Overview. Programmable logic (PLAs & PALs ) Short-hand notation. Programming the wire connections

Size: px
Start display at page:

Download "Overview. Programmable logic (PLAs & PALs ) Short-hand notation. Programming the wire connections"

Transcription

1 Overview Programmable logic (PLs & PLs ) Last lecture "Switching-network" logic blocks Multiplexers/selectors emultiplexers/decoders Programmable logic devices (PLs) Regular structures for 2-level logic oncept: Large array of uncommitted N/OR gates ctually NN/NOR gates You program the array by making or breaking connections Programmable block for sum-of-products logic Today PLs PLs PLs ROMs Tristates esign examples inputs N array product terms OR array outputs 2 Programming the wire connections Short-hand notation Fuse: omes connected; break unwanted connections nti-fuse: omes disconnected; make wanted connections raw multiple wires as a single wire or bus signifies a connection efore Programming fter Programming F0 = + '' F = ' + F2 = '' + F3 = ' + ' ' '' '' ' ' F0 F F2 F3 3 F0 = + '' F = ' + ' F0 F 4

2 PL example PLs versus PLs F = F2 = + + F3 = ' ' ' F4 = ' + ' + ' F5 = xor xor F6 = xnor xnor F F2 F3 F4 F5 F Think of as a memory-address decoder Memory bits F F2 F3 F4 F5 F6 ''' '' '' ' '' ' ' 5 We've been looking at PLs Fully programmable N / OR arrays an share N terms Programmable array logic (PL) Programmable N array OR array is prewired No sharing Ns heaper and faster than PLs 6 Example: to Gray code converter Example (con t): Wire a PL W X Y Z X X X X 0 X X 0 0 X X X X X X 0 X X X X X X X 0 0 X 0 K-map for W X X 0 0 K-map for Y X X X X X X K-map for X X 0 0 X X X K-map for Z Minimized functions: W = + + X = ' Y = + Z = ''' + + ' + '' 7 W X Y Z 8

3 Example: Wire a PL ompare implementations Minimized functions: W = + + X = ' Y = + Z = ''' + + ' + ' What do we do with the unused N gates? PL: No shared logic terms in this example 0 decoded functions (0 N gates) PL: Z requires 4 product terms 6 decoded functions (6 N gates) 6 unused N gates This decoder is a poor candidate for PLs/PLs 0 of 6 possible inputs are decoded No sharing among N terms etter option? Yes a ROM 9 0 Read-only memories (ROMs) ROM details Two dimensional array of stored s and 0s Input is an address ROM decodes all possible input addresses Stored row entry is called a "word" ROM output is the decoded word n address lines inputs decoder 2 n word lines memory array (2 n words by m bits) outputs Similar to a PL but with a fully decoded N array ompletely flexible OR array (unlike a PL) Extremely dense: One transistor per stored bit 2 n- 2 decoder 0 0 n- ddress +5V 0 m- Outputs Only one word line is active at any time it lines: Normally pulled high through resistor. If transistor stores a zero, then line pulls low when row is selected 2

4 Two-level combinational logic using a ROM Use a ROM to directly store a truth table No need to minimize logic Example: F0 = '' + '' + ' F = '' + '' + F2 = ''' + '' + '' F3 = ' + '' + ' F0 F F2 F ROM 8 words x 4 bits/word F 0 F F 2 F 3 address outputs You specify whether to store or 0 in each location in the ROM ROMs versus PLs/PLs ROMs enefits Quick to design, simple, dense Limitations Size doubles for each additional input an't exploit don't cares PLs/PLs enefits Logic minimization reduces size Limitations PL OR-plane has hard-wired fan-in nother answer: Field programmable gate arrays Learn about in Loose end: Tristates Tristate buffers have a control input Enabled: uffer works normally isabled: uffer output is disconnected Example: to 7-segment display controller The problem Input is a 4-bit digit (,,, ) Need signals to drive a display (7 outputs 0 6) 2: Tristate Mux module muxtri (In,In2,Sel,OUT); input In,In2,Sel; output OUT; In OUT tri OUT; bufif (OUT,In,Sel); bufif0 (OUT,In2,Sel); endmodule In2 Sel c5 c4 c0 c6 c c2 c3 c0 c c2 c3 c4 c5 c6 to 7 segment control-signal decoder 5 6

5 Formalize the problem Sum-of-products implementation Truth table Many don t cares hoose implementation target If ROM, we are done on't cares imply PL/PL may be good choice Implement design Minimize the logic Map into PL/PL unique product terms if we minimize individually 0 X 0 X 0 X 0 X X 0 X 0 X 0 X 0 0 X X 0 X X 0 X 0 = ' ' = ' ' + + ' 2 = + ' + 3 = ' ' + ' + ' + ' 4 = ' ' + ' 5 = + ' ' + ' + ' 6 = + ' + ' + ' 0 X 0 X X 0 0 X X 0 0 X X 7 8 etter SOP implementation PL implementation an do better than 5 product terms 2 Share terms among outputs only 9 unique product terms Each term not necessarily minimized 0 = '' = '' + + ' 2 = + ' + 3 = '' + ' + ' + ' 4 = '' + ' 5 = + '' + ' + ' 6 = + ' + ' + ' 2 0 = ' + + '' + ' + = ' + '' + + '' 2 = ' + ' + '' + + ' 3 = ' + ' + '' + ' 4 = '' + ' 5 = ' + '' + + ' 6 = ' + ' + ' = ' + + '' + ' + = ' + '' + + '' 2 = ' + ' + '' + + ' 3 = ' + ' + '' + ' 4 = '' + ' 5 = ' + '' + + ' 6 = ' + ' + ' ' ' ' ' '' '' ' 20

6 Example: Logical function unit Formalize the problem and solve Multipurpose functional block 3 control inputs () specify function 2 data inputs (operands) and output (same bit-width as input operands) 0 2 Function omments always logical OR 0 0 ( )' logical NN 0 xor logical xor 0 0 xnor logical xnor 0 logical N 0 ( + )' logical NOR 0 always 0 3 control inputs: 0,, 2 2 data inputs:, output: F 0 2 F Implementation choice: multiplexer with discrete gates : MUX S2 S S0 0 2 F 2 22 Pal Feature: Tri-stated outputs Pal Feature: Individually Tri-stated outputs Enable (ctive Low) Enable (ctive Low) 23 24

7 Pal Feature: Feedback terms Pal Feature: Registered outputs Pal Feature: Registers with bypass multiplexers 27

Chapter # 4: Programmable and Steering Logic

Chapter # 4: Programmable and Steering Logic hapter # : Programmable and teering Logic ontemporary Logic esign Randy H. Katz University of alifornia, erkeley June 993 No. - PLs and PLs Pre-fabricated building block of many N/OR gates (or NOR, NN)

More information

Ch 4. Combinational Logic Technologies. IV - Combinational Logic Technologies Contemporary Logic Design 1

Ch 4. Combinational Logic Technologies. IV - Combinational Logic Technologies Contemporary Logic Design 1 h 4. ombinational Logic Technologies Technologies ontemporary Logic Design 1 History - From Switches to Integrated ircuits The underlying implementation technologies for digital systems Technologies ontemporary

More information

Chapter # 4: Programmable and Steering Logic

Chapter # 4: Programmable and Steering Logic hapter Overview PLs and PLs hapter # : Programmable and teering Logic Non-Gate Logic witch Logic Multiplexers/electers and ecoders Tri-tate Gates/Open ollector Gates ROM ombinational Logic esign Problems

More information

COSC3330 Computer Architecture Lecture 2. Combinational Logic

COSC3330 Computer Architecture Lecture 2. Combinational Logic COSC333 Computer rchitecture Lecture 2. Combinational Logic Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Today Combinational Logic oolean lgebra Mux, DeMux, Decoder

More information

Programmable Logic Devices

Programmable Logic Devices Programmable Logic Devices Mohammed Anvar P.K AP/ECE Al-Ameen Engineering College PLDs Programmable Logic Devices (PLD) General purpose chip for implementing circuits Can be customized using programmable

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

:3 2 D e c o de r S ubs ys te m "0 " One "1 " Ze ro "0 " "0 " One I 1 "0 " One "1 " Ze ro "1 " Ze ro "0 " "0 "

:3 2 D e c o de r S ubs ys te m 0  One 1  Ze ro 0  0  One I 1 0  One 1  Ze ro 1  Ze ro 0  0 dvanced igital Logic esign EES 303 http://ziyang.eecs.northwestern.edu/eecs303/ 5:32 decoder/demultiplexer Teacher: Robert ick Office: L477 Tech Email: dickrp@northwestern.edu Phone: 847 467 2298 \EN 5:32

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples Overview rithmetic circuits Last lecture PLDs ROMs Tristates Design examples Today dders Ripple-carry Carry-lookahead Carry-select The conclusion of combinational logic!!! General-purpose building blocks

More information

Unit 9. Multiplexers, Decoders, and Programmable Logic Devices. Unit 9 1

Unit 9. Multiplexers, Decoders, and Programmable Logic Devices. Unit 9 1 Unit 9 Multiplexers, ecoders, and Programmable Logic evices Unit 9 Outline Multiplexers Three state buffers ecoders Encoders Read Only Memories (ROMs) Programmable logic devices ield Programmable Gate

More information

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation Outline Logic ircuits Introduction Logic Systems TTL MOS Logic Gates NOT, OR, N NOR, NN, XOR Implementation oolean lgebra ombinatorial ircuits Multipleer emultipleer rithmetic ircuits Simplifying Logic

More information

Boolean Logic Continued Prof. James L. Frankel Harvard University

Boolean Logic Continued Prof. James L. Frankel Harvard University Boolean Logic Continued Prof. James L. Frankel Harvard University Version of 10:18 PM 5-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. D Latch D R S Clk D Clk R S X 0 ~S 0 = R 0 ~R

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

Vidyalankar. S.E. Sem. III [EXTC] Digital System Design. Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form

Vidyalankar. S.E. Sem. III [EXTC] Digital System Design. Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form S.E. Sem. III [EXTC] Digital System Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form [5] (i) (42) 10 (ii) (17)

More information

Computer organization

Computer organization Computer organization Levels of abstraction Assembler Simulator Applications C C++ Java High-level language SOFTWARE add lw ori Assembly language Goal 0000 0001 0000 1001 0101 Machine instructions/data

More information

Multiplexers Decoders ROMs (LUTs) Page 1

Multiplexers Decoders ROMs (LUTs) Page 1 Multiplexers Decoders ROMs (LUTs) Page A Problem Statement Design a circuit which will select between two inputs (A and B) and pass the selected one to the output (Q). The desired circuit is called a multiplexer

More information

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR TOPIS: Logic Logic Expressions Logic Gates Simplifying Logic Expressions Sequential Logic (Logic with a Memory) George oole (85-864), English mathematician, oolean logic used in digital computers since

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 OMP2611: omputer Organization ombinational Logic OMP2611 Fall 2015 asics of Logic ircuits 2 its are the basis for binary number representation in digital computers ombining bits into patterns following

More information

EE141-Fall 2011 Digital Integrated Circuits

EE141-Fall 2011 Digital Integrated Circuits EE4-Fall 20 Digital Integrated Circuits Lecture 5 Memory decoders Administrative Stuff Homework #6 due today Project posted Phase due next Friday Project done in pairs 2 Last Lecture Last lecture Logical

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Digital Logic

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Digital Logic Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: Digital Logic Our goal for the next few weeks is to paint a a reasonably complete picture of how we can go from transistor

More information

Adders allow computers to add numbers 2-bit ripple-carry adder

Adders allow computers to add numbers 2-bit ripple-carry adder Lecture 12 Logistics HW was due yesterday HW5 was out yesterday (due next Wednesday) Feedback: thank you! Things to work on: ig picture, ook chapters, Exam comments Last lecture dders Today Clarification

More information

CS470: Computer Architecture. AMD Quad Core

CS470: Computer Architecture. AMD Quad Core CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flip-flops Functional bocks: Combinational, Sequential Instruction

More information

CSE370 HW3 Solutions (Winter 2010)

CSE370 HW3 Solutions (Winter 2010) CSE370 HW3 Solutions (Winter 2010) 1. CL2e, 4.9 We are asked to implement the function f(a,,c,,e) = A + C + + + CE using the smallest possible multiplexer. We can t use any extra gates or the complement

More information

Problem Set 4 Solutions

Problem Set 4 Solutions SE 26 igital omputers: Organization and Logical esign Jon Turner Problem Set 4 Solutions 1. Find a minimal logic expression for the NN/NOR circuit shown below. The circuit implements the expression ((()

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture)

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture) COSC 243 Introduction to Logic And Combinatorial Logic 1 Overview This Lecture Introduction to Digital Logic Gates Boolean algebra Combinatorial Logic Source: Chapter 11 (10 th edition) Source: J.R. Gregg,

More information

Lecture 4: Implementing Logic in CMOS

Lecture 4: Implementing Logic in CMOS Lecture 4: Implementing Logic in CMOS Mark Mcermott Electrical and Computer Engineering The University of Texas at ustin Review of emorgan s Theorem Recall that: () = + and = ( + ) (+) = and + = ( ) ()

More information

Part 1: Digital Logic and Gates. Analog vs. Digital waveforms. The digital advantage. In real life...

Part 1: Digital Logic and Gates. Analog vs. Digital waveforms. The digital advantage. In real life... Part 1: Digital Logic and Gates Analog vs Digital waveforms An analog signal assumes a continuous range of values: v(t) ANALOG A digital signal assumes discrete (isolated, separate) values Usually there

More information

Logic Design Combinational Circuits. Digital Computer Design

Logic Design Combinational Circuits. Digital Computer Design Logic Design Combinational Circuits Digital Computer Design Topics Combinational Logic Karnaugh Maps Combinational uilding locks Timing 2 Logic Circuit logic circuit is composed of: Inputs Outputs Functional

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memor Components Integrated Circuits BASIC LOGIC BLOCK - GATE - Logic

More information

SRC Language Conventions. Class 6: Intro to SRC Simulator Register Transfers and Logic Circuits. SRC Simulator Demo. cond_br.asm.

SRC Language Conventions. Class 6: Intro to SRC Simulator Register Transfers and Logic Circuits. SRC Simulator Demo. cond_br.asm. Fall 2006 S333: omputer rchitecture University of Virginia omputer Science Michele o SR Language onventions lass 6: Intro to SR Simulator Register Transfers and Logic ircuits hapter 2, ppendix.5 2 SR Simulator

More information

Chapter 4 (Lect 4) Encoders Multiplexers Three-State Gates More Verilog

Chapter 4 (Lect 4) Encoders Multiplexers Three-State Gates More Verilog Chapter 4 (Lect 4) Encoders Multiplexers Three-State Gates More Verilog Encoder: an encoder is the inverse of a decoder, it has 2 n or fewer input lines and n output lines Recall: 2 4 line decoder Inputs

More information

Chapter 3 Combinational Logic Design

Chapter 3 Combinational Logic Design Logic and Computer Design Fundamentals Chapter 3 Combinational Logic Design Part 2 Combinational Logic Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

Working with combinational logic

Working with combinational logic Working with combinational logic Simplification two-level simplification exploiting don t cares algorithm for simplification Logic realization two-level logic and canonical forms realized with NNs and

More information

EE 447 VLSI Design. Lecture 5: Logical Effort

EE 447 VLSI Design. Lecture 5: Logical Effort EE 447 VLSI Design Lecture 5: Logical Effort Outline Introduction Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary EE 4475: VLSI Logical Design Effort

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic Section 3: Combinational Logic Design Major Topics Design Procedure Multilevel circuits Design with XOR gates Adders and Subtractors Binary parallel adder Decoders Encoders Multiplexers Programmed Logic

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits. CS211 Computer Architecture Digital Logic l Topics l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Figures & Tables borrowed from:! http://www.allaboutcircuits.com/vol_4/index.html!

More information

vidyarthiplus.com vidyarthiplus.com vidyarthiplus.com ANNA UNIVERSITY- COMBATORE B.E./ B.TECH. DEGREE EXAMINATION - JUNE 2009. ELECTRICAL & ELECTONICS ENGG. - FOURTH SEMESTER DIGITAL LOGIC CIRCUITS PART-A

More information

Lecture 6: Logical Effort

Lecture 6: Logical Effort Lecture 6: Logical Effort Outline Logical Effort Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary Introduction Chip designers face a bewildering array

More information

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory SRAM Design Chapter Overview Classification Architectures The Core Periphery Reliability Semiconductor Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable

More information

Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1.

Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1. COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science Computer Science An Interdisciplinary Approach Section 6.1 ROBERT SEDGEWICK

More information

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 6 nnouncement: no office hours today. Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly

More information

Combinational Logic Design

Combinational Logic Design PEN 35 - igital System esign ombinational Logic esign hapter 3 Logic and omputer esign Fundamentals, 4 rd Ed., Mano 2008 Pearson Prentice Hall esign oncepts and utomation top-down design proceeds from

More information

Overview. Design Example: Automobile Lock

Overview. Design Example: Automobile Lock Overview Last Lecture: What is the course all about & why is it important? What is a digital system? What is a binary digital system? Boolean lgebra, Truth tables Operators: inversion, and, or, xor, xnor

More information

Basic Gate Repertoire

Basic Gate Repertoire asic Gate Repertoire re we sure we have all the gates we need? Just how many two-input gates are there? ND OR NND NOR SURGE Hmmmm all of these have 2-inputs (no surprise) each with 4 combinations, giving

More information

Show that the dual of the exclusive-or is equal to its compliment. 7

Show that the dual of the exclusive-or is equal to its compliment. 7 Darshan Institute of ngineering and Technology, Rajkot, Subject: Digital lectronics (2300) GTU Question ank Unit Group Questions Do as directed : I. Given that (6)0 = (00)x, find the value of x. II. dd

More information

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 15 Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 5 Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly Language What a pain! Understand

More information

Learning Objectives:

Learning Objectives: Learning Objectives: t the end of this topic you will be able to; draw a block diagram showing how -type flip-flops can be connected to form a synchronous counter to meet a given specification; explain

More information

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS

2009 Spring CS211 Digital Systems & Lab CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS CHAPTER 2: INTRODUCTION TO LOGIC CIRCUITS What will we learn? 2 Logic functions and circuits Boolean Algebra Logic gates and Synthesis CAD tools and VHDL Read Section 2.9 and 2.0 Terminology 3 Digital

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

ECE429 Introduction to VLSI Design

ECE429 Introduction to VLSI Design ECE429 Introduction to VLSI Design Lecture 5: LOGICAL EFFORT Erdal Oruklu Illinois Institute of Technology Some of these slides have been adapted from the slides provided by David Harris, Harvey Mudd College

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

3 Logic Function Realization with MSI Circuits

3 Logic Function Realization with MSI Circuits 3 Logic Function Realization with MSI Circuits Half adder A half-adder is a combinational circuit with two binary inputs (augund and addend bits) and two binary outputs (sum and carry bits). It adds the

More information

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors CSC258 Week 3 1 Logistics If you cannot login to MarkUs, email me your UTORID and name. Check lab marks on MarkUs, if it s recorded wrong, contact Larry within a week after the lab. Quiz 1 average: 86%

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits Digital Computers 2 LOGIC GATES

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 5 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

Digital Electronics H H

Digital Electronics H H Electronics In digital circuits only two values of Vin or Vout are considered, Low (L) or High (H). The two values correspond to the logical states True (T) or False (F). CMOS AND circuit (L)ow voltage

More information

Lecture 22 Chapters 3 Logic Circuits Part 1

Lecture 22 Chapters 3 Logic Circuits Part 1 Lecture 22 Chapters 3 Logic Circuits Part 1 LC-3 Data Path Revisited How are the components Seen here implemented? 5-2 Computing Layers Problems Algorithms Language Instruction Set Architecture Microarchitecture

More information

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan Where are we? Data Path Design Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath

More information

Working with Combinational Logic. Design example: 2x2-bit multiplier

Working with Combinational Logic. Design example: 2x2-bit multiplier Working with ombinational Logic Simplification two-level simplification exploiting don t cares algorithm for simplification Logic realization two-level logic and canonical forms realized with NNs and NORs

More information

Unit 3 Session - 9 Data-Processing Circuits

Unit 3 Session - 9 Data-Processing Circuits Objectives Unit 3 Session - 9 Data-Processing Design of multiplexer circuits Discuss multiplexer applications Realization of higher order multiplexers using lower orders (multiplexer trees) Introduction

More information

Combinational Logic Design Combinational Functions and Circuits

Combinational Logic Design Combinational Functions and Circuits Combinational Logic Design Combinational Functions and Circuits Overview Combinational Circuits Design Procedure Generic Example Example with don t cares: BCD-to-SevenSegment converter Binary Decoders

More information

MODULAR CIRCUITS CHAPTER 7

MODULAR CIRCUITS CHAPTER 7 CHAPTER 7 MODULAR CIRCUITS A modular circuit is a digital circuit that performs a specific function or has certain usage. The modular circuits to be introduced in this chapter are decoders, encoders, multiplexers,

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Decoders and Encoders CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

C.K. Ken Yang UCLA Courtesy of MAH EE 215B

C.K. Ken Yang UCLA Courtesy of MAH EE 215B Decoders: Logical Effort Applied C.K. Ken Yang UCLA yang@ee.ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 6.2.2 (Ratio-ed logic) W&H 6.2.2 Overview We have now gone through the basics of decoders,

More information

! Memory. " RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

! Memory.  RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell.  Used in most commercial chips ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 3, 8 Memory: Core Cells Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery Penn ESE 57 Spring 8 - Khanna

More information

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks ECE 545 Digital System Design with VHDL Lecture Digital Logic Refresher Part A Combinational Logic Building Blocks Lecture Roadmap Combinational Logic Basic Logic Review Basic Gates De Morgan s Law Combinational

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 23 Digital Logic & Computer Organization Spring 28 Combinational Building Blocks Lecture 5: Announcements Lab 2 prelab due tomorrow HW due Friday HW 2 to be posted on Thursday Lecture 4 to be replayed

More information

Slide Set 6. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 6. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 6 for ENEL 353 Fall 2017 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2017 SN s ENEL 353 Fall 2017 Slide Set 6 slide

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs Appendix B Review of Digital Logic Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Elect. & Comp. Eng. 2 DeMorgan Symbols NAND (A.B) = A +B NOR (A+B) = A.B AND A.B = A.B = (A +B ) OR

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

Contents. Chapter 3 Combinational Circuits Page 1 of 36

Contents. Chapter 3 Combinational Circuits Page 1 of 36 Chapter 3 Combinational Circuits Page of 36 Contents Combinational Circuits...2 3. Analysis of Combinational Circuits...3 3.. Using a Truth Table...3 3..2 Using a Boolean Function...6 3.2 Synthesis of

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

Where are we? Data Path Design

Where are we? Data Path Design Where are we? Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath Data Path Design

More information

Z = F(X) Combinational circuit. A combinational circuit can be specified either by a truth table. Truth Table

Z = F(X) Combinational circuit. A combinational circuit can be specified either by a truth table. Truth Table Lesson Objectives In this lesson, you will learn about What are combinational circuits Design procedure of combinational circuits Examples of combinational circuit design Combinational Circuits Logic circuit

More information

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY UNIT III Design of ombinational Logic ircuits Department of omputer Science SRM UNIVERSITY Introduction to ombinational ircuits Logic circuits for digital systems may be ombinational Sequential combinational

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

Prove that if not fat and not triangle necessarily means not green then green must be fat or triangle (or both).

Prove that if not fat and not triangle necessarily means not green then green must be fat or triangle (or both). hapter : oolean lgebra.) Definition of oolean lgebra The oolean algebra is named after George ool who developed this algebra (854) in order to analyze logical problems. n example to such problem is: Prove

More information

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification CMSC 33 Lecture 9 Homework 4 Questions Combinational Logic Components Programmable Logic rrays Introduction to Circuit Simplification UMC, CMSC33, Richard Chang CMSC 33, Computer Organization

More information

Combinational Logic Trainer Lab Manual

Combinational Logic Trainer Lab Manual Combinational Logic Trainer Lab Manual Control Inputs Microprocessor Data Inputs ff Control Unit '0' Datapath MUX Nextstate Logic State Memory Register Output Logic Control Signals ALU ff Register Status

More information

Digital Logic & Computer Design CS Professor Dan Moldovan Spring Copyright 2007 Elsevier 2-<101>

Digital Logic & Computer Design CS Professor Dan Moldovan Spring Copyright 2007 Elsevier 2-<101> Digital Logic & Computer Design CS 434 Professor Dan Moldovan Spring 2 Copyright 27 Elsevier 2- Chapter 2 :: Combinational Logic Design Digital Design and Computer Architecture David Money Harris and

More information

Ch 9. Sequential Logic Technologies. IX - Sequential Logic Technology Contemporary Logic Design 1

Ch 9. Sequential Logic Technologies. IX - Sequential Logic Technology Contemporary Logic Design 1 Ch 9. Sequential Logic Technologies Technology Contemporary Logic Design Overview Basic Sequential Logic Components FSM Design with Counters FSM Design with Programmable Logic FSM Design with More Sophisticated

More information

Karnaugh Maps (K-Maps)

Karnaugh Maps (K-Maps) Karnaugh Maps (K-Maps) Boolean expressions can be minimized by combining terms P + P = P K-maps minimize equations graphically Put terms to combine close to one another B C C B B C BC BC BC BC BC BC BC

More information

Unit 9. Multiplexers, Decoders, and Programmable Logic Devices

Unit 9. Multiplexers, Decoders, and Programmable Logic Devices Unit 9. Multiplexers, Decoders, and Prograable Logic Devices Multiplexers (Data Selectors) I I I 4 to MU Z I 3 I I I 7 8 to MU Z C 4 Z I I I I 8 Z C I CI C I n Z C I n k k I k 4 CI 5 CI 3 6 CI CI 3 7 I

More information

Chapter 2. Introduction. Chapter 2 :: Topics. Circuits. Nodes. Circuit elements. Introduction

Chapter 2. Introduction. Chapter 2 :: Topics. Circuits. Nodes. Circuit elements. Introduction hapter 2 Introduction igital esign and omputer rchitecture, 2 nd Edition avid Money Harris and Sarah L. Harris logic circuit is composed of: Inputs Outputs Functional specification Timing specification

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

Digital Logic & Computer Design CS Professor Dan Moldovan Spring 2010

Digital Logic & Computer Design CS Professor Dan Moldovan Spring 2010 Digital Logic & Computer Design CS 434 Professor Dan Moldovan Spring 2 Copyright 27 Elsevier 2- Chapter 2 :: Combinational Logic Design Digital Design and Computer rchitecture David Money Harris and

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

Software Engineering 2DA4. Slides 8: Multiplexors and More

Software Engineering 2DA4. Slides 8: Multiplexors and More Software Engineering 2DA4 Slides 8: Multiplexors and More Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of Digital Logic

More information

Appendix A: Digital Logic. CPSC 352- Computer Organization

Appendix A: Digital Logic. CPSC 352- Computer Organization - CPSC 352- Computer Organization -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties of oolean lgebra.6 The Sum-of-Products Form, and Logic Diagrams.7 The

More information

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions ombinational logic Possible logic functions of two variables asic logic oolean algebra, proofs by re-writing, proofs by perfect induction Logic functions, truth tables, and switches NOT, N, OR, NN,, OR,...,

More information