CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY

Size: px
Start display at page:

Download "CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY"

Transcription

1 CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY MEMSYS-2017 SWAMIT TANNU DOUG CARMEAN MOINUDDIN QURESHI

2 Why Quantum Computers? 2 Molecule and Material Simulations Quantum computers provide large speedup for problems in material science, machine learning, and medicine Execution Time Billion Years Days Classical Computer Quantum Computer Problem Size Quantum Computers enable solutions to important problems

3 3 Qubits: Background State of a Classical Bit 1 or 0 two points on sphere Classical Bit Quantum computer use quantum bits (qubits) to encode the information

4 3 Qubits: Background State of a Classical Bit 1 or 0 two points on sphere Quantum Classical Bit Quantum computer use quantum bits (qubits) to encode the information

5 3 Qubits: Background State of a Classical Bit 1 or 0 two points on sphere Quantum Classical Bit State of a Quantum Bit Any point on the sphere Quantum computer use quantum bits (qubits) to encode the information

6 4 Organization of Quantum Computer Control Processor Qubits Quantum Computer

7 4 Organization of Quantum Computer Control Processor Qubits Quantum Computer

8 4 Organization of Quantum Computer Control Processor Qubits Quantum Computer

9 4 Organization of Quantum Computer Control Processor Qubits Quantum Computer Control Processor --Interface between Qubits & Programmer

10 5 Qubits are fickle No quantization small change in state lead to errors 1 Room temperature too noisy to operate 0 Classical Bit Quantum Bit Qubits are kept at extremely low temperature (~20mK)

11 5 Qubits are fickle No quantization small change in state lead to errors 1 Room temperature too noisy to operate 0 Classical Bit Quantum Bit Qubits are kept at extremely low temperature (~20mK)

12 5 Qubits are fickle No quantization small change in state lead to errors 1 Room temperature too noisy to operate 0 Classical Bit Quantum Bit Qubits are kept at extremely low temperature (~20mK)

13 Todays Quantum Computer Dilution Refrigerator 5 Qubit Chip (IBM) 20mK

14 Todays Quantum Computer Dilution Refrigerator 5 Qubit Chip (IBM) Qubits 20mK 5 Qubit Chip (IBM)

15 Cryogenic Control Processor 7 Control Processor 300K Qubits 20mK

16 Cryogenic Control Processor 7 Control Processor 300K Qubits 20mK

17 Cryogenic Control Processor 7 Control Processor 300K Large Thermal Gradient Metal Wires Thermal Leakage Qubits 20mK

18 Cryogenic Control Processor 7 Control Processor 300K Large Thermal Gradient Metal Wires Thermal Leakage Qubits 20mK

19 Cryogenic Control Processor 7 Control Processor 300K Control Processor 4K Large Thermal Gradient Metal Wires Thermal Leakage Qubits 20mK Qubits 20mK

20 Cryogenic Control Processor 7 Control Processor 300K Control Processor 4K Large Thermal Gradient Metal Wires Thermal Leakage Superconducting wires Low Leakage Qubits 20mK Qubits 20mK

21 Cryogenic Control Processor is essential for scalable Quantum Computer (Ref: D. Carmean, ISCA 16 Keynote) Cryogenic Control Processor 7 Control Processor 300K Control Processor 4K Large Thermal Gradient Metal Wires Thermal Leakage Superconducting wires Low Leakage Qubits 20mK Qubits 20mK

22 8 Memory for Quantum Computers Memory Control Processor Qubits Program Memory + Data Memory Stores Quantum Executable, Data, ECC-frames (~10s GB) Memory must be kept at cryo temperature to avoid large thermal gradient Josephson Junction technology works at 4K Limited memory density (only few Mb) Quantum Computer

23 8 Memory for Quantum Computers Memory Control Processor Qubits Program Memory + Data Memory Stores Quantum Executable, Data, ECC-frames (~10s GB) Memory must be kept at cryo temperature to avoid large thermal gradient Josephson Junction technology works at 4K Limited memory density (only few Mb) Quantum Computer

24 8 Memory for Quantum Computers Program Memory Data Memory Memory Control Processor Qubits Program Memory + Data Memory Stores Quantum Executable, Data, ECC-frames (~10s GB) Memory must be kept at cryo temperature to avoid large thermal gradient Josephson Junction technology works at 4K Limited memory density (only few Mb) Quantum Computer

25 8 Memory for Quantum Computers Program Memory Data Memory Memory Control Processor Qubits Program Memory + Data Memory Stores Quantum Executable, Data, ECC-frames (~10s GB) Memory must be kept at cryo temperature to avoid large thermal gradient Josephson Junction technology works at 4K Limited memory density (only few Mb) Quantum Computer Quantum computers require substantial memory capacity at cryo temperature

26 9 Does commodity DRAM work at cryogenic temperatures?

27 9 Does commodity DRAM work at cryogenic temperatures? Goal: To characterize DRAM at cryogenic temperature to understand the functionality and error patterns

28 10 Why Memory Fails at Cryogenic Temperature? Temperature

29 10 Why Memory Fails at Cryogenic Temperature? Temperature Carriers (e - )

30 10 Why Memory Fails at Cryogenic Temperature? Temperature Carriers (e - )

31 10 Why Memory Fails at Cryogenic Temperature? Temperature Carriers (e - ) Threshold Voltage

32 10 Why Memory Fails at Cryogenic Temperature? Temperature Carriers (e - ) Threshold Voltage Faults

33 10 Why Memory Fails at Cryogenic Temperature? Temperature Carriers (e - ) Threshold Voltage Faults At low temperatures, carrier freezeout can cause increase in threshold voltage worsens error rate

34 10 Why Memory Fails at Cryogenic Temperature? Temperature Carriers (e - ) Threshold Voltage Faults Minimum Operational Temperature (MOT) Minimum temperature for fault free operation At low temperatures, carrier freezeout can cause increase in threshold voltage worsens error rate

35 EXECUTIVE SUMMARY 11 Why Cryogenic DRAM? Experimental Setup & Challenges Observations

36 12 How to Test DRAM at Cryogenic Temperature? Conventional memory testing Memtest86 running on host, dedicated memory testers

37 12 How to Test DRAM at Cryogenic Temperature? Conventional memory testing Memtest86 running on host, dedicated memory testers Host machines or memory testers do not work at cryogenic temperatures

38 12 How to Test DRAM at Cryogenic Temperature? Conventional memory testing Memtest86 running on host, dedicated memory testers Host machines or memory testers do not work at cryogenic temperatures Need mechanism to reduce DIMM temperature without affecting tester

39 13 Isolated Cooling of DIMM Need cryogenic coolant Liquid Nitrogen (boils at 77K) Need isolated cooling of DIMMs Compact cryogenic heatsink

40 13 Isolated Cooling of DIMM Need cryogenic coolant Liquid Nitrogen (boils at 77K) Need isolated cooling of DIMMs Compact cryogenic heatsink

41 13 Isolated Cooling of DIMM Need cryogenic coolant Liquid Nitrogen (boils at 77K) Need isolated cooling of DIMMs Compact cryogenic heatsink DIMM is sandwiched between two heatsinks and can be cooled down to 80K

42 13 Isolated Cooling of DIMM Need cryogenic coolant Liquid Nitrogen (boils at 77K) Need isolated cooling of DIMMs Compact cryogenic heatsink DIMM is sandwiched between two heatsinks and can be cooled down to 80K Compact heatsink with Liquid Nitrogen provides isolated cooling of a DIMM

43 14

44 14

45 15 Challenges: Thermal Shock & Ice Condensation 300K Temperature (K) 80K Time Limit rate of cooling & use isolation chamber to reduce condensation

46 15 Challenges: Thermal Shock & Ice Condensation THERMAL SHOCK 300K Temperature (K) 80K Time Limit rate of cooling & use isolation chamber to reduce condensation

47 15 Challenges: Thermal Shock & Ice Condensation THERMAL SHOCK 300K Temperature (K) 80K Time Limit rate of cooling & use isolation chamber to reduce condensation

48 15 Challenges: Thermal Shock & Ice Condensation THERMAL SHOCK Temperature (K) 300K 80K Condensation Time Limit rate of cooling & use isolation chamber to reduce condensation

49 15 Challenges: Thermal Shock & Ice Condensation THERMAL SHOCK Temperature (K) 300K 80K Condensation Time Limit rate of cooling & use isolation chamber to reduce condensation

50 15 Challenges: Thermal Shock & Ice Condensation THERMAL SHOCK Temperature (K) 300K 80K Condensation Time Limit rate of cooling & use isolation chamber to reduce condensation

51 Experimental Methodology 16 Number of DIMMS 55 Verify memory functionality by using march-tests Number of Chips 750 Fault single bit fault in a burst Number of Vendors 5 MOT Minimum temperature at which no faults are observed

52 17 Minimum Operational Temperature for DIMMs Minimum Operating Temperature (K) % 90% 55% 18% % DIMMs are functional below 90K

53 17 Minimum Operational Temperature for DIMMs Minimum Operating Temperature (K) DIMM Failure! 100% 90% 55% 18% % DIMMs are functional below 90K

54 18 Chip Failures 8% Functional Chips 92% Faulty Chip 92% of chips worked at cryogenic conditions Pick cryogenic tolerant chips

55 Min Operational Temperature Vs Chip Capacity Mb 512 Mb 1 Gb 2 Gb 4 Gb Minimum Operating Temperature (K) MOT increases with capacity; capacity of chip is correlated to technology node

56 Min Operational Temperature Vs Chip Capacity Mb 512 Mb 1 Gb 2 Gb 4 Gb Minimum Operating Temperature (K) MOT increases with capacity; capacity of chip is correlated to technology node

57 20 Fault Granularity Single bit errors Uncorrelated faults Single bit fault % Linear codes (SECDED, BCH) are still effective Double bit fault 0.015% Uncorrelated faults Conventional ECC can be effective for Cryo DRAM

58 21 Transient Vs Permanent Faults Repeated faulty addresses = permanent error Unique faulty address = transient error DDR2 DDR3 DDR4 Permanent 64% Transient 36% Permanent 59% Transient 41% Permanen t 47% Transient 53% Permanent faults conventional sparing techniques can be used

59 22 Conclusion Quantum computers need dense memory at low temperature Does DRAM Work at cryogenic temperature? Experiments show most commodity DRAM chips work at 90K Error patterns are amenable to existing fault tolerance techniques

60 23 Questions?

61 23 Questions? Want to know more about quantum computers?

62 23 Questions? Want to know more about quantum computers? Please visit my paper presentation at MICRO 2017 In 2 weeks in Boston!

63 24 Backup slides

64 25

65 26

66 28 Most Chips Work at 80K 7% Faulty Chips per DIMM 92% Functional Chips One Faulty Chip Two Faulty Chips Three Faulty Chips Four Faulty Chips Only 8% of chips fail at 80K Pick cryo tolerant chips

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

Quantum computing with superconducting qubits Towards useful applications

Quantum computing with superconducting qubits Towards useful applications Quantum computing with superconducting qubits Towards useful applications Stefan Filipp IBM Research Zurich Switzerland Forum Teratec 2018 June 20, 2018 Palaiseau, France Why Quantum Computing? Why now?

More information

Revisiting Memory Errors in Large-Scale Production Data Centers

Revisiting Memory Errors in Large-Scale Production Data Centers Revisiting Memory Errors in Large-Scale Production Da Centers Analysis and Modeling of New Trends from the Field Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu Overview Study of DRAM reliability: on modern

More information

DRAM Reliability: Parity, ECC, Chipkill, Scrubbing. Alpha Particle or Cosmic Ray. electron-hole pairs. silicon. DRAM Memory System: Lecture 13

DRAM Reliability: Parity, ECC, Chipkill, Scrubbing. Alpha Particle or Cosmic Ray. electron-hole pairs. silicon. DRAM Memory System: Lecture 13 slide 1 DRAM Reliability: Parity, ECC, Chipkill, Scrubbing Alpha Particle or Cosmic Ray electron-hole pairs silicon Alpha Particles: Radioactive impurity in package material slide 2 - Soft errors were

More information

The Quantum Supremacy Experiment

The Quantum Supremacy Experiment The Quantum Supremacy Experiment John Martinis, Google & UCSB New tests of QM: Does QM work for 10 15 Hilbert space? Does digitized error model also work? Demonstrate exponential computing power: Check

More information

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs EECS150 - Digital Design Lecture 26 - Faults and Error Correction April 25, 2013 John Wawrzynek 1 Types of Faults in Digital Designs Design Bugs (function, timing, power draw) detected and corrected at

More information

Feasibility of HTS DC Cables on Board a Ship

Feasibility of HTS DC Cables on Board a Ship Feasibility of HTS DC Cables on Board a Ship K. Allweins, E. Marzahn Nexans Deutschland GmbH 10 th EPRI Superconductivity Conference Feasibility of HTS DC Cables on Board a Ship 1. Can superconducting

More information

The D-Wave 2X Quantum Computer Technology Overview

The D-Wave 2X Quantum Computer Technology Overview The D-Wave 2X Quantum Computer Technology Overview D-Wave Systems Inc. www.dwavesys.com Quantum Computing for the Real World Founded in 1999, D-Wave Systems is the world s first quantum computing company.

More information

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap EECS150 - Digital Design Lecture 26 Faults and Error Correction Nov. 26, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof.

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Fault Tolerant Computing ECE 655 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Fault Tolerant Computing ECE 655 Part 1 Introduction C. M. Krishna Fall 2006 ECE655/Krishna Part.1.1 Prerequisites Basic courses in

More information

Building Quantum Computers: Is the end near for the silicon chip?

Building Quantum Computers: Is the end near for the silicon chip? Building Quantum Computers: Is the end near for the silicon chip? Presented by Dr. Suzanne Gildert University of Birmingham 09/02/2010 What is inside your mobile phone? What is inside your mobile phone?

More information

Post Von Neumann Computing

Post Von Neumann Computing Post Von Neumann Computing Matthias Kaiserswerth Hasler Stiftung (formerly IBM Research) 1 2014 IBM Corporation Foundation Purpose Support information and communication technologies (ICT) to advance Switzerland

More information

ECE-470 Digital Design II Memory Test. Memory Cells Per Chip. Failure Mechanisms. Motivation. Test Time in Seconds (Memory Size: n Bits) Fault Types

ECE-470 Digital Design II Memory Test. Memory Cells Per Chip. Failure Mechanisms. Motivation. Test Time in Seconds (Memory Size: n Bits) Fault Types ECE-470 Digital Design II Memory Test Motivation Semiconductor memories are about 35% of the entire semiconductor market Memories are the most numerous IPs used in SOC designs Number of bits per chip continues

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

1500 AMD Opteron processor (2.2 GHz with 2 GB RAM)

1500 AMD Opteron processor (2.2 GHz with 2 GB RAM) NICT 2019 2019 2 7 1 RSA RSA 2 3 (1) exp $ 64/9 + *(1) (ln 0) 1/2 (ln ln 0) 3/2 (2) 2009 12 768 (232 ) 1500 AMD Opteron processor (2.2 GHz with 2 GB RAM) 4 (3) 18 2 (1) (2) (3) 5 CRYPTREC 1. 2. 3. 1024,

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Lecture 2: Metrics to Evaluate Systems

Lecture 2: Metrics to Evaluate Systems Lecture 2: Metrics to Evaluate Systems Topics: Metrics: power, reliability, cost, benchmark suites, performance equation, summarizing performance with AM, GM, HM Sign up for the class mailing list! Video

More information

Quantum Technology 101: Overview of Quantum Computing and Quantum Cybersecurity

Quantum Technology 101: Overview of Quantum Computing and Quantum Cybersecurity Quantum Technology 0: Overview of Quantum Computing and Quantum Cybersecurity Warner A. Miller* Department of Physics & Center for Cryptography and Information Security Florida Atlantic University NSF

More information

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace Quantum Computing Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September 2010 10:00am PST, Teleplace The Hope All computing is constrained by the laws of Physics and

More information

D-Wave: real quantum computer?

D-Wave: real quantum computer? D-Wave: real quantum computer? M. Johnson et al., "Quantum annealing with manufactured spins", Nature 473, 194-198 (2011) S. Boixo et al., "Evidence for quantum annealing wiht more than one hundred qubits",

More information

Lecture 5 Fault Modeling

Lecture 5 Fault Modeling Lecture 5 Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes

More information

Tradeoff between Reliability and Power Management

Tradeoff between Reliability and Power Management Tradeoff between Reliability and Power Management 9/1/2005 FORGE Lee, Kyoungwoo Contents 1. Overview of relationship between reliability and power management 2. Dakai Zhu, Rami Melhem and Daniel Moss e,

More information

Lectures on Fault-Tolerant Quantum Computation

Lectures on Fault-Tolerant Quantum Computation Lectures on Fault-Tolerant Quantum Computation B.M. Terhal, IBM Research I. Descriptions of Noise and Quantum States II. Quantum Coding and Error-Correction III. Fault-Tolerant Error-Correction. Surface

More information

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB MEMORY Moores Law for DRAM 2x increase in capacity every 18 months 2006: 4GB Corollary to Moores Law Cost / chip ~ constant (packaging) Cost / bit = 2X reduction / 18 months Current (2008) ~ 1 micro-cent

More information

Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing

Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing Cryogenic Characterization of 8 nm Bulk CMOS Technology for Quantum Computing Arnout Beckers, Farzan Jazaeri, Andrea Ruffino, Claudio Bruschini, Andrea Baschirotto, and Christian Enz Integrated Circuits

More information

Quantum Computation. Dr Austin Fowler Centre for Quantum Computer Technology. New Scientist, 10/11/07

Quantum Computation. Dr Austin Fowler Centre for Quantum Computer Technology. New Scientist, 10/11/07 Quantum Computation Dr Austin Fowler Centre for Quantum Computer Technology New Scientist, 10/11/07 Overview what is a quantum computer? bits vs qubits superpositions and measurement implementations why

More information

Quantum Computing Professor Andrew M. Steane Oxford University

Quantum Computing Professor Andrew M. Steane Oxford University Quantum Computing The Laws of ature, or How everything works Professor Andrew M. teane Oxford University Computers and how they work Popular Mechanics magazine, March 1949: "Where a calculator on the Eniac

More information

Lecture 2, March 2, 2017

Lecture 2, March 2, 2017 Lecture 2, March 2, 2017 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd.

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd. What is a quantum computer? Quantum Architecture by Murat Birben A quantum computer is a device designed to take advantage of distincly quantum phenomena in carrying out a computational task. A quantum

More information

How can ideas from quantum computing improve or speed up neuromorphic models of computation?

How can ideas from quantum computing improve or speed up neuromorphic models of computation? Neuromorphic Computation: Architectures, Models, Applications Associative Memory Models with Adiabatic Quantum Optimization Kathleen Hamilton, Alexander McCaskey, Jonathan Schrock, Neena Imam and Travis

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

LEADING THE EVOLUTION OF COMPUTE MARK KACHMAREK HPC STRATEGIC PLANNING MANAGER APRIL 17, 2018

LEADING THE EVOLUTION OF COMPUTE MARK KACHMAREK HPC STRATEGIC PLANNING MANAGER APRIL 17, 2018 LEADING THE EVOLUTION OF COMPUTE MARK KACHMAREK HPC STRATEGIC PLANNING MANAGER APRIL 17, 2018 INTEL S RESEARCH EFFORTS COMPONENTS RESEARCH INTEL LABS ENABLING MOORE S LAW DEVELOPING NOVEL INTEGRATION ENABLING

More information

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Hendrik Bluhm Andre Kruth Lotte Geck Carsten Degenhardt 1 0 Ψ 1 Quantum Computing

More information

PHASE CHANGE. Freezing Sublimation

PHASE CHANGE. Freezing Sublimation Melting Graphic Organizer Deposition PHASE CHANGE Freezing Sublimation Boiling Evaporation Condensation PHASE CHANGE Phase change happens as the temperature changes. All matter can move from one state

More information

von Neumann Architecture

von Neumann Architecture Computing with DNA & Review and Study Suggestions 1 Wednesday, April 29, 2009 von Neumann Architecture Refers to the existing computer architectures consisting of a processing unit a single separate storage

More information

This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper:

This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper: This is a repository copy of Unite to build a quantum internet. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/98773/ Version: Accepted Version Article: Pirandola, Stefano

More information

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Performance of a 3.3kV Resistive type Superconducting Fault Current Limiter S.Vasudevamurthy 1, Ashwini.V 2 1 Department of Electrical

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

Fault Tolerate Linear Algebra: Survive Fail-Stop Failures without Checkpointing

Fault Tolerate Linear Algebra: Survive Fail-Stop Failures without Checkpointing 20 Years of Innovative Computing Knoxville, Tennessee March 26 th, 200 Fault Tolerate Linear Algebra: Survive Fail-Stop Failures without Checkpointing Zizhong (Jeffrey) Chen zchen@mines.edu Colorado School

More information

Status and Progress of a Fault Current Limiting HTS Cable To Be Installed In The Consolidated Edison Grid

Status and Progress of a Fault Current Limiting HTS Cable To Be Installed In The Consolidated Edison Grid Status and Progress of a Fault Current Limiting HTS Cable To Be Installed In The Consolidated Edison Grid J. Yuan, J. Maguire, D. Folts, N. Henderson, American Superconductor D. Knoll, Southwire M. Gouge,

More information

Scalable Cryogenic Control Systems for Quantum Computers

Scalable Cryogenic Control Systems for Quantum Computers SCIENCE Electronic ZEA-2 Systems Engineering Needs and Challenges in Scalable Cryogenic Control Systems for Quantum Computers Central Institute of Engineering, Electronics and Analytics ZEA-2: Electronic

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application 2011 11th Non-Volatile Memory Technology Symposium @ Shanghai, China, Nov. 9, 20112 MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application Takahiro Hanyu 1,3, S. Matsunaga 1, D. Suzuki

More information

Detection of Variable Retention Time in DRAM

Detection of Variable Retention Time in DRAM Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Fall 11-19-2014 Detection of Variable Retention Time in DRAM Neraj Kumar Portland State University Let us know how

More information

Intel s approach to Quantum Computing

Intel s approach to Quantum Computing Intel s approach to Quantum Computing Dr. Astrid Elbe, Managing Director Intel Lab Europe Quantum Computing: Key Concepts Superposition Classical Physics Quantum Physics v Heads or Tails Heads and Tails

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption EE115C Winter 2017 Digital Electronic Circuits Lecture 6: Power Consumption Four Key Design Metrics for Digital ICs Cost of ICs Reliability Speed Power EE115C Winter 2017 2 Power and Energy Challenges

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

From Niels Bohr to Quantum Computing - from philosophical struggle to technological revolution

From Niels Bohr to Quantum Computing - from philosophical struggle to technological revolution From Niels Bohr to Quantum Computing - from philosophical struggle to technological revolution IPAC 2017 Intel Pentium QuadCore processor, 3.5 GHz, 3 GB SDRAM. Quantum computer Processor unknown 1000 Hz

More information

Turbulence Simulations

Turbulence Simulations Innovatives Supercomputing in Deutschland Innovative HPC in Germany Vol. 14 No. 2 Autumn 2016 Turbulence Simulations The world s largest terrestrial & astrophysical applications Vice World Champion HLRS

More information

DC Circuits I. Physics 2415 Lecture 12. Michael Fowler, UVa

DC Circuits I. Physics 2415 Lecture 12. Michael Fowler, UVa DC Circuits I Physics 2415 Lecture 12 Michael Fowler, UVa Today s Topics Mention of AC Semiconductors and superconductors Battery emf, internal resistance Series and parallel resistances Kirchhoff s rules

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Chapter 1. Binary Systems 1-1. Outline. ! Introductions. ! Number Base Conversions. ! Binary Arithmetic. ! Binary Codes. ! Binary Elements 1-2

Chapter 1. Binary Systems 1-1. Outline. ! Introductions. ! Number Base Conversions. ! Binary Arithmetic. ! Binary Codes. ! Binary Elements 1-2 Chapter 1 Binary Systems 1-1 Outline! Introductions! Number Base Conversions! Binary Arithmetic! Binary Codes! Binary Elements 1-2 3C Integration 傳輸與介面 IA Connecting 聲音與影像 Consumer Screen Phone Set Top

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

Analysis of the Tradeoffs between Energy and Run Time for Multilevel Checkpointing

Analysis of the Tradeoffs between Energy and Run Time for Multilevel Checkpointing Analysis of the Tradeoffs between Energy and Run Time for Multilevel Checkpointing Prasanna Balaprakash, Leonardo A. Bautista Gomez, Slim Bouguerra, Stefan M. Wild, Franck Cappello, and Paul D. Hovland

More information

IBM Q: building the first universal quantum computers for business and science. Federico Mattei Banking and Insurance Technical Leader, IBM Italy

IBM Q: building the first universal quantum computers for business and science. Federico Mattei Banking and Insurance Technical Leader, IBM Italy IBM Q: building the first universal quantum computers for business and science Federico Mattei Banking and Insurance Technical Leader, IBM Italy Agenda Which problems can not be solved with classical computers?

More information

Quantum Computing: Great Expectations

Quantum Computing: Great Expectations Quantum Computing: Great Expectations Quantum Computing for Nuclear Physics Workshop Dave Bacon dabacon@google.com In a Galaxy Seven Years Ago... 0.88 fidelity 0.78 fidelity (2010) fidelities: 14 qubits:

More information

A Quantum von Neumann Architecture for Large-Scale Quantum Computing

A Quantum von Neumann Architecture for Large-Scale Quantum Computing A Quantum von Neumann Architecture for Large-Scale Quantum Computing Matthias F. Brandl Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria November 15,

More information

Self-Check. change in pressure. 6. I can explain how the volume of a gas is changed by a change in temperature S. Coates

Self-Check. change in pressure. 6. I can explain how the volume of a gas is changed by a change in temperature S. Coates Self-Check YES NO 1. I can describe how atoms move in a solid, liquid, and gas 2. I can describe the speed/energy of the atoms in a solid, liquid, and gas. 3. I can explain how the distance between atoms

More information

Lecture on Memory Test Memory complexity Memory fault models March test algorithms Summary

Lecture on Memory Test Memory complexity Memory fault models March test algorithms Summary Lecture on Memory Test Memory complexity Memory fault models March test algorithms Summary Extracted from Agrawal & Bushnell VLSI Test: Lecture 15 1 % of chip area Importance of memories Memories dominate

More information

Developing a commercial superconducting quantum annealing processor

Developing a commercial superconducting quantum annealing processor Developing a commercial superconducting quantum annealing processor 30th nternational Symposium on Superconductivity SS 2017 Mark W Johnson D-Wave Systems nc. December 14, 2017 ED4-1 Overview ntroduction

More information

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs April 16, 2009 John Wawrzynek Spring 2009 EECS150 - Lec24-blocks Page 1 Cross-coupled NOR gates remember, If both R=0 & S=0, then

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay SP-CNN: A Scalable and Programmable CNN-based Accelerator Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay Motivation Power is a first-order design constraint, especially for embedded devices. Certain

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 10 Phase Change

More information

Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich

Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich Quantum Computing: From Science to Application Dr. Andreas Fuhrer Quantum technology, IBM Research - Zurich IBM Research - Zurich Established in 1956 Focus: science & technology, systems research, computer

More information

Quantum entanglement in the 21 st century

Quantum entanglement in the 21 st century Quantum entanglement in the 21 st century Algorithms Error Correction Matter Spacetime Three Questions About Quantum Computers 1. Why build one? How will we use it, and what will we learn from it? A quantum

More information

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8. This homework is due October 26, 2015, at Noon.

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8. This homework is due October 26, 2015, at Noon. EECS 16A Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 8 This homework is due October 26, 2015, at Noon. 1. Nodal Analysis Or Superposition? (a) Solve for the

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

Statistics and Quantum Computing

Statistics and Quantum Computing Statistics and Quantum Computing Yazhen Wang Department of Statistics University of Wisconsin-Madison http://www.stat.wisc.edu/ yzwang Workshop on Quantum Computing and Its Application George Washington

More information

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018 System Roadmap Qubits 2018 D-Wave Users Conference Knoxville Jed Whittaker D-Wave Systems Inc. September 25, 2018 Overview Where are we today? annealing options reverse annealing quantum materials simulation

More information

Resource Efficient Design of Quantum Circuits for Quantum Algorithms

Resource Efficient Design of Quantum Circuits for Quantum Algorithms Resource Efficient Design of Quantum Circuits for Quantum Algorithms Himanshu Thapliyal Department of Electrical and Computer Engineering University of Kentucky, Lexington, KY hthapliyal@uky.edu Quantum

More information

Quantum Computing at IBM

Quantum Computing at IBM Quantum Computing at IBM Ivano Tavernelli IBM Research - Zurich Quantum Computing for High Energy Physics CERN -Geneva November 5-6, 2018 Outline Why quantum computing? The IBM Q Hardware The IBM Q Software

More information

Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach. Bay Area Quantum Computing Meetup - YCombinator February 1, 2018

Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach. Bay Area Quantum Computing Meetup - YCombinator February 1, 2018 Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach Bay Area Quantum Computing Meetup - YCombinator February 1, 2018 Full Stack Quantum Computing Quantum Processor Hardware Cloud

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

VMware VMmark V1.1 Results

VMware VMmark V1.1 Results Vendor and Hardware Platform: IBM System x3950 M2 Virtualization Platform: VMware ESX 3.5.0 U2 Build 110181 Performance VMware VMmark V1.1 Results Tested By: IBM Inc., RTP, NC Test Date: 2008-09-20 Performance

More information

Chapter 15: Thermal Properties of Matter

Chapter 15: Thermal Properties of Matter Chapter 15 Lecture Chapter 15: Thermal Properties of Matter Goals for Chapter 15 To understand and learn to use the mole and Avogadro's number. To see applications for equations of state. To study the

More information

Logic BIST. Sungho Kang Yonsei University

Logic BIST. Sungho Kang Yonsei University Logic BIST Sungho Kang Yonsei University Outline Introduction Basics Issues Weighted Random Pattern Generation BIST Architectures Deterministic BIST Conclusion 2 Built In Self Test Test/ Normal Input Pattern

More information

From Physics to Logic

From Physics to Logic From Physics to Logic This course aims to introduce you to the layers of abstraction of modern computer systems. We won t spend much time below the level of bits, bytes, words, and functional units, but

More information

Micro Cooling of SQUID Sensor

Micro Cooling of SQUID Sensor Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Micro Cooling of SQUID Sensor B.Ottosson *,1, Y. Jouahri 2, C. Rusu 1 and P. Enoksson 3 1 Imego AB, SE-400 14 Gothenburg, Sweden, 2 Mechanical

More information

Scalable, Robust, Fault-Tolerant Parallel QR Factorization. Camille Coti

Scalable, Robust, Fault-Tolerant Parallel QR Factorization. Camille Coti Communication-avoiding Fault-tolerant Scalable, Robust, Fault-Tolerant Parallel Factorization Camille Coti LIPN, CNRS UMR 7030, SPC, Université Paris 13, France DCABES August 24th, 2016 1 / 21 C. Coti

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th and 9th editions Entropy of Phase ransition at the ransition emperature Expansion of the Perfect

More information

Redundant Array of Independent Disks

Redundant Array of Independent Disks Redundant Array of Independent Disks Yashwant K. Malaiya 1 Redundant Array of Independent Disks (RAID) Enables greater levels of performance and/or reliability How? By concurrent use of two or more hard

More information

Low Temperature Instrumentation: Detectors, Cooling Systems and Superconducting Magnets LOW TEMPERATURE INSTRUMENTATION - DDAYS

Low Temperature Instrumentation: Detectors, Cooling Systems and Superconducting Magnets LOW TEMPERATURE INSTRUMENTATION - DDAYS Low Temperature Instrumentation: Detectors, Cooling Systems and Superconducting Magnets MARIA BARBA DACM GALAHAD JEGO DEDIP JULIEN AVRONSART - DACM 1 Use of cryogenic systems Cryogenic range of temperatures:

More information

B I A S T E E Reducing the Size of the Filtering Hardware. for Josephson Junction Qubit Experiments Using. Iron Powder Inductor Cores.

B I A S T E E Reducing the Size of the Filtering Hardware. for Josephson Junction Qubit Experiments Using. Iron Powder Inductor Cores. B I A S T E E 2. 0 Reducing the Size of the Filtering Hardware for Josephson Junction Qubit Experiments Using Iron Powder Inductor Cores. Daniel Staudigel Table of Contents Bias Tee 2.0 Daniel Staudigel

More information

Cold Boot Attacks in the Discrete Logarithm Setting

Cold Boot Attacks in the Discrete Logarithm Setting Cold Boot Attacks in the Discrete Logarithm Setting B. Poettering 1 & D. L. Sibborn 2 1 Ruhr University of Bochum 2 Royal Holloway, University of London October, 2015 Outline of the talk 1 Introduction

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

ph Probe ReallyEasyData com

ph Probe ReallyEasyData com ph Probe 9200001 Uses Whether you re monitoring ph for chemistry, physical science, life science, or earth science activity, this ph meter offers accurate readings in a convenient format. Use the RED ph

More information

Comparing the Effects of Intermittent and Transient Hardware Faults on Programs

Comparing the Effects of Intermittent and Transient Hardware Faults on Programs Comparing the Effects of Intermittent and Transient Hardware Faults on Programs Jiesheng Wei, Layali Rashid, Karthik Pattabiraman and Sathish Gopalakrishnan Department of Electrical and Computer Engineering,

More information

A Quick Introduction to the Micron Automata Chip

A Quick Introduction to the Micron Automata Chip A Quick Introduction to the Micron Automata Chip Peter M. Kogge Univ. of Notre Dame See also: Dlugosch, et al. An Efficient and Scalable Semiconductor Architecture for Parallel Automata Processing, IEEE

More information

The New IMP(F) - F4 unified. Nanoscale Science and Technology

The New IMP(F) - F4 unified. Nanoscale Science and Technology IMP(F) - Nanoscale Science and Technology The New IMP(F) - F4 unified International Master s Programme in Nanoscale Science and Technology 2002/2003 Göran Wendin, MINA/MC2 What sizes are we talking about?

More information

Lecture 2, March 1, 2018

Lecture 2, March 1, 2018 Lecture 2, March 1, 2018 Last week: Introduction to topics of lecture Algorithms Physical Systems The development of Quantum Information Science Quantum physics perspective Computer science perspective

More information

TeraLED. Thermal and Radiometric Characterization of LEDs. Technical Specification.

TeraLED. Thermal and Radiometric Characterization of LEDs. Technical Specification. TeraLED Thermal and Radiometric Characterization of LEDs Technical Specification M E C H A N I C A L A N A L Y S I S TeraLED HARDWARE OPTIONS Depending on the dimensions and power level of the LED or LED

More information

Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion

Chapter 5 Energy and States of Matter. Changes of State. Melting and Freezing. Calculations Using Heat of Fusion Chapter 5 Energy and States of Matter Changes of State 5.6 Melting and Freezing 5.7 Boiling and Condensation 1 2 Melting and Freezing A substance is melting while it changes from a solid to a liquid. A

More information

Superconducting cables Development status at Ultera

Superconducting cables Development status at Ultera 1 Superconducting cables Development status at Ultera "Superconductors and their Industrial Applications Pori, 15-16 Nov 2006 Chresten Træholt (D. Willén) Senior Development Engineer, Ultera A Southwire

More information

Towards optimal synchronous counting

Towards optimal synchronous counting Towards optimal synchronous counting Christoph Lenzen Joel Rybicki Jukka Suomela MPI for Informatics MPI for Informatics Aalto University Aalto University PODC 5 July 3 Focus on fault-tolerance Fault-tolerant

More information

2.6 Complexity Theory for Map-Reduce. Star Joins 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51

2.6 Complexity Theory for Map-Reduce. Star Joins 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51 Star Joins A common structure for data mining of commercial data is the star join. For example, a chain store like Walmart keeps a fact table whose tuples each

More information

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark)

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark) NAME : F.5 ( ) Marks: /70 FORM FOUR PHYSICS REVISION TEST on HEAT Allowed: 70 minutes This paper consists of two sections. Section A (50 marks) consists of the structure-type questions, and Section B (20

More information

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure Outline 1. Introduction to MOS structure 2. Electrostatics of MOS in thermal equilibrium 3. Electrostatics of MOS with

More information

SGM800 Low-Power, SOT µp Reset Circuit with Capacitor-Adjustable Reset Timeout Delay

SGM800 Low-Power, SOT µp Reset Circuit with Capacitor-Adjustable Reset Timeout Delay GENERAL DESCRIPTION The low-power micro-processor supervisor circuit monitors system voltages from 1.6V to 5V. This device performs a single function: it asserts a reset signal whenever the V CC supply

More information

Quantum Computers Is the Future Here?

Quantum Computers Is the Future Here? Quantum Computers Is the Future Here? Tal Mor CS.Technion ISCQI Feb. 2016 128?? [ 2011 ; sold to LM ] D-Wave Two :512?? [ 2013 ; sold to NASA + Google ] D-Wave Three: 1024?? [ 2015 ; also installed at

More information