information summary for CERA zoning review panel This document contains all the area-wide geotechnical information which was considered by CERA as part of the process for making

More information

Percentage of normal rainfall for August 2017 Departure from average air temperature for August 2017

Percentage of normal rainfall for August 2017 Departure from average air temperature for August 2017 New Zealand Climate Update No 219, August 2017 Current climate August 2017 Overall, mean sea level pressure was lower than normal over and to the west of New Zealand during August while higher than normal

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information

Quantifying the effect of declustering on probabilistic seismic hazard

Quantifying the effect of declustering on probabilistic seismic hazard Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Quantifying the effect of declustering on probabilistic

More information

The Cascading Hazards from Cascadia s Earthquakes

The Cascading Hazards from Cascadia s Earthquakes Tsunamis The Cascading Hazards from Cascadia s Earthquakes Earthquakes (Nisqually earthquake, Seattle, WA) Volcanoes (Mt St Helens eruption, WA) Joan Gomberg gomberg@usgs.gov Landslides (Oso landslide,

More information

Shattering a plate boundary: the 2016 Mw 7.8 Kaikōura earthquake

Shattering a plate boundary: the 2016 Mw 7.8 Kaikōura earthquake Shattering a plate boundary: the 2016 Mw 7.8 Kaikōura earthquake Presenter: Pilar Villamor, On behalf of many, many others... 14 November 2016 Kaikōura Earthquake This talk - Background - During the Kaikōura

More information

A Summary of Strong Ground Motions Observed in the Canterbury, New Zealand earthquake Sequence

A Summary of Strong Ground Motions Observed in the Canterbury, New Zealand earthquake Sequence A Summary of Strong Ground Motions Observed in the Canterbury, New Zealand earthquake Sequence B.A. Bradley University of Canterbury, New Zealand SUMMARY: This paper provides a summary of the ground motions

More information

Reliability of lateral stretch estimates in Canterbury earthquakes

Reliability of lateral stretch estimates in Canterbury earthquakes Reliability of lateral stretch estimates in 2010-2011 Canterbury earthquakes Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Reliability of lateral stretch estimates in 2010-2011 Canterbury

More information

AND STATEMENT OF EVIDENCE OF MATTHEW CHARLES GERSTENBERGER ON BEHALF OF THE CROWN AND CHRISTCHURCH CITY COUNCIL SEISMIC HAZARD MODELLING

AND STATEMENT OF EVIDENCE OF MATTHEW CHARLES GERSTENBERGER ON BEHALF OF THE CROWN AND CHRISTCHURCH CITY COUNCIL SEISMIC HAZARD MODELLING BEFORE THE CHRISTCHURCH REPLACEMENT DISTRICT PLAN INDEPENDENT HEARINGS PANEL IN THE MATTER of the Resource Management Act 1991 and the Canterbury Earthquake (Christchurch Replacement District Plan) Order

More information

Earthquakes and seismic hazard in Sweden

Earthquakes and seismic hazard in Sweden Earthquakes and seismic hazard in Sweden Björn Lund, Roland Roberts & Reynir Bödvarsson Uppsala University Outline Nordic and Swedish seismicity Comparison to plate boundary seismicity in Japan. Extrapolation

More information

Performance and Post Earthquake Assessment of CFA Pile Ground Improvement 22 February 2011 Christchurch, New Zealand Earthquake

Performance and Post Earthquake Assessment of CFA Pile Ground Improvement 22 February 2011 Christchurch, New Zealand Earthquake Performance and Post Earthquake Assessment of CFA Pile Ground Improvement 22 February 2011 Christchurch, New Zealand Earthquake K. M. Murahidy, S. W Sutherland & M. E. Jacka Tonkin & Taylor Ltd, Christchurch,

More information

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS Third International Symposium on the Effects of Surface Geology on Seismic Motion Grenoble, France, 30 August - 1 September 2006 Paper Number: 105 BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA-

More information

A probabilistic approach for landslide hazard analysis

A probabilistic approach for landslide hazard analysis A probabilistic approach for landslide hazard analysis S. Lari, P. Frattimi, G.B. Crosta Engineering Geology 182 (2014) 3-14 報告者 : 符智傑 指導教授 : 李錫堤老師 報告日期 :2016/05/05 Introduction A general framework for

More information

Ken XS Hao (NIED) MaB Gerstenberger (GNS) J-RAPID

Ken XS Hao (NIED) MaB Gerstenberger (GNS) J-RAPID Sophis'ca'on of seismic hazard evalua'on based on inves'ga'on of ground mo'on and damage on immediate vicinity of co-seismic faults during the 2016 Kumamoto earthquake Ø The Fudagawa Fault zone assessed

More information

GIS modelling in support of earthquake-induced rockfall risk assessment in the Port Hills, Christchurch

GIS modelling in support of earthquake-induced rockfall risk assessment in the Port Hills, Christchurch GIS modelling in support of earthquake-induced rockfall risk assessment in the Port Hills, Christchurch Biljana Lukovic, David Heron, William Ries & Chris Massey Natural Hazards Division GNS Science, Lower

More information

The 2016 Valentine s Day Mw 5.7 Christchurch earthquake: Preliminary report

The 2016 Valentine s Day Mw 5.7 Christchurch earthquake: Preliminary report The 2016 Valentine s Day Mw 5.7 Christchurch earthquake: Preliminary report A. Kaiser, C. Holden, I. Hamling, S. Hreinsdottir, N. Horspool, C. Massey, P. Villamor, D. Rhoades, B. Fry, E; D Anastasio, R.

More information

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data P. McGinty Institute of Geological & Nuclear Sciences, PO Box 30-368, Lower Hutt, New Zealand 2004 NZSEE Conference

More information

DISCLAIMER. The data presented in this Report are available to GNS Science for other use from April BIBLIOGRAPHIC REFERENCE

DISCLAIMER. The data presented in this Report are available to GNS Science for other use from April BIBLIOGRAPHIC REFERENCE DISCLAIMER This report has been prepared by the Institute of Geological and Nuclear Sciences Limited (GNS Science) exclusively for and under contract to the Canterbury Earthquake Recovery Authority and

More information

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture 03 Seismology (Contd.

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture 03 Seismology (Contd. Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Lecture 03 Seismology (Contd.) In the previous lecture, we discussed about the earth

More information

Canterbury Earthquake Analysis

Canterbury Earthquake Analysis Canterbury Earthquake Analysis to midnight on Friday October 22 2010 by John Holdaway Contact: john.holdaway@pg.canterbury.ac.nz Recent Changes: This update includes multiple new graphs and details on

More information

This seminar is jointly presented by the Body Corporate Chairs Group, the Wellington Inner City Associa>on and the Wellington City Council.

This seminar is jointly presented by the Body Corporate Chairs Group, the Wellington Inner City Associa>on and the Wellington City Council. This seminar is jointly presented by the Body Corporate Chairs Group, the Wellington Inner City Associa>on and the Wellington City Council. Please note that these slides do not represent legal advice but

More information

Sensitivity of predicted liquefaction-induced lateral displacements from the 2010 Darfield and 2011 Christchurch Earthquakes

Sensitivity of predicted liquefaction-induced lateral displacements from the 2010 Darfield and 2011 Christchurch Earthquakes Sensitivity of predicted liquefaction-induced lateral displacements from the 2010 Darfield and 2011 Christchurch Earthquakes K. Robinson, M. Cubrinovski, B.A. Bradley Department of Civil and Natural Resources

More information

Improvements in research knowledge: a challenge for engineering

Improvements in research knowledge: a challenge for engineering Improvements in research knowledge: a challenge for engineering R. K. H. Falconer Group Manager Natural Hazards Group, Institute of Geological and Nuclear Sciences Ltd NZSEE 2002 Conference ABSTRACT: Research

More information

2/8/2016 Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world

2/8/2016 Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world Temblor.net Earthquake News & Blog Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world 6 February 2016 Quake Insight Revised The 5 Feb 2016 M=6.3

More information

The key natural hazards relevant to the Project area relate to seismic activity and flood risk.

The key natural hazards relevant to the Project area relate to seismic activity and flood risk. 21. NATURAL HAZARDS Overview The key natural hazards relevant to the Project area relate to seismic activity and flood risk. Seismic activity, including ground shaking and liquefaction, is a significant

More information

Southern California Earthquake Center Collaboratory for the Study of Earthquake Predictability (CSEP) Thomas H. Jordan

Southern California Earthquake Center Collaboratory for the Study of Earthquake Predictability (CSEP) Thomas H. Jordan Southern California Earthquake Center Collaboratory for the Study of Earthquake Predictability (CSEP) Thomas H. Jordan SCEC Director & Professor, University of Southern California 5th Joint Meeting of

More information

Lab 9: Satellite Geodesy (35 points)

Lab 9: Satellite Geodesy (35 points) Lab 9: Satellite Geodesy (35 points) Here you will work with GPS Time Series data to explore plate motion and deformation in California. This lab modifies an exercise found here: http://www.unavco.org:8080/cws/pbonucleus/draftresources/sanandreas/

More information

New Zealand Climate Update No 226, April 2018 Current climate March 2018

New Zealand Climate Update No 226, April 2018 Current climate March 2018 New Zealand Climate Update No 226, April 2018 Current climate March 2018 March 2018 was characterised by significantly higher pressure than normal to the east of New Zealand. This pressure pattern, in

More information

Earthquakes and Faulting

Earthquakes and Faulting Earthquakes and Faulting Crustal Strength Profile Quakes happen in the strong, brittle layers Great San Francisco Earthquake April 18, 1906, 5:12 AM Quake lasted about 60 seconds San Francisco was devastated

More information

Technical Note 16 Equivalent Static Method

Technical Note 16 Equivalent Static Method Technical Note 16 Equivalent Static Method Contents Technical Note 21 -... 1 1 Introduction... 1 2 Operational Strain in the Pipeline... 2 3 Seismicity... 2 4 Vertical Uplift... 3 5 Vertical Bearing...

More information

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA

Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Plate Boundary Observatory Working Group for the Central and Northern San Andreas Fault System PBO-WG-CNSA Introduction Our proposal focuses on the San Andreas fault system in central and northern California.

More information

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE GENERAL PERSPECTIVE The Highest Magnitude Ever Recorded The 2011 off the Pacific Coast of Tohoku Earthquake (hereafter, the 2011 Tohoku- Pacific Earthquake

More information

Appendix C: Groundwater modelling methodology

Appendix C: Groundwater modelling methodology Appendix C: Groundwater modelling methodology ENVIRONMENTAL AND ENGINEERING CONSULTANTS C1. Introduction For the purpose of this study, the objective has been to generate a water table surface for the

More information

Christchurch CBD: Lessons Learnt and Strategies for Foundation Remediation 22 February 2011 Christchurch, New Zealand, Earthquake

Christchurch CBD: Lessons Learnt and Strategies for Foundation Remediation 22 February 2011 Christchurch, New Zealand, Earthquake Christchurch CBD: Lessons Learnt and Strategies for Foundation Remediation 22 February 2011 Christchurch, New Zealand, Earthquake K.M. Murahidy & A.F. Sleight Tonkin & Taylor Ltd, Christchurch, New Zealand

More information

Probabilistic Seismic Hazard Analysis in Thailand and Adjacent Areas by Using Regional Seismic Source Zones

Probabilistic Seismic Hazard Analysis in Thailand and Adjacent Areas by Using Regional Seismic Source Zones Probabilistic Seismic Hazard Analysis in Thailand and Adjacent Areas by Using Regional Seismic Source Zones Santi Pailoplee 1*, Yuichi Sugiyama 2 and Punya Charusiri 1 1. Earthquake and Tectonic Geology

More information

Sensitivity of predicted liquefaction-induced lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes

Sensitivity of predicted liquefaction-induced lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes Robinson, K., Cubrinovski, M. & Bradley, B.A. (2013) and 2011 Christchurch earthquakes Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Sensitivity of predicted liquefaction-induced lateral

More information

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1989 (Fig. 1) MONTHLY HIGHLIGHTS JUNE-AUGUST Weather and Climate (1990) 10: 27-31

NEW ZEALAND WEATHER. BRIEF REVIEW OF THE WEATHER WINTER 1989 (Fig. 1) MONTHLY HIGHLIGHTS JUNE-AUGUST Weather and Climate (1990) 10: 27-31 Weather and Climate (1990) 10: 27-31 27 NEW ZEALAND WEATHER BRIEF REVIEW OF THE WEATHER (Fig. 1) WARMER THAN USUAL This was the third warmer than normal winter in a row, but not as warm as those of 1987

More information

Figure 1. Map of 57 recording sites across the South Island, as well as the plate boundary (bold line). Earthquakes are caused by ruptures below the

Figure 1. Map of 57 recording sites across the South Island, as well as the plate boundary (bold line). Earthquakes are caused by ruptures below the 1 An Analysis and Comparison of the Response Spectra Records from the 4 September, 21 Darfield Earthquake and the 22 February, 211 Port Hills Earthquake to Building Code NZS117.5 using SPECTRA Software

More information

Preliminary test of the EEPAS long term earthquake forecast model in Australia

Preliminary test of the EEPAS long term earthquake forecast model in Australia Preliminary test of the EEPAS long term earthquake forecast model in Australia Paul Somerville 1, Jeff Fisher 1, David Rhoades 2 and Mark Leonard 3 Abstract 1 Risk Frontiers 2 GNS Science 3 Geoscience

More information

Evidence for plate tectonics

Evidence for plate tectonics Evidence for plate tectonics See class powerpoint Printed tables 2x essay Qs markschemes Discuss/Evaluate the evidence for plate tectonics Discuss/evaluate the evidence for plate tectonics Essay: To what

More information

Liquefaction induced ground damage in the Canterbury earthquakes: predictions vs. reality

Liquefaction induced ground damage in the Canterbury earthquakes: predictions vs. reality Bowen, H. J. & Jacka, M. E. () Proc. th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Liquefaction induced ground damage in the Canterbury earthquakes: predictions vs. reality H J Bowen & M E Jacka

More information

A dry end to winter for much of the South Island

A dry end to winter for much of the South Island New Zealand Climate Summary: August 2018 Issued: 4 September 2018 A dry end to winter for much of the South Island Temperature Rainfall Soil Moisture Mean temperatures were above average (+0.51 C to +1.20

More information

Measurements in the Creeping Section of the Central San Andreas Fault

Measurements in the Creeping Section of the Central San Andreas Fault Measurements in the Creeping Section of the Central San Andreas Fault Introduction Duncan Agnew, Andy Michael We propose the PBO instrument, with GPS and borehole strainmeters, the creeping section of

More information

An application of liquefaction hazard evaluation in urban planning

An application of liquefaction hazard evaluation in urban planning An application of liquefaction hazard evaluation in urban planning Clive Anderson Principal Geotechnical Engineer, URS New Zealand Limited, 287 Durham Street, Christchurch, New Zealand Tim McMorran Senior

More information

LETTER Earth Planets Space, 56, , 2004

LETTER Earth Planets Space, 56, , 2004 LETTER Earth Planets Space, 56, 353 357, 2004 Deep seismic activities preceding the three large shallow earthquakes off south-east Hokkaido, Japan the 2003 Tokachi-oki earthquake, the 1993 Kushiro-oki

More information

5 Information used for the ILV Assessment

5 Information used for the ILV Assessment 43 5 Information used for the ILV Assessment 5.1 Purpose and Outline In this section of the report the sources of information used in the ILV Assessment Methodology are described. The sources of information

More information

REPORT. Liquefaction Vulnerability and Geotechnical Assessment Guidance for Gisborne District Council. Gisborne District Council.

REPORT. Liquefaction Vulnerability and Geotechnical Assessment Guidance for Gisborne District Council. Gisborne District Council. REPORT Liquefaction Vulnerability and Geotechnical Assessment Guidance for Gisborne District Council Prepared for: Gisborne District Council May 2015 Job No: 30214.v1 105 Carlton Gore Road, Newmarket,

More information

Seismic Characteristics and Energy Release of Aftershock Sequences of Two Giant Sumatran Earthquakes of 2004 and 2005

Seismic Characteristics and Energy Release of Aftershock Sequences of Two Giant Sumatran Earthquakes of 2004 and 2005 P-168 Seismic Characteristics and Energy Release of Aftershock Sequences of Two Giant Sumatran Earthquakes of 004 and 005 R. K. Jaiswal*, Harish Naswa and Anoop Singh Oil and Natural Gas Corporation, Vadodara

More information

Earthquakes down under: a rare but real hazard

Earthquakes down under: a rare but real hazard University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers Faculty of Science, Medicine and Health 2015 Earthquakes down under: a rare but real hazard Solomon Buckman University

More information

Limitations of Earthquake Triggering Models*

Limitations of Earthquake Triggering Models* Limitations of Earthquake Triggering Models* Peter Shearer IGPP/SIO/U.C. San Diego September 16, 2009 Earthquake Research Institute * in Southern California Why do earthquakes cluster in time and space?

More information

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR

A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR A GLOBAL MODEL FOR AFTERSHOCK BEHAVIOUR Annemarie CHRISTOPHERSEN 1 And Euan G C SMITH 2 SUMMARY This paper considers the distribution of aftershocks in space, abundance, magnitude and time. Investigations

More information

A SCIENTIFIC UNDERSTANDING OF THE CANTERBURY CRUSTAL EARTHQUAKES FROM 4 SEPTEMBER 2010 TO THEIR CLOSURE ON 21 JUNE 2011.

A SCIENTIFIC UNDERSTANDING OF THE CANTERBURY CRUSTAL EARTHQUAKES FROM 4 SEPTEMBER 2010 TO THEIR CLOSURE ON 21 JUNE 2011. SEI.QUI.0001.SUB.1 A SCIENTIFIC UNDERSTANDING OF THE CANTERBURY CRUSTAL EARTHQUAKES FROM 4 SEPTEMBER 2010 TO THEIR CLOSURE ON 21 JUNE 2011. Submitted by James Quinwallace 13 September 2011 SEI.QUI.0001.SUB.2

More information

Plate Tectonics. Chapter 8

Plate Tectonics. Chapter 8 Plate Tectonics Chapter 8 Vocabulary Crust Mantle Core Lithosphere Continental Drift Plate Tectonics Plate Boundary Fault What Are The Earth s Layers Made Of? Atmosphere: Contains nitrogen, oxygen, carbon

More information

Consideration of Ground Variability Over an Area of Geological Similarity as Part of Liquefaction Assessment for Foundation Design

Consideration of Ground Variability Over an Area of Geological Similarity as Part of Liquefaction Assessment for Foundation Design 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Consideration of Ground Variability Over an Area of Geological Similarity as Part of Liquefaction

More information

New Zealand Climate Update No 222, November 2017 Current climate November 2017

New Zealand Climate Update No 222, November 2017 Current climate November 2017 New Zealand Climate Update No 222, November 2017 Current climate November 2017 November 2017 was characterised by higher than normal sea level pressure over New Zealand and the surrounding seas, particularly

More information

BENEFITS OF SITE-SPECIFIC HAZARD ANALYSES FOR SEISMIC DESIGN IN NEW ZEALAND. Brendon A. Bradley 1

BENEFITS OF SITE-SPECIFIC HAZARD ANALYSES FOR SEISMIC DESIGN IN NEW ZEALAND. Brendon A. Bradley 1 92 Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 48, No. 2, June 2015 BENEFITS OF SITE-SPECIFIC HAZARD ANALYSES FOR SEISMIC DESIGN IN NEW ZEALAND Brendon A. Bradley 1 (Submitted

More information

MANAGING VOLCANIC IMPACTS IN CANTERBURY. Tom Wilson University of Canterbury & Natural Hazard Research Platform

MANAGING VOLCANIC IMPACTS IN CANTERBURY. Tom Wilson University of Canterbury & Natural Hazard Research Platform MANAGING VOLCANIC IMPACTS IN CANTERBURY Tom Wilson University of Canterbury & Natural Hazard Research Platform Talk Outline Risk of a Volcanic eruption affecting Canterbury Putting it in context (likelihood/consequence)

More information

The transition period T L in the recommended spectra of the draft New Zealand Seismic Isolation Guidelines

The transition period T L in the recommended spectra of the draft New Zealand Seismic Isolation Guidelines The transition period T L in the recommended spectra of the draft New Zealand Seismic Isolation Guidelines G.H. McVerry, C. Van Houtte. A. Kaiser, C. Holden, B. Fry & M. Gerstenberger Institute of Geological

More information

The Tectonic Setting of New Zealand

The Tectonic Setting of New Zealand The Tectonic Setting of New Zealand we are here Subduction-driven tectonics The New Zealand continent Papua New Guinea Australia 3,000,000 sq km micro-continent back-arc basin trench volcanism faults accretionary

More information

Author: Seth Stein, William Deering Professor of Earth & Planetary Sciences, Northwestern University. Background for Calais & Stein paper

Author: Seth Stein, William Deering Professor of Earth & Planetary Sciences, Northwestern University. Background for Calais & Stein paper Background for Calais & Stein paper The GPS data reported here are important for understanding earthquakes in the central U.S. Large (magnitude 7) earthquakes on the New Madrid Fault system shook the Midwest

More information

Two Contrasting InSAR Studies of Recent Earthquakes in Tibet

Two Contrasting InSAR Studies of Recent Earthquakes in Tibet Two Contrasting InSAR Studies of Recent Earthquakes in Tibet Barry Parsons Department of Earth Sciences University of Oxford John Elliott, Wanpeng Feng,, James Jackson, Zhenhong Li, Xinjian Shan, Alastair

More information

Earthquake. What is it? Can we predict it?

Earthquake. What is it? Can we predict it? Earthquake What is it? Can we predict it? What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. Rocks under stress accumulate

More information

Characteristics and introduction of Earthquake in Asia-Pacific region

Characteristics and introduction of Earthquake in Asia-Pacific region Characteristics and introduction of Earthquake in Asia-Pacific region 1906 San Francisco 2011 Tohoku 1999 Chi-Chi 1985 Mexico City 2004 Sumatra Chung-Han Chan 詹忠翰 2011 Christchurch To understand the characteristics

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

F. Buech, T.R. Davies, J.R. Pettinga & M. Finnemore. Department of Geological Sciences, University of Canterbury, Christchurch

F. Buech, T.R. Davies, J.R. Pettinga & M. Finnemore. Department of Geological Sciences, University of Canterbury, Christchurch The Little Hill field experiment: Seismic response of an edifice F. Buech, T.R. Davies, J.R. Pettinga & M. Finnemore Department of Geological Sciences, University of Canterbury, Christchurch J.B. Berrill

More information

SEISMIC DESIGN SPECTRA FOR DIFFERENT SOIL CLASSES

SEISMIC DESIGN SPECTRA FOR DIFFERENT SOIL CLASSES 79 SEISMIC DESIGN SPECTRA FOR DIFFERENT SOIL CLASSES Rajesh P. Dhakal, Sheng-Lin Lin, Alexander K. Loye, and Scott J. Evans SUMMARY This paper investigates the validity of the soil class dependent spectral

More information