Ecological Utility Analysis:

Size: px
Start display at page:

Download "Ecological Utility Analysis:"

Transcription

1 Ecological Utility Analysis: On the Emergence of Positive Interactions between Organisms in Ecosystems Bernard C. Patten 1 and Stuart J. Whipple 1,2 1 Odum School of Ecology, University of Georgia, Athens, Georgia, USA 2 Skidaway Institute of Oceanography, Savannah, Georgia, USA

2 A Brief History 1981 The Legović connection We had fun trying nonassociative: : 4 of 27 cases connection (,,,,,, etc.) We did show: A minimal generating set for ecological interactions was (0,) ) and (,0)( It was unlikely that adjacent and ultimate interaction types were e the same Positive nonadjacent relations emerged freely in our examples Ca The Ulanowicz/Puccia connection (D)( Patten, B. C Network ecology: indirect determination of the lifeenvironment relationship in ecosystems. In Higashi, M. & Burns, T. P. (eds.), Theoretical Ecosystem Ecology: The Network Perspective. London, Cambridge University Press. pp Subsequent refining papers by Brian Fath, Stuart Whipple, myself

3 EnergyMatter Stock and Flow Models Basic Definitions Compartment open, dissipative, energymatter storage element in a system i Transaction directed energy or matter flow f between two adjacent compartments j f ij i Relation directed proximate or ultimate relationship r between two adjacent or nonadjacent compartments j r ij i Environs afferent and efferent environments of compartments within a system boundary i Utility systemwide measure of value relations transmitted between compartment pairs j i

4 The of Environ Analysis Mathematical Methods Different methods describe different properties of environs They employ matrix state transition equations for compartment descriptions They employ inverse matrices and matrix power series for analysis Structural analysis A Pathways: identifies, counts, and classifies pathways in networks Functional analyses B C Throughflow: maps boundary inputs z j and outputs y k into interior throughflows T i Storage: maps boundary inputs z j and outputs y k into interior stocks x i There are four basic matrices derived from F and F T in: φ : dx/dt = F1 z = F T 1 y Value analysis D Utility: measures direct, D = (d ij ), and direct plus indirect, U = (ID) 1, values (benefits and costs) conferred to compartments by their participation in networks; ordered sign pairs (sd ij,sd ji ) and (su ij,su the interactions sd ij sd ji su ij su ji ji ) give

5 Three ZeroSum Interactions Proximate j f out f ij ij f in ij r ij i f ij out f ij in = 0 r ij = (,) contramensalism (e. g., predation) (,) altruism (0, 0) neutralism

6 Nine NonzeroSum Interactions Ultimate (, ) contramensalism (, ) altruism (, ) competition (, ) mutualism (, 0) aggradation (, 0) dissipation (0, ) commensalism (0, ) amensalism (0, 0) neutralism

7 Questions How do we unscramble complex webs to determine ultimate interaction types in ecosystems? Is unweighted web structure enough, or must linkages be quantified? Utility analysis of community modules suggests two main answers In some cases, web topology is sufficient to specify the interaction types. The values of the internal or boundary flows have no influence. Banff National Park, Canada Reference: Hebblewhite, M., White, C. A., Nietvelt, C. B., McKenzie, J. A., Hurd, T. E., Fryxell, J. M., Bayley, S. E., and Paquet, P. C Human activity mediates a trophic cascade caused by wolves. Ecology 86(8): We call this: structural determination In other cases, topology AND the values of the internal or boundary flows determine the interaction types. We call this: parametric determination

8 Community Modules: Acyclic Reference: Holt, R. D Community modules. Chapter 17 in Gonge, A. C. and Brown, V. K. (eds.), Multitrophic Interactions in Terrestrial Systems. Blackwell Science, Ltd., Oxford, U. K., pp pp. Case 1. Structurally Determined Interaction type determined strictly by the graph topology 1.1 Canonical Form: Feeding Link Rule For adjacent compartment pairs the relation is always for the recipient and for the donor, (sd ij, sd ji ) = (su ij ) = (,) = contramensalism

9 Community Modules: Acyclic Case 1. Structurally Determined Sequential Chains (any length) Rules 2 4 Adjacent predations, (sd ij, sd ji ) = (,) produce ultimate contramensalisms, (su ij ) = (,) For odd transfers > 1 between compartment pairs the relation is always ultimate contramensalism, (su ij ) = (,) 3 2 For even transfers 2 between compartment pairs the relation is always ultimate mutualism, (su ij ) =(,)

10 Community Modules: Acyclic Case 1. Structurally Determined Divergent (Exploitative) Competition (extends to other relations) Rules Adjacent predations produce ultimate contramensalisms (su ij ) = (,) For odd transfers 1 between compartment pairs the ultimate relation is always competition, (su ij ) = (,) For even transfers 2 between compartment pairs the ultimate relation is always mutualism, (su ij )=(,) Other relations are also structurally determined

11 Community Modules: Acyclic Type 1. Structurally Determined 1.4 Convergent (Apparent) Competition (extends to other relations) Rules 1 2 Adjacent predations (sd ij, sd ji ) = (,) produce ultimate contramensalism (su ij ) = (,) For odd transfers 1 between compartment pairs the relation is always ultimate competition: (su ij ) = (,) For even transfers 2 between compartment pairs the relation is always ultimate mutualism: (su ij ) = (,) Other relations are also structurally determined Structural determination ends here

12 Community Modules: Acyclic Case 2. Parametrically Determined Endogenous Interaction type determined by internal flow values 2.1 Omnivory, Mixotrophy, Intraguild Predation, etc.??? Rules Divergent competition, (su ij ) = (,), at a fixed trophic level within a feeding guild??? becomes, on introduction of cross-level feeding, structurally indeterminate interaction types (su ij ) = (?,?) Mechanism Cross-linkage occurs when a link causes convergence in a divergent network, or divergence in a convergent network. The resultant graph is a lattice element

13 Community Modules: Acyclic Case 2. Parametrically Determined Endogenous 2.1 Divergent/Convergent Competition 2 1 This structure is also internally parametrically determined it has the lattice structure of the previous example (Fath, B. D., Network mutualism: positive community-level relations in ecosystems. Ecol. Mod., in press)

14 Community Modules: Cyclic References: Lindeman, R. L The trophic-dynamic aspect of ecology. Ecology 28: Redfield, A. C The biological control of chemical factors in the environment. American Scientist 46: Pomeroy, L. R The ocean s food web: a changing paradigm. BioScience 24: Case 3. Parametrically Determined Exogenous Interaction type determined by existence and values of boundary flows?????? 3.1 Food Cycles, Biogeochemical Cycling, Microbial Loops, etc. Rules Presence and strength of inputs to compartments in cycles determines signs for each compartment pair Mechanism Dissipation constrains feedback cycles from altering established relations; inputs to compartments in cycles relax this constraint and allow exogenous parametric determination of internal relational types

15 Summary In community modules, interaction types between compartment pairs appear to be determined as follows: Case 1 Case 2 Acyclic graphs with no cross-level coupling are structurally determined Acyclic graphs with cross-level coupling are internally parametrically determined Case 3 Cyclic graphs are externally parametrically determined These are hypotheses pending more exhaustive exploration of cases, or where possible, statement and proof of theorems

16 Proximate vs. ultimate interaction types in a marsh food-web model for Okefenokee Swamp Patten, B. C Network ecology: indirect determination of the lifeenvironment relationship in ecosystems. In Higashi, M. & Burns, T. P. (eds.), Theoretical Ecosystem Ecology: The Network Perspective. London, Cambridge University Press. pp

17 Okefenokee Marsh Food-Web Model Specifications 24 compartments 7 sectors: Organic Matter Microinvertebrates Nutrients Macroinvertebrates Decomposers Vertebrates Primary Producers 21% connectivity 116 links/552 possible (without loops) 44,025,553 simple paths max length 21 links mean length links 3,953,202 simple cycles max length 20 links mean length links

18 Okefenokee Marsh Food-Web Model Proximate to Ultimate Interaction-Type Transitions 300 proximate and 300 ultimate pairwise interactions Utility values near zero Predation Neutralism Altruism Ultimate set equal to zero (,) (0,0) (,) (nonzero-sum) Contramensalism (,) Neutralism (0,0) Altruism (,) Dissipation (,0) Competition (,) Amensalism (0,) Commensalism (0,) Aggradation (,0) Mutualism (,) Proximate (zero-sum)

19 Okefenokee Marsh Food-Web Model Summary of Results Interaction signs Proximate signs Ultimate signs Number of Number of / ratio Utility summary Proximate utiles Ultimate utiles Sum of utilities Sum of utilities Benefit()/Cost() ratio

20 Okefenokee Marsh Food-Web Model Summary of Results Interaction signs Proximate signs Ultimate signs Number of Number of / ratio Utility summary Proximate utiles Ultimate utiles Sum of utilities Sum of utilities Benefit()/Cost() ratio

21 Conclusions Ecologists often speak of fixed (implying structurally determined) ultimate interactions especially competition and mutualism Nonadjacent relations in nature, however, are apparently not fixed because Cross-linkage truncates structural determination and establishes endogenous parametric determination Cycling adds exogenous parametric determination As cross-linkage and cycling are ubiquitous properties of ecological networks, and compartments, flows and linkage patterns are always changing in time, relations between organisms in ecosystems are fluid and changing also In nature's complex networks, parametric determination is universal!

Review of the Foundations of Network Environ Analysis

Review of the Foundations of Network Environ Analysis Ecosystems (1999) 2: 167 179 ECOSYSTEMS 1999 Springer-Verlag Review of the Foundations of Network Environ Analysis Brian D. Fath* and Bernard C. Patten Institute of Ecology, University of Georgia, Athens,

More information

Treasure Coast Science Scope and Sequence

Treasure Coast Science Scope and Sequence Course: Marine Science I Honors Course Code: 2002510 Quarter: 3 Topic(s) of Study: Marine Organisms and Ecosystems Bodies of Knowledge: Nature of Science and Life Science Standard(s): 1: The Practice of

More information

Gary G. Mittelbach Michigan State University

Gary G. Mittelbach Michigan State University Community Ecology Gary G. Mittelbach Michigan State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Table of Contents 1 Community Ecology s Roots 1 PART I The Big

More information

Ecology. Bio Sphere. Feeding Relationships

Ecology. Bio Sphere. Feeding Relationships Ecology Bio Sphere Feeding Relationships with a whole lot of other creatures Ecology Putting it all together study of interactions between creatures & their environment, because Everything is connected

More information

The Structure of Ecological Networks and Consequences for Fragility

The Structure of Ecological Networks and Consequences for Fragility The Structure of Ecological Networks and Consequences for Fragility closely connected clustered Emily I. Jones ECOL 596H Feb. 13, 2008 Why ecological network structure matters 2. 3. the network contains

More information

Unit 2: Ecology. Big Idea...

Unit 2: Ecology. Big Idea... Name: Block: Unit 2: Ecology Big Idea... The natural world is defined by organisms and life processes which conform to principles regarding conservation and transformation of matter and energy. Knowledge

More information

Question #01. Feedback on Each Answer Choice. Solution. Ecology Problem Drill 20: Mutualism and Coevolution

Question #01. Feedback on Each Answer Choice. Solution. Ecology Problem Drill 20: Mutualism and Coevolution Ecology Problem Drill 20: Mutualism and Coevolution Question No. 1 of 10 Question 1. The concept of mutualism focuses on which of the following: Question #01 (A) Interaction between two competing species

More information

Requirements for Prospective Teachers General Science. 4.1a Explain energy flow and nutrient cycling through ecosystems (e.g., food chain, food web)

Requirements for Prospective Teachers General Science. 4.1a Explain energy flow and nutrient cycling through ecosystems (e.g., food chain, food web) Ecology and Conservation Biology (Biol 116) - Syllabus Addendum for Prospective Teachers Ricklefs, R. E., (2001). The Economy of Nature, 5 th Edition. W.H. Freeman & Co Chapter Ch 6-Energy in the Ecosystem

More information

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL., NO.. () Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities Randall D. Willoughby and Wendy B. Anderson Department of Biology

More information

Study Guide: Unit A Interactions & Ecosystems

Study Guide: Unit A Interactions & Ecosystems Study Guide: Unit A Interactions & Ecosystems Name: Pattern: Vocabulary: Section 1 Section 2 Ecosystem Consumer Biotic Producer Abiotic Carnivore Organism Herbivore Species Omnivore Population Decomposer

More information

Chetek-Weyerhaeuser High School

Chetek-Weyerhaeuser High School Chetek-Weyerhaeuser High School Unit 1 The Science of Biology (5 days) Biology I Units and s Biology I A s 1. I can design a scientific experiment that includes a control group, experimental group, constants,

More information

Chapter 54: Community Ecology

Chapter 54: Community Ecology Name Period Concept 54.1 Community interactions are classified by whether they help, harm, or have no effect on the species involved. 1. What is a community? List six organisms that would be found in your

More information

Living Things and the Environment

Living Things and the Environment Unit 21.1 Living Things and the Environment Section 21.1 Organisms obtain food, water, shelter, and other things it needs to live, grow, and reproduce from its environment. An environment that provides

More information

BIOLOGICAL OCEANOGRAPHY

BIOLOGICAL OCEANOGRAPHY BIOLOGICAL OCEANOGRAPHY AN INTRODUCTION 0 ^ J ty - y\ 2 S CAROL M. LALLI and TIMOTHY R. PARSONS University of British Columbia, Vancouver, Canada PERGAMON PRESS OXFORD NEW YORK SEOUL TOKYO ABOUT THIS VOLUME

More information

About me (why am I giving this talk) Dr. Bruce A. Snyder

About me (why am I giving this talk) Dr. Bruce A. Snyder Ecology About me (why am I giving this talk) Dr. Bruce A. Snyder basnyder@ksu.edu PhD: Ecology (University of Georgia) MS: Environmental Science & Policy BS: Biology; Environmental Science (University

More information

Ecosystems. 2. Ecosystem

Ecosystems. 2. Ecosystem 1. Studying our living Planet The biosphere consist of all life on Earth and all parts of the Earth in which life exists, including land, water, and the atmosphere. Ecology is the scientific study of interactions

More information

Levels of Organization in Ecosystems. Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem.

Levels of Organization in Ecosystems. Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem. Levels of Organization in Ecosystems Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem. Population A population is a group of individuals of

More information

Ecology - the study of how living things interact with each other and their environment

Ecology - the study of how living things interact with each other and their environment Ecology Ecology - the study of how living things interact with each other and their environment Biotic Factors - the living parts of a habitat Abiotic Factors - the non-living parts of a habitat examples:

More information

Community Structure. Community An assemblage of all the populations interacting in an area

Community Structure. Community An assemblage of all the populations interacting in an area Community Structure Community An assemblage of all the populations interacting in an area Community Ecology The ecological community is the set of plant and animal species that occupy an area Questions

More information

4. Ecology and Population Biology

4. Ecology and Population Biology 4. Ecology and Population Biology 4.1 Ecology and The Energy Cycle 4.2 Ecological Cycles 4.3 Population Growth and Models 4.4 Population Growth and Limiting Factors 4.5 Community Structure and Biogeography

More information

Part 2: Models of Food-Web Structure

Part 2: Models of Food-Web Structure Part 2: Models of Food-Web Structure Stochastic models of food-web structure -Two Parameters: S (species number) and C (connectance) -Randomly assign each species a niche value from to 1 -Use simple rules

More information

1) Which of the following describes the mammals, fish, birds, and plants that live in an environment? a) Abiotic c) biome b) population d) biotic

1) Which of the following describes the mammals, fish, birds, and plants that live in an environment? a) Abiotic c) biome b) population d) biotic CH.16 practice TEST -6th grade Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which of the following describes the mammals, fish, birds, and plants that

More information

Honors Biology Ecology Concept List

Honors Biology Ecology Concept List 1. For each pair of terms, explain how the meanings of the terms differ. a. mutualism and commensalism b. parasitism and predation c. species richness and species diversity d. primary succession and secondary

More information

A population is a group of individuals of the same species, living in a shared space at a specific point in time.

A population is a group of individuals of the same species, living in a shared space at a specific point in time. A population is a group of individuals of the same species, living in a shared space at a specific point in time. A population size refers to the number of individuals in a population. Increase Decrease

More information

6/23/13. Definitions of Systems Ecology. Introduction to Systems Ecology. Visually. What is Ecology? Ecology is. Systems. Science.

6/23/13. Definitions of Systems Ecology. Introduction to Systems Ecology. Visually. What is Ecology? Ecology is. Systems. Science. Definitions of Systems Ecology Introduction to Systems Ecology Systems Ecology is The study of whole ecosystems and includes measurements of overall performance as well as a study of the details of systems

More information

9/10/ What Shapes an Ecosystem? Biotic and Abiotic Factors

9/10/ What Shapes an Ecosystem? Biotic and Abiotic Factors 9/10/14 4-2 What Shapes an Ecosystem? Biology 1 of 39 Ecosystems are influenced by a combination of biological and physical factors. The biological influences on organisms within an ecosystem are called

More information

Unit 8: Ecology Guided Reading Questions (60 pts total)

Unit 8: Ecology Guided Reading Questions (60 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Unit 8: Ecology Guided Reading Questions (60 pts total) Chapter 51 Animal

More information

7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T

7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T 7. E C. 5 B. 1 D E V E L O P A N D U S E M O D E L S T O E X P L A I N H O W O R G A N I S M S I N T E R A C T I N A C O M P E T I T I V E O R M U T U A L L Y B E N E F I C I A L R E L A T I O N S H I

More information

CHAPTER 5 WARM UPS. Mrs. Hilliard

CHAPTER 5 WARM UPS. Mrs. Hilliard CHAPTER 5 WARM UPS Mrs. Hilliard CHAPTER 5 VOCABULARY 1. Photosynthesis 2. Cellular respiration 3. Producer 4. Consumer 5. Decomposer 6. Food chain 7. Food web 8. Trophic level 9. Carbon cycle 10. Nitrogen-fixing

More information

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks Aggregations on larger scales. Metapopulation Definition: A group of interconnected subpopulations Sources and Sinks Metapopulation - interconnected group of subpopulations sink source McKillup and McKillup

More information

Biomes, Populations, Communities and Ecosystems Review

Biomes, Populations, Communities and Ecosystems Review Multiple Choice Biomes, Populations, Communities and Ecosystems Review 1. The picture below is a school (group) of Jack fish. What type of distribution does this represent? A) Random B) Even C) Uniform

More information

4-2 What Shapes an Ecosystem? Slide 1 of 39

4-2 What Shapes an Ecosystem? Slide 1 of 39 4-2 What Shapes an Ecosystem? 1 of 39 Biotic and Abiotic Factors Biotic and Abiotic Factors Ecosystems are influenced by a combination of biological and physical factors. The biological influences on organisms

More information

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Ecology & Ecosystems Principles of Ecology Ecology is the study of the interactions

More information

I. The Components of the. Environment. Biotic Component. Abiotic Component. Energy Flow

I. The Components of the. Environment. Biotic Component. Abiotic Component. Energy Flow PLANT ECOLOGY Plant Ecology is a discipline of ecology which studies the distribution and abundance of plants, the effects of environmental factors upon the abundance of plants, and the interactions among

More information

4-2 What Shapes an Ecosystem?

4-2 What Shapes an Ecosystem? Biology 1 of 39 4-2 What Shapes an Ecosystem? 2 of 39 Biotic and Abiotic Factors Biotic and Abiotic Factors Ecosystems are influenced by a combination of biological and physical factors. 3 of 39 1 Biotic

More information

The study of living organisms in the natural environment How they interact with one another How the interact with their nonliving environment

The study of living organisms in the natural environment How they interact with one another How the interact with their nonliving environment The study of living organisms in the natural environment How they interact with one another How the interact with their nonliving environment ENERGY At the core of every organism s interactions with the

More information

Ontario Science Curriculum Grade 9 Academic

Ontario Science Curriculum Grade 9 Academic Grade 9 Academic Use this title as a reference tool. SCIENCE Reproduction describe cell division, including mitosis, as part of the cell cycle, including the roles of the nucleus, cell membrane, and organelles

More information

Hydra Effects in Stable Communities and Their Implications for System Dynamics

Hydra Effects in Stable Communities and Their Implications for System Dynamics Utah State University DigitalCommons@USU Mathematics and Statistics Faculty Publications Mathematics and Statistics 5-216 Hydra Effects in Stable Communities and Their Implications for System Dynamics

More information

Discuss the impact of biotic and abiotic factors on their environment and the significant ecological levels of organization.

Discuss the impact of biotic and abiotic factors on their environment and the significant ecological levels of organization. Learning Targets Discuss the impact of biotic and abiotic factors on their environment and the significant ecological levels of organization. Explain the difference between an organism s habitat and niche

More information

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to: Chapter 8 Biogeographic Processes Chapter Objectives Upon completion of this chapter the student will be able to: 1. Define the terms ecosystem, habitat, ecological niche, and community. 2. Outline how

More information

Unit 2 Ecology Study Guide. Niche Autotrophs Heterotrophs Decomposers Demography Dispersion

Unit 2 Ecology Study Guide. Niche Autotrophs Heterotrophs Decomposers Demography Dispersion Vocabulary to know: Ecology Ecosystem Abiotic Factors Biotic Factors Communities Population Unit 2 Ecology Study Guide Niche Autotrophs Heterotrophs Decomposers Demography Dispersion Growth Rate Carrying

More information

UNIT 5. ECOSYSTEMS. Biocenosis Biotope Biotic factors Abiotic factors

UNIT 5. ECOSYSTEMS. Biocenosis Biotope Biotic factors Abiotic factors UNIT 5. ECOSYSTEMS 1. Define: ecosystem, biocenosis, biotope, abiotic factor, biotic factor 2. Complete using this word: ecosphere, biosphere, ecology, ecosystem a) The is all of the living thing on Earth.

More information

Populations and Communities

Populations and Communities Populations and Communities Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. An organism s habitat must provide all of the following except a. food. b.

More information

Pee Dee Explorer. Science Standards

Pee Dee Explorer. Science Standards Science Standards About Pee Dee Explorer What does it mean when someone says they are from the "Pee Dee" of South Carolina? A place is bigger than its physical geography. A "sense of place" weaves together

More information

Types of Consumers. herbivores

Types of Consumers. herbivores no energy = no life Types of Consumers herbivores herbivore us vegetation to swallow or devour Types of Consumers herbivores the organisms that eat plants carnivores carnivore us flesh to swallow or devour

More information

Module 3. Basic Ecological Principles

Module 3. Basic Ecological Principles Module 3. Basic Ecological Principles Ecosystem Components Abiotic Biotic Species & Habitat The Biomes of North America Communities Energy & Matter Cycles in Ecosystems Primary Productivity Simple Ecosystem

More information

8/18/ th Grade Ecology and the Environment. Lesson 1 (Living Things and the Environment) Chapter 1: Populations and Communities

8/18/ th Grade Ecology and the Environment. Lesson 1 (Living Things and the Environment) Chapter 1: Populations and Communities Lesson 1 (Living Things and the Environment) 7 th Grade Ecology and the Environment Chapter 1: Populations and Communities organism a living thing (plant, animal, bacteria, protist, fungi) Different types

More information

Redefining the community: a species-based approach

Redefining the community: a species-based approach FORUM FORUM FORUM FORUM is intended for new ideas or new ways of interpreting existing information. It provides a chance for suggesting hypotheses and for challenging current thinking on ecological issues.

More information

Community Interactions

Community Interactions Name Class Date 4.2 Niches and Community Interactions Lesson Objectives Define niche. Describe the role competition plays in shaping communities. Describe the role predation and herbivory play in shaping

More information

CAMPBELL BIOLOGY IN FOCUS Overview: Communities in Motion Urry Cain Wasserman Minorsky Jackson Reece Pearson Education, Inc.

CAMPBELL BIOLOGY IN FOCUS Overview: Communities in Motion Urry Cain Wasserman Minorsky Jackson Reece Pearson Education, Inc. CAMPBELL BIOLOGY IN FOCUS Overview: Communities in Motion Urry Cain Wasserman Minorsky Jackson Reece 41 A biological community = ex: carrier crab : Species Interactions Lecture Presentations by Kathleen

More information

Biology Unit 2 Test. True/False Indicate whether the statement is true or false.

Biology Unit 2 Test. True/False Indicate whether the statement is true or false. Biology Unit 2 Test True/False Indicate whether the statement is true or false. 1. A climax community is usually the stable result of succession. 2. The colonization of new sites by communities of organisms

More information

A. The foxes will eat more wolves. B. The foxes will eat fewer wolves.

A. The foxes will eat more wolves. B. The foxes will eat fewer wolves. 1. The picture below shows an energy pyramid. What will most likely happen to the foxes and the wolves if the rabbits are removed? A. The foxes will eat more wolves. B. The foxes will eat fewer wolves.

More information

Organisms fill various energy roles in an ecosystem. Organisms can be producers, consumers, or decomposers

Organisms fill various energy roles in an ecosystem. Organisms can be producers, consumers, or decomposers Organisms fill various energy roles in an ecosystem An organism s energy role is determined by how it obtains energy and how it interacts with the other living things in its ecosystem Organisms can be

More information

Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation

Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation N. Nakagiri a, K. Tainaka a, T. Togashi b, T. Miyazaki b and J. Yoshimura a a Department of Systems Engineering, Shizuoka University,

More information

Food Web and Ecological Relationships Quiz

Food Web and Ecological Relationships Quiz Biology II Ms. Chen Name: Food Web and Ecological Relationships Quiz Date: Multiple Choice (2 pts each) Directions: Circle the best answer. 1. The loss of the producers in an ecosystem would most likely

More information

HOMEWORK ASSIGNMENTS FOR: Grade

HOMEWORK ASSIGNMENTS FOR: Grade HOMEWORK ASSIGNMENTS FOR: Date 4/25/18 Wednesday Teacher Ms. Weger Subject/Grade Science 7 th Grade In-Class: REVIEW FOR CH. 22 TEST Go over the 22-3 Think Questions Look at the data from the Oh Deer!

More information

The factors together:

The factors together: Biotic Interactions 8.11A DESCRIBE PRODUCER/CONSUMER, PREDATOR/PREY AND PARASITE/HOST RELATIONSHIPS AS THEY OCCUR IN FOOD WEBS WITHIN MARINE, FRESHWATER AND TERRESTRIAL ECOSYSTEMS Biotic These are the

More information

NOTES: FLOW OF ENERGY

NOTES: FLOW OF ENERGY NOTES: FLOW OF ENERGY Chapter 2 Principles of Ecology 2.2 Flow of Energy in an Ecosystem Energy in an Ecosystem Autotrophs (Producers) Organisms that use energy from sunlight or chemicals to produce food.

More information

Grade 9 Academic Science Review

Grade 9 Academic Science Review Grade 9 Academic Science Review Chapters 4-6: Matter (Chemistry) 1. Review the meanings of the WHMIS safety symbols. 2. a) Define physical property, list and explain examples of physical properties. b)

More information

Chapter 54: Community Ecology

Chapter 54: Community Ecology AP Biology Guided Reading Name Chapter 54: Community Ecology Overview 1. What does community ecology explore? Concept 54.1 Community interactions are classified by whether they help, harm, or have no effect

More information

Ecology Test Biology Honors

Ecology Test Biology Honors Do Not Write On Test Ecology Test Biology Honors Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The study of the interaction of living organisms with

More information

Use evidence of characteristics of life to differentiate between living and nonliving things.

Use evidence of characteristics of life to differentiate between living and nonliving things. Grade Big Idea Essential Questions Concepts Competencies Vocabulary 2002 Standards All living things have a common set characteristic needs and functions that separate them from nonliving things such as:

More information

Fundamental ecological principles

Fundamental ecological principles What Important Ideas Will Emerge in Your Study of Ecology? Fundamental ecological principles Application of the scientific method to answer specific ecological questions Ecology is a quantitative science

More information

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere)

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) WLHS / AP Bio / Monson Name CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) 52.1: Earth s climate varies by latitude and season and is changing rapidly (p. 1144-1150) 1) Distinguish

More information

GENERAL ECOLOGY STUDY NOTES

GENERAL ECOLOGY STUDY NOTES 1.0 INTRODUCTION GENERAL ECOLOGY STUDY NOTES A community is made up of populations of different organisms living together in a unit environment. The manner in which these organisms relate together for

More information

Round One All play. Each question = 1 point

Round One All play. Each question = 1 point Ecology Unit Review Round One All play Each question = 1 point Leaf cells are one type of tree cell. Which process occurs in a live leaf cell? a. Evolution b. Adaptation c. sugar production d. sexual reproduction

More information

Biogeography. Fig. 12-6a, p. 276

Biogeography. Fig. 12-6a, p. 276 Biogeography Fig. 12-6a, p. 276 Biogeographic Processes Energy and Matter Flow in Ecosystems Ecological Biogeography Ecological Succession Historical Biogeography Biogeographic Processes Biogeography examines

More information

Ecosystems/ Ecological Processes

Ecosystems/ Ecological Processes Ecosystems/ Ecological Processes I. Factors that Influence Ecosystem A. Limiting factors 1. Abiotic Factors 2. Biotic Factor Competition: interspecific and intraspecific Predation/Parasitism Amensalism

More information

B2 Revision Questions Part 1

B2 Revision Questions Part 1 B2 Revision Questions Part 1 Higher only questions are underlined Question 1 What are the two different ways that things can be classified? Answer 1 Artificially and naturally Question 2 What is natural

More information

Predator-Prey Interactions

Predator-Prey Interactions ADDITIONAL INVESTIGATION Predator-Prey Interactions Predation is a density-dependent limiting factor it is affected by the number of individuals in a given area. For example, the population of a predator

More information

Decomposers recycle nutrients (matter) but ENERGY IS ALWAYS LOST

Decomposers recycle nutrients (matter) but ENERGY IS ALWAYS LOST Decomposers recycle nutrients (matter) but ENERGY IS ALWAYS LOST What does this mean to us Stable ecosystems have a continual input of energy And more producers than consumers It takes less energy to produce

More information

Principles of Ecology

Principles of Ecology Principles of Ecology What is Ecology? Ecology is the study of interactions that occur between organisms and their environment Biosphere Recall that the biosphere includes all living things In order to

More information

Review Session #5. Evolu0on Ecology

Review Session #5. Evolu0on Ecology Review Session #5 Evolu0on Ecology The theory of EVOLUTION states that existing forms of life on earth have arisen from earlier forms over long periods of time. Some of the strongest evidence to support

More information

Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science

Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science Marine Resources Development Foundation/MarineLab Grades: 9, 10, 11, 12 States: AP Biology Course Description Subjects: Science Highlighted components are included in Tallahassee Museum s 2016 program

More information

4-2 What Shapes an Ecosystem?

4-2 What Shapes an Ecosystem? 4-2 What Shapes an Ecosystem? Biotic and Abiotic Factors Ecosystems are influenced by a combination of biological and physical factors. Biotic biological factors predation competition resources Biotic

More information

Ch20_Ecology, community & ecosystems

Ch20_Ecology, community & ecosystems Community Ecology Populations of different species living in the same place NICHE The sum of all the different use of abiotic resources in the habitat by s given species what the organism does what is

More information

Principles of Ecology

Principles of Ecology 2 Principles of Ecology section 1 Organisms and Their Relationships Before You Read On the lines below, list the organisms that you have encountered today. You share the same environment with these organisms.

More information

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Gene: A sequence of DNA that codes for a particular trait Gene pool: All

More information

Ecology: Part 1 Mrs. Bradbury

Ecology: Part 1 Mrs. Bradbury Ecology: Part 1 Mrs. Bradbury Biotic and Abiotic Factors All environments include living and non-living things, that affect the organisms that live there. Biotic Factors all the living organisms in an

More information

The Living World Continued: Populations and Communities

The Living World Continued: Populations and Communities The Living World Continued: Populations and Communities Ecosystem Communities Populations Review: Parts of an Ecosystem 1) An individual in a species: One organism of a species. a species must be genetically

More information

Effect of parity on productivity and sustainability of Lotka Volterra food chains

Effect of parity on productivity and sustainability of Lotka Volterra food chains J. Math. Biol. DOI 10.1007/s00285-013-0746-7 Mathematical Biology 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Effect of parity on productivity and sustainability of Lotka Volterra food chains Bounded orbits in

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

-The study of the interactions between the different species in an area

-The study of the interactions between the different species in an area Community Ecology -The study of the interactions between the different species in an area Interspecific Interactions -Interaction between different species -May be positive, negative, or neutral and include

More information

Ecological Relationships

Ecological Relationships Ecological Relationships http://www.univie.ac.at/zoologie/ecophys/crabsp-300dpi.jpg http://www.cs.umbc.edu/courses/undergraduate/201/fall06/projects/p1/fox-rabbit.jpg How do biotic factors influence each

More information

CHAPTER. Evolution and Community Ecology

CHAPTER. Evolution and Community Ecology CHAPTER 5 Evolution and Community Ecology Lesson 5.2 Species Interactions The zebra mussel has completely displaced 20 native mussel species in Lake St. Clair. Lesson 5.2 Species Interactions The Niche

More information

A top-down approach to modelling marine ecosystems in the context of physical-biological. modelling. Alain F. Vezina,, Charles Hannah and Mike St.

A top-down approach to modelling marine ecosystems in the context of physical-biological. modelling. Alain F. Vezina,, Charles Hannah and Mike St. A top-down approach to modelling marine ecosystems in the context of physical-biological modelling Alain F. Vezina,, Charles Hannah and Mike St.John The Ecosystem Modeller s s Universe Empiricists Data

More information

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided GHS S.4 BIOLOGY TEST 2 APRIL 2016 TIME: 1 HOUR Instructions: Answer all the questions in Section A and B. in the spaces provided ANSERS TO SECTION A 1 6 11 16 21 26 2 7 12 17 22 27 3 8 13 18 23 28 4 9

More information

Can Resource Pulses Improve Empower Acquisition of an Ecosystem?

Can Resource Pulses Improve Empower Acquisition of an Ecosystem? 6 Can Resource Pulses Improve Empower Acquisition of an Ecosystem? Seungjun Lee ABSTRACT The main question of this study was that if an ecosystem could be exposed to either constant external resources

More information

CBA Practice Exam - Ecology

CBA Practice Exam - Ecology CBA Practice Exam - Ecology For the following two questions, use the diagram below: 1. (TEKS 11B) The organisms in the illustration are all part of a pond community. What would likely happen to the fish

More information

STAAR Biology Assessment

STAAR Biology Assessment STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules as building blocks of cells, and that cells are the basic unit of

More information

Integration of biogeochemical processes in food web model: Step towards an E2E conceptualization of marine ecosystems

Integration of biogeochemical processes in food web model: Step towards an E2E conceptualization of marine ecosystems Integration of biogeochemical processes in food web model: Step towards an E2E conceptualization of marine ecosystems general concept, idea, personal beliefs (C. Solidoro ) A model is a representation

More information

Biogeographic Processes

Biogeographic Processes Biogeographic Processes Energy and Matter Flow in Ecosystems Ecological Biogeography Ecological Succession Historical Biogeography Biogeographic Processes Biogeography examines the distribution of plants

More information

International Arctic Research Center

International Arctic Research Center International Arctic Research Center IARC Project Reducing Uncertainty in Arctic Climate Change Prediction Distinguishing Natural and Anthropogenic Changes Testing Carbon Cycle Hydrologic Cycle Integration

More information

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology

HOMEWORK PACKET UNIT 2A. Part I: Introduction to Ecology CP Biology Name Date Period HOMEWORK PACKET UNIT 2A Part I: Introduction to Ecology Name Class Date 3.1 What Is Ecology? Studying Our Living Planet 1. What is ecology? 2. What does the biosphere contain?

More information

EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION

EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION Kenichi Nakazato Nagoya University Graduate School of Human Informatics nakazato@create.human.nagoya-u.ac.jp Takaya Arita Nagoya University

More information

Slide 1. Earth Science. Chapter 10 Ecosystems

Slide 1. Earth Science. Chapter 10 Ecosystems Slide 1 Earth Science Chapter 10 Ecosystems 1 Slide 2 Section 1 Living Things & the Environment Habitats Organism a living thing: Plants, animals, fungi, etc. Habitat an area that provides the things an

More information

Key Concepts 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology?

Key Concepts 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology? Chapter 3 The Biosphere 3 1 What is Ecology? 1. What different levels of organization do ecologists study? 2. What methods are used to study ecology? Ecology study of interactions between organisms and

More information

Terrestrial Trophic Cascades

Terrestrial Trophic Cascades Terrestrial Trophic Cascades Shurin et al. (2002) Across ecosystem comparison of the strength of trophic cascades Meta-analysis of 102 studies reporting plant biomass Cascades strongest in marine benthos>lakes

More information

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology 1 of 39 4-2 What Shapes an Ecosystem? 2 of 39 Biotic and Abiotic Factors Biotic and Abiotic Factors Ecosystems are influenced by a combination of biological and physical factors. Biotic biological

More information

THINGS I NEED TO KNOW:

THINGS I NEED TO KNOW: THINGS I NEED TO KNOW: 1. Prokaryotic and Eukaryotic Cells Prokaryotic cells do not have a true nucleus. In eukaryotic cells, the DNA is surrounded by a membrane. Both types of cells have ribosomes. Some

More information