Comparing the Effects of Intermittent and Transient Hardware Faults on Programs

Size: px
Start display at page:

Download "Comparing the Effects of Intermittent and Transient Hardware Faults on Programs"

Transcription

1 Comparing the Effects of Intermittent and Transient Hardware Faults on Programs Jiesheng Wei, Layali Rashid, Karthik Pattabiraman and Sathish Gopalakrishnan Department of Electrical and Computer Engineering, the University of British Columbia

2 Motivation Consequences Gate Oxide Breakdown Electro-migration Crosstalk PolySi Gate Leak SiO2 Substrate Increase of intermittent faults [Constantinescu 03] Intermittent faults recur quickly [Nightingale 11] 2

3 Intermittent VS. Transient Faults Transient: burst length Time Intermittent: Time inactive time active time Permanent: Time 3

4 Propagation of Intermittent Faults Intermittent Fault main: $SP[29] $R1 ADDIU $SP[29],$SP[29],-24 SW $R30,16($SP[29]) Failure No effect 4

5 Research Questions Do intermittent faults differ significantly with transients in their impact on software programs? If yes, how do the differences vary with the length (i.e., duration in cycles) of the fault? How do the differences vary with the micro-architectural unit in which the fault originates? 5

6 High-level Methodology Perform fault injection at µ-architectural level Study effect of the faults at software level Software level Architectural level µ-architectural level Failure Observation Observed failure: crash, hang, silent data corruption (SDC) Fault Injection Gate and circuit level 6

7 Outline Motivation and Overview Fault Model Experiment Setup Results Conclusion and Future Work 7

8 Outline Motivation and Overview Fault Model Experiment Setup Results Conclusion and Future Work 8

9 Fault Type Intermittent: stuck-at-0/1 for specified durations of time Transient: Burst length Time Intermittent: Time inactive time active time Burst length (fault length) Our model for intermittent: Time 9

10 Fault Injection Location Inject faults in a RISC processor from [Patterson 08] Inject only 1 bit of the selected signal 10

11 Outline Motivation and Overview Fault Model Experiment Setup Results Conclusion and Future Work 11

12 Experimental Infrastructure Fault injection framework: sim-outorder in SimpleScalar 12

13 Failure Detection Fault Fault injection Error Check Activation Crash Time No effect Failure Hang SDC 13

14 Benchmark Information 7 benchmark programs from Siemens suite [Hutchins 94] characteristics of the programs Lines of codes: < 1000 lines Dynamic instruction #: 9,000 ~ 240,000 14

15 Experimental Procedure Select a location Each location except Mult_o Select a type Bit-flip Stuck-at-0/1 Select a length 1 cycle 2, 5, 10, 25, 50, 100, 300, 800 cycles Run 1000 runs 15

16 Outline Motivation and Overview Fault Model Experiment Setup Results Conclusion and Future Work 16

17 Research Questions Review Do intermittent faults differ significantly with transients in their impact on software programs? If yes, how do the differences vary with the length (i.e., duration in cycles) of the fault? How do the differences vary with the micro-architectural unit in which the fault originates? 17

18 Impact of Faults on Programs Crash percentage: Stuck-at-1 > Transient > Stuck-at-0 Average crash percentage for different programs, 50 cycles for intermittent 18

19 Impact of Faults on Programs (cont.) SDC percentage: Similar to each other Average SDC percentage for different programs, 50 cycles for intermittent 19

20 Effects of Fault Length Intermittent: Crash percentage increases with the increase of fault length Average crash percentage for different lengths (print_tokens2) 20

21 Effects of Intermittent Fault Origin Crash percentage: Crash percentage different across different units The difference between two fault types are different across different units Crash percentage for different units(print_tokens2, 50 cycles) 21

22 Outline Motivation and Overview Fault Model Experiment Setup Results Conclusion and Future Work 22

23 Conclusion and Future Work Conclusion Do intermittent faults differ significantly with transients? Large difference in crash percentage Similar for hang and SDC percentages How do the differences vary with the fault length? Crash percentage increases with the increase of fault length How do the differences vary with the injected µ-architectural unit? The difference is dependent on fault origin location Future Work Consider other models for the two faults Develop intermittent-fault-tolerant software systems Study more complex processors 23

Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults

Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults Appears in Proceedings of the 15 th International Symposium on High-Performance Computer Architecture, February, 2009. Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults Man-Lap

More information

ECE 3060 VLSI and Advanced Digital Design. Testing

ECE 3060 VLSI and Advanced Digital Design. Testing ECE 3060 VLSI and Advanced Digital Design Testing Outline Definitions Faults and Errors Fault models and definitions Fault Detection Undetectable Faults can be used in synthesis Fault Simulation Observability

More information

Relyzer: Application Resiliency Analyzer for Transient Faults

Relyzer: Application Resiliency Analyzer for Transient Faults 1 Relyzer: Application Resiliency Analyzer for Transient Faults Siva Kumar Sastry Hari 1,2, Helia Naeimi 2, Pradeep Ramachandran 1, and Sarita V. Adve 1 1 Department of Computer Science, University of

More information

ELECTROMAGNETIC FAULT INJECTION: TOWARDS A FAULT MODEL ON A 32-BIT MICROCONTROLLER

ELECTROMAGNETIC FAULT INJECTION: TOWARDS A FAULT MODEL ON A 32-BIT MICROCONTROLLER ELECTROMAGNETIC FAULT INJECTION: TOWARDS A FAULT MODEL ON A 32-BIT MICROCONTROLLER Nicolas Moro 1,3, Amine Dehbaoui 2, Karine Heydemann 3, Bruno Robisson 1, Emmanuelle Encrenaz 3 1 CEA Commissariat à l

More information

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap EECS150 - Digital Design Lecture 26 Faults and Error Correction Nov. 26, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof.

More information

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1 Memory Elements I CS31 Pascal Van Hentenryck CS031 Lecture 6 Page 1 Memory Elements (I) Combinational devices are good for computing Boolean functions pocket calculator Computers also need to remember

More information

Fault Modeling. 李昆忠 Kuen-Jong Lee. Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan. VLSI Testing Class

Fault Modeling. 李昆忠 Kuen-Jong Lee. Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan. VLSI Testing Class Fault Modeling 李昆忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan Class Fault Modeling Some Definitions Why Modeling Faults Various Fault Models Fault Detection

More information

Lecture 5 Fault Modeling

Lecture 5 Fault Modeling Lecture 5 Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes

More information

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs EECS150 - Digital Design Lecture 26 - Faults and Error Correction April 25, 2013 John Wawrzynek 1 Types of Faults in Digital Designs Design Bugs (function, timing, power draw) detected and corrected at

More information

Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults

Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults Mark Wilkening, Vilas Sridharan, Si Li, Fritz Previlon, Sudhanva Gurumurthi and David R. Kaeli ECE Department, Northeastern

More information

Scalability of Partial Differential Equations Preconditioner Resilient to Soft and Hard Faults

Scalability of Partial Differential Equations Preconditioner Resilient to Soft and Hard Faults Scalability of Partial Differential Equations Preconditioner Resilient to Soft and Hard Faults K.Morris, F.Rizzi, K.Sargsyan, K.Dahlgren, P.Mycek, C.Safta, O.LeMaitre, O.Knio, B.Debusschere Sandia National

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

Terminology and Concepts

Terminology and Concepts Terminology and Concepts Prof. Naga Kandasamy 1 Goals of Fault Tolerance Dependability is an umbrella term encompassing the concepts of reliability, availability, performability, safety, and testability.

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Fault Tolerant Computing ECE 655 Part 1 Introduction C. M. Krishna Fall 2006 ECE655/Krishna Part.1.1 Prerequisites Basic courses in

More information

VLSI Design I. Defect Mechanisms and Fault Models

VLSI Design I. Defect Mechanisms and Fault Models VLSI Design I Defect Mechanisms and Fault Models He s dead Jim... Overview Defects Fault models Goal: You know the difference between design and fabrication defects. You know sources of defects and you

More information

ECE-470 Digital Design II Memory Test. Memory Cells Per Chip. Failure Mechanisms. Motivation. Test Time in Seconds (Memory Size: n Bits) Fault Types

ECE-470 Digital Design II Memory Test. Memory Cells Per Chip. Failure Mechanisms. Motivation. Test Time in Seconds (Memory Size: n Bits) Fault Types ECE-470 Digital Design II Memory Test Motivation Semiconductor memories are about 35% of the entire semiconductor market Memories are the most numerous IPs used in SOC designs Number of bits per chip continues

More information

Transient Thermal Analysis of MCM towards Understanding Failure Mechanism of Intermittent Faults

Transient Thermal Analysis of MCM towards Understanding Failure Mechanism of Intermittent Faults A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 33, 2013 Guest Editors: Enrico Zio, Piero Baraldi Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-24-2; ISSN 1974-9791 The Italian Association

More information

DVClub Europe Formal fault analysis for ISO fault metrics on real world designs. Jörg Große Product Manager Functional Safety November 2016

DVClub Europe Formal fault analysis for ISO fault metrics on real world designs. Jörg Große Product Manager Functional Safety November 2016 DVClub Europe Formal fault analysis for ISO 26262 fault metrics on real world designs Jörg Große Product Manager Functional Safety November 2016 Page 1 11/27/2016 Introduction Functional Safety The objective

More information

Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG

Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG Cung Nguyen and Robert G. Redinbo Department of Electrical and Computer Engineering University of California, Davis, CA email: cunguyen,

More information

Stochastic Monitoring and Testing of Digital LTI Filters

Stochastic Monitoring and Testing of Digital LTI Filters Stochastic Monitoring and Testing of Digital LTI Filters CHRISTOFOROS N. HADJICOSTIS Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign 148 C&SRL, 1308 West Main

More information

256.bzip2, ref.graphic. Datasets profile vs. Reference Dataset. 256.bzip2, ref.graphic

256.bzip2, ref.graphic. Datasets profile vs. Reference Dataset. 256.bzip2, ref.graphic Datasets profile vs. Reference Dataset The following are the profiles for the benchmark. For more details about our profile development and dataset reduction methodology, refer to the paper by AJ KleinOsowski

More information

Quantum Memory Hierarchies

Quantum Memory Hierarchies Quantum Memory Hierarchies Efficient Designs that Match Available Parallelism in Quantum Processors Darshan D. Thaker Tzvetan S. Metodi UC Davis Andrew W. Cross Issac L. Chuang MIT Frederic T. Chong UC

More information

Performance Metrics for Computer Systems. CASS 2018 Lavanya Ramapantulu

Performance Metrics for Computer Systems. CASS 2018 Lavanya Ramapantulu Performance Metrics for Computer Systems CASS 2018 Lavanya Ramapantulu Eight Great Ideas in Computer Architecture Design for Moore s Law Use abstraction to simplify design Make the common case fast Performance

More information

Radiation Effects on Electronics. Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University

Radiation Effects on Electronics. Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University Research Statement Support the Computing Needs of Space Exploration & Science Computation Power Efficiency

More information

Outline. EECS Components and Design Techniques for Digital Systems. Lec 18 Error Coding. In the real world. Our beautiful digital world.

Outline. EECS Components and Design Techniques for Digital Systems. Lec 18 Error Coding. In the real world. Our beautiful digital world. Outline EECS 150 - Components and esign Techniques for igital Systems Lec 18 Error Coding Errors and error models Parity and Hamming Codes (SECE) Errors in Communications LFSRs Cyclic Redundancy Check

More information

Skew Management of NBTI Impacted Gated Clock Trees

Skew Management of NBTI Impacted Gated Clock Trees International Symposium on Physical Design 2010 Skew Management of NBTI Impacted Gated Clock Trees Ashutosh Chakraborty and David Z. Pan ECE Department, University of Texas at Austin ashutosh@cerc.utexas.edu

More information

A Control Flow Integrity Based Trust Model. Ge Zhu Akhilesh Tyagi Iowa State University

A Control Flow Integrity Based Trust Model. Ge Zhu Akhilesh Tyagi Iowa State University A Control Flow Integrity Based Trust Model Ge Zhu Akhilesh Tyagi Iowa State University Trust Model Many definitions of trust. Typically transaction level trust propagation/policy. Self-assessment of trust.

More information

VHDLSFI: A Simulation-based Multi-Bit Fault Injection for Dependability Analysis

VHDLSFI: A Simulation-based Multi-Bit Fault Injection for Dependability Analysis VHDLSFI: A Simulation-based Multi-Bit Fault Injection for Dependability Analysis Faezeh Pournaghdali Department of Computer Engineering Razi University Kermanshah, Iran pournaghdali@razi.ac.ir Amir Rajabzadeh

More information

Logic BIST. Sungho Kang Yonsei University

Logic BIST. Sungho Kang Yonsei University Logic BIST Sungho Kang Yonsei University Outline Introduction Basics Issues Weighted Random Pattern Generation BIST Architectures Deterministic BIST Conclusion 2 Built In Self Test Test/ Normal Input Pattern

More information

256.bzip2, ref.source. Datasets profile vs. Reference Dataset. 256.bzip2, ref.source

256.bzip2, ref.source. Datasets profile vs. Reference Dataset. 256.bzip2, ref.source Datasets profile vs. Reference Dataset The following are the profiles for the benchmark. For more details about our profile development and dataset reduction methodology, refer to the paper by AJ KleinOsowski

More information

CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY

CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY MEMSYS-2017 SWAMIT TANNU DOUG CARMEAN MOINUDDIN QURESHI Why Quantum Computers? 2 Molecule and Material Simulations

More information

DM74LS670 3-STATE 4-by-4 Register File

DM74LS670 3-STATE 4-by-4 Register File DM74LS670 3-STATE 4-by-4 Register File General Description August 1986 Revised March 2000 These register files are organized as 4 words of 4 bits each, and separate on-chip decoding is provided for addressing

More information

Intro To Digital Logic

Intro To Digital Logic Intro To Digital Logic 1 Announcements... Project 2.2 out But delayed till after the midterm Midterm in a week Covers up to last lecture + next week's homework & lab Nick goes "H-Bomb of Justice" About

More information

Hardware testing and design for testability. EE 3610 Digital Systems

Hardware testing and design for testability. EE 3610 Digital Systems EE 3610: Digital Systems 1 Hardware testing and design for testability Introduction A Digital System requires testing before and after it is manufactured 2 Level 1: behavioral modeling and test benches

More information

Flash Memory Cell Compact Modeling Using PSP Model

Flash Memory Cell Compact Modeling Using PSP Model Flash Memory Cell Compact Modeling Using PSP Model Anthony Maure IM2NP Institute UMR CNRS 6137 (Marseille-France) STMicroelectronics (Rousset-France) Outline Motivation Background PSP-Based Flash cell

More information

Topic 8: Sequential Circuits

Topic 8: Sequential Circuits Topic 8: Sequential Circuits Readings : Patterson & Hennesy, Appendix B.4 - B.6 Goals Basic Principles behind Memory Elements Clocks Applications of sequential circuits Introduction to the concept of the

More information

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples Overview rithmetic circuits Last lecture PLDs ROMs Tristates Design examples Today dders Ripple-carry Carry-lookahead Carry-select The conclusion of combinational logic!!! General-purpose building blocks

More information

Lecture 16: Circuit Pitfalls

Lecture 16: Circuit Pitfalls Introduction to CMOS VLSI Design Lecture 16: Circuit Pitfalls David Harris Harvey Mudd College Spring 2004 Outline Pitfalls Detective puzzle Given circuit and symptom, diagnose cause and recommend solution

More information

Processor Design & ALU Design

Processor Design & ALU Design 3/8/2 Processor Design A. Sahu CSE, IIT Guwahati Please be updated with http://jatinga.iitg.ernet.in/~asahu/c22/ Outline Components of CPU Register, Multiplexor, Decoder, / Adder, substractor, Varity of

More information

Lecture 10: Sequential Networks: Timing and Retiming

Lecture 10: Sequential Networks: Timing and Retiming Lecture 10: Sequential Networks: Timing and Retiming CSE 140: Components and Design Techniques for Digital Systems Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego

More information

Outline Fault Simulation

Outline Fault Simulation K.T. Tim Cheng, 4_fault_sim, v. Outline Fault Simulation Applications of fault simulation Fault coverage vs product quality Fault simulation scenarios Fault simulation algorithms Fault sampling K.T. Tim

More information

Distinguishing Manufacturing Defects From Variability Induced Faults in Analog Circuits

Distinguishing Manufacturing Defects From Variability Induced Faults in Analog Circuits Distinguishing Manufacturing Defects From Variability Induced Faults in Analog Circuits Suraj Sindia Vishwani D. Agrawal Dept. of ECE, Auburn University, AL, USA Virendra Singh Indian Institute of Science,

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

Design of Reliable Processors Based on Unreliable Devices Séminaire COMELEC

Design of Reliable Processors Based on Unreliable Devices Séminaire COMELEC Design of Reliable Processors Based on Unreliable Devices Séminaire COMELEC Lirida Alves de Barros Naviner Paris, 1 July 213 Outline Basics on reliability Technology Aspects Design for Reliability Conclusions

More information

System-Level Modeling and Microprocessor Reliability Analysis for Backend Wearout Mechanisms

System-Level Modeling and Microprocessor Reliability Analysis for Backend Wearout Mechanisms System-Level Modeling and Microprocessor Reliability Analysis for Backend Wearout Mechanisms Chang-Chih Chen and Linda Milor School of Electrical and Comptuer Engineering, Georgia Institute of Technology,

More information

Quantum Algorithms for Leader Election Problem in Distributed Systems

Quantum Algorithms for Leader Election Problem in Distributed Systems Quantum Algorithms for Leader Election Problem in Distributed Systems Pradeep Sarvepalli pradeep@cs.tamu.edu Department of Computer Science, Texas A&M University Quantum Algorithms for Leader Election

More information

ELEVATOR CONTROL CIRCUIT. Project No: PRJ045 Presented by; Masila Jane Mwelu. Supervisor: Prof. Mwangi Examiner: Dr. Mang oli

ELEVATOR CONTROL CIRCUIT. Project No: PRJ045 Presented by; Masila Jane Mwelu. Supervisor: Prof. Mwangi Examiner: Dr. Mang oli ELEVATOR CONTROL CIRCUIT Project No: PRJ045 Presented by; Masila Jane Mwelu Supervisor: Prof. Mwangi Examiner: Dr. Mang oli Presentation Outline Project objectives Design approach Implementation Results

More information

EECS 579: Logic and Fault Simulation. Simulation

EECS 579: Logic and Fault Simulation. Simulation EECS 579: Logic and Fault Simulation Simulation: Use of computer software models to verify correctness Fault Simulation: Use of simulation for fault analysis and ATPG Circuit description Input data for

More information

Overview ECE 553: TESTING AND TESTABLE DESIGN OF. Memory Density. Test Time in Seconds (Memory Size n Bits) 10/28/2014

Overview ECE 553: TESTING AND TESTABLE DESIGN OF. Memory Density. Test Time in Seconds (Memory Size n Bits) 10/28/2014 ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTES Memory testing Overview Motivation and introduction Functional model of a memory A simple minded test and its limitations Fault models March tests

More information

Vulnerabilities in Analog and Digital Electronics. Microelectronics and Computer Group University of Maryland & Boise State University

Vulnerabilities in Analog and Digital Electronics. Microelectronics and Computer Group University of Maryland & Boise State University Vulnerabilities in Analog and Digital Electronics Microelectronics and Computer Group University of Maryland & Boise State University Vulnerabilities in Analog and Digital Electronics Overview The Fundamental

More information

Fault Tolerance. Dealing with Faults

Fault Tolerance. Dealing with Faults Fault Tolerance Real-time computing systems must be fault-tolerant: they must be able to continue operating despite the failure of a limited subset of their hardware or software. They must also allow graceful

More information

Chapter 2 Fault Modeling

Chapter 2 Fault Modeling Chapter 2 Fault Modeling Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jungli, Taiwan Outline Why Model Faults? Fault Models (Faults)

More information

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview 407 Computer Aided Design for Electronic Systems Simulation Instructor: Maria K. Michael Overview What is simulation? Design verification Modeling Levels Modeling circuits for simulation True-value simulation

More information

Formal Fault Analysis of Branch Predictors: Attacking countermeasures of Asymmetric key ciphers

Formal Fault Analysis of Branch Predictors: Attacking countermeasures of Asymmetric key ciphers Formal Fault Analysis of Branch Predictors: Attacking countermeasures of Asymmetric key ciphers Sarani Bhattacharya and Debdeep Mukhopadhyay Indian Institute of Technology Kharagpur PROOFS 2016 August

More information

CS 700: Quantitative Methods & Experimental Design in Computer Science

CS 700: Quantitative Methods & Experimental Design in Computer Science CS 700: Quantitative Methods & Experimental Design in Computer Science Sanjeev Setia Dept of Computer Science George Mason University Logistics Grade: 35% project, 25% Homework assignments 20% midterm,

More information

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors.

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors. Testability Lecture 6: Logic Simulation Shaahin Hessabi Department of Computer Engineering Sharif University of Technology Adapted from the presentation prepared by book authors Slide 1 of 27 Outline What

More information

A Combined Analytical and Simulation-Based Model for Performance Evaluation of a Reconfigurable Instruction Set Processor

A Combined Analytical and Simulation-Based Model for Performance Evaluation of a Reconfigurable Instruction Set Processor A Combined Analytical and Simulation-Based Model for Performance Evaluation of a Reconfigurable Instruction Set Processor Farhad Mehdipour, H. Noori, B. Javadi, H. Honda, K. Inoue, K. Murakami Faculty

More information

Performance, Power & Energy

Performance, Power & Energy Recall: Goal of this class Performance, Power & Energy ELE8106/ELE6102 Performance Reconfiguration Power/ Energy Spring 2010 Hayden Kwok-Hay So H. So, Sp10 Lecture 3 - ELE8106/6102 2 What is good performance?

More information

Revisiting Memory Errors in Large-Scale Production Data Centers

Revisiting Memory Errors in Large-Scale Production Data Centers Revisiting Memory Errors in Large-Scale Production Da Centers Analysis and Modeling of New Trends from the Field Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu Overview Study of DRAM reliability: on modern

More information

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd.

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd. What is a quantum computer? Quantum Architecture by Murat Birben A quantum computer is a device designed to take advantage of distincly quantum phenomena in carrying out a computational task. A quantum

More information

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 Multi-processor vs. Multi-computer architecture µp vs. DSP RISC vs. DSP RISC Reduced-instruction-set Register-to-register operation Higher throughput by using

More information

Tradeoff between Reliability and Power Management

Tradeoff between Reliability and Power Management Tradeoff between Reliability and Power Management 9/1/2005 FORGE Lee, Kyoungwoo Contents 1. Overview of relationship between reliability and power management 2. Dakai Zhu, Rami Melhem and Daniel Moss e,

More information

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Heumpil Cho and Earl E. Swartzlander, Jr. Application Specific Processor Group Department of Electrical and Computer Engineering The University

More information

SIMULATION-BASED APPROXIMATE GLOBAL FAULT COLLAPSING

SIMULATION-BASED APPROXIMATE GLOBAL FAULT COLLAPSING SIMULATION-BASED APPROXIMATE GLOBAL FAULT COLLAPSING Hussain Al-Asaad and Raymond Lee Computer Engineering Research Laboratory Department of Electrical & Computer Engineering University of California One

More information

A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems

A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems A Quantum Computing Approach to the Verification and Validation of Complex Cyber-Physical Systems Achieving Quality and Cost Control in the Development of Enormous Systems Safe and Secure Systems and Software

More information

COMPUTER SCIENCE TRIPOS

COMPUTER SCIENCE TRIPOS CST0.2017.2.1 COMPUTER SCIENCE TRIPOS Part IA Thursday 8 June 2017 1.30 to 4.30 COMPUTER SCIENCE Paper 2 Answer one question from each of Sections A, B and C, and two questions from Section D. Submit the

More information

Reliable Computing I

Reliable Computing I Instructor: Mehdi Tahoori Reliable Computing I Lecture 5: Reliability Evaluation INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC) National Research Center of the Helmholtz

More information

Analysis of Soft Error Rates for future technologies

Analysis of Soft Error Rates for future technologies Analysis of Soft Error Rates for future technologies Marc Riera Villanueva Universitat Politècnica de Catalunya (UPC) Facultat d Informàtica de Barcelona (FIB) Advisor: Ramon Canal Co-Advisor/s: Jaume

More information

L9: Galois Fields. Reading material

L9: Galois Fields. Reading material L9: Galois Fields Reading material Muzio & Wesselkamper Multiple-valued switching theory, p. 3-5, - 4 Sasao, Switching theory for logic synthesis, pp. 43-44 p. 2 - Advanced Logic Design L9 - Elena Dubrova

More information

A Low-Cost Methodology for Soft Error Free Logic Circuits

A Low-Cost Methodology for Soft Error Free Logic Circuits A Low-Cost Methodology for Soft Error Free Logic Circuits Sridevi Tumuluri 1, P.Sudhakar Rao 2 1 PG Student, Electronics & Communication Engineering, NOVA College of Engg & Tech., Vijayawada, A.P, India

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Following the slides of Dr. Ahmed H. Madian Lecture 10 محرم 1439 ه Winter

More information

Counters. We ll look at different kinds of counters and discuss how to build them

Counters. We ll look at different kinds of counters and discuss how to build them Counters We ll look at different kinds of counters and discuss how to build them These are not only examples of sequential analysis and design, but also real devices used in larger circuits 1 Introducing

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

Impact of Extending Side Channel Attack on Cipher Variants: A Case Study with the HC Series of Stream Ciphers

Impact of Extending Side Channel Attack on Cipher Variants: A Case Study with the HC Series of Stream Ciphers Impact of Extending Side Channel Attack on Cipher Variants: A Case Study with the HC Series of Stream Ciphers Goutam Paul and Shashwat Raizada Jadavpur University, Kolkata and Indian Statistical Institute,

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines 1 Clocks A microprocessor is composed of many different circuits that are operating simultaneously if each

More information

Methodology to combine Formal and Fault simulator to measure safety metrics

Methodology to combine Formal and Fault simulator to measure safety metrics Methodology to combine Formal and Fault simulator to measure safety metrics Jain Gaurav, Infineon Technologies AP Pte LTD, Singapore Kadambi Ranga, Infineon Technologies AP Pte LTD, Singapore Bandlamudi

More information

Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations

Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations Statistical Analysis of BTI in the Presence of Processinduced Voltage and Temperature Variations Farshad Firouzi, Saman Kiamehr, Mehdi. B. Tahoori INSTITUTE OF COMPUTER ENGINEERING (ITEC) CHAIR FOR DEPENDABLE

More information

Reduction of Detected Acceptable Faults for Yield Improvement via Error-Tolerance

Reduction of Detected Acceptable Faults for Yield Improvement via Error-Tolerance Reduction of Detected Acceptable Faults for Yield Improvement via Error-Tolerance Tong-Yu Hsieh and Kuen-Jong Lee Department of Electrical Engineering National Cheng Kung University Tainan, Taiwan 70101

More information

Fault Modeling. Fault Modeling Outline

Fault Modeling. Fault Modeling Outline Fault Modeling Outline Single Stuck-t Fault Model Other Fault Models Redundancy and Untestable Faults Fault Equivalence and Fault Dominance Method of oolean Difference Copyright 1998 Elizabeth M. Rudnick

More information

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 2 Dominique Thiébaut

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 2 Dominique Thiébaut mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 2 Dominique Thiébaut dthiebaut@smith.edu Lab 1: Lessons Learned a0 b0 adder c0 S0 a1 b1 a0 b0 adder adder S1 S0 a31

More information

Performance, Power & Energy. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So

Performance, Power & Energy. ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So Performance, Power & Energy ELEC8106/ELEC6102 Spring 2010 Hayden Kwok-Hay So Recall: Goal of this class Performance Reconfiguration Power/ Energy H. So, Sp10 Lecture 3 - ELEC8106/6102 2 PERFORMANCE EVALUATION

More information

Enhancing Multicore Reliability Through Wear Compensation in Online Assignment and Scheduling. Tam Chantem Electrical & Computer Engineering

Enhancing Multicore Reliability Through Wear Compensation in Online Assignment and Scheduling. Tam Chantem Electrical & Computer Engineering Enhancing Multicore Reliability Through Wear Compensation in Online Assignment and Scheduling Tam Chantem Electrical & Computer Engineering High performance Energy efficient Multicore Systems High complexity

More information

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits. CS211 Computer Architecture Digital Logic l Topics l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Figures & Tables borrowed from:! http://www.allaboutcircuits.com/vol_4/index.html!

More information

EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs)

EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) EECS150 - igital esign Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Nov 21, 2002 John Wawrzynek Fall 2002 EECS150 Lec26-ECC Page 1 Outline Error detection using parity Hamming

More information

EECS 579: SOC Testing

EECS 579: SOC Testing EECS 579: SOC Testing Core-Based Systems-On-A-Chip (SOCs) Cores or IP circuits are predesigned and verified functional units of three main types Soft core: synthesizable RTL Firm core: gate-level netlist

More information

Large-Scale Quantum Architectures

Large-Scale Quantum Architectures Large-Scale Quantum Architectures Fred Chong Director of Computer Engineering Professor of Computer Science University of California at Santa Barbara With Daniel Kudrow, Tzvetan Metodi, Darshan Thaker,

More information

Fault Detection probability evaluation approach in combinational circuits using test set generation method

Fault Detection probability evaluation approach in combinational circuits using test set generation method Fault Detection probability evaluation approach in combinational circuits using test set generation method Namita Arya 1, Amit Prakash Singh 2 University of Information and Communication Technology, Guru

More information

Energy-efficient scheduling

Energy-efficient scheduling Energy-efficient scheduling Guillaume Aupy 1, Anne Benoit 1,2, Paul Renaud-Goud 1 and Yves Robert 1,2,3 1. Ecole Normale Supérieure de Lyon, France 2. Institut Universitaire de France 3. University of

More information

Integrating Reliability into the Design of Power Electronics Systems

Integrating Reliability into the Design of Power Electronics Systems Integrating Reliability into the Design of Power Electronics Systems Alejandro D. Domínguez-García Grainger Center for Electric Machinery and Electromechanics Department of Electrical and Computer Engineering

More information

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Final Examination

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Final Examination Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 553: Testing and Testable Design of Digital Systems Fall 2013-2014 Final Examination CLOSED BOOK Kewal K. Saluja Date:

More information

Topic 8: Sequential Circuits. Bistable Devices. S-R Latches. Consider the following element. Readings : Patterson & Hennesy, Appendix B.4 - B.

Topic 8: Sequential Circuits. Bistable Devices. S-R Latches. Consider the following element. Readings : Patterson & Hennesy, Appendix B.4 - B. Topic 8: Sequential Circuits Bistable Devices Readings : Consider the following element Patterson & Hennesy, Appendix B.4 - B.6 Goals Basic Principles behind Memory Elements Clocks Applications of sequential

More information

CSE370: Introduction to Digital Design

CSE370: Introduction to Digital Design CSE370: Introduction to Digital Design Course staff Gaetano Borriello, Brian DeRenzi, Firat Kiyak Course web www.cs.washington.edu/370/ Make sure to subscribe to class mailing list (cse370@cs) Course text

More information

ECE 645: Lecture 3. Conditional-Sum Adders and Parallel Prefix Network Adders. FPGA Optimized Adders

ECE 645: Lecture 3. Conditional-Sum Adders and Parallel Prefix Network Adders. FPGA Optimized Adders ECE 645: Lecture 3 Conditional-Sum Adders and Parallel Prefix Network Adders FPGA Optimized Adders Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 7.4, Conditional-Sum

More information

Single Stuck-At Fault Model Other Fault Models Redundancy and Untestable Faults Fault Equivalence and Fault Dominance Method of Boolean Difference

Single Stuck-At Fault Model Other Fault Models Redundancy and Untestable Faults Fault Equivalence and Fault Dominance Method of Boolean Difference Single Stuck-At Fault Model Other Fault Models Redundancy and Untestable Faults Fault Equivalence and Fault Dominance Method of Boolean Difference Copyright 1998 Elizabeth M. Rudnick 1 Modeling the effects

More information

Dictionary-Less Defect Diagnosis as Surrogate Single Stuck-At Faults

Dictionary-Less Defect Diagnosis as Surrogate Single Stuck-At Faults Dictionary-Less Defect Diagnosis as Surrogate Single Stuck-At Faults Chidambaram Alagappan and Vishwani D. Agrawal Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849,

More information

Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich

Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich IBM Research - Zurich Established in 1956 Focus: science & technology, systems research, computer

More information

NCEP Applications -- HPC Performance and Strategies. Mark Iredell software team lead USDOC/NOAA/NWS/NCEP/EMC

NCEP Applications -- HPC Performance and Strategies. Mark Iredell software team lead USDOC/NOAA/NWS/NCEP/EMC NCEP Applications -- HPC Performance and Strategies Mark Iredell software team lead USDOC/NOAA/NWS/NCEP/EMC Motivation and Outline Challenges in porting NCEP applications to WCOSS and future operational

More information

Introduction to Reliability Simulation with EKV Device Model

Introduction to Reliability Simulation with EKV Device Model Introduction to Reliability Simulation with Device Model Benoît Mongellaz Laboratoire IXL ENSEIRB - Université Bordeaux 1 - UMR CNRS 5818 Workshop november 4-5th, Lausanne 1 Motivation & Goal Introduced

More information

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER Research Manuscript Title DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER R.Rathi Devi 1, PG student/ece Department, Vivekanandha College of Engineering for Women rathidevi24@gmail.com

More information