Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis"

Transcription

1 uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis Strain Energy Strain energy is stored within an elastic solid when the solid is deformed under load. In the absence of energy losses, such as from friction, damping or yielding, the strain energy is equal to the work done on the solid by external loads. Strain energy is a type of potential energy. Consider the work done on an elastic solid by a single point force F. When the elastic solid carries the load, F, it deforms with strains (ɛ and γ) and the material is stressed (σ and τ). is a displacement in the same location and in the same direction as a point force, F. and F are colocated. The work done by the force F on the elastic solid is the area under the force vs. displacement curve. W = F d () This work is stored as strain energy U within the elastic solid. U = 2 V (σ xx ɛ xx + σ yy ɛ yy + σ zz ɛ zz + τ xy γ xy + τ xz γ xz + τ yz γ yz ) dv. (2) This is a very general expression for the strain energy, U, and is not very practical for structural elements like bars, beams, trusses, or frames.

2 2 CEE 42L. Matrix Structural Analysis uke University Fall 22 H.P. Gavin. Bars For a bar in tension or compression, we have internal axial force, N, only, N x N x x dl ε xx dl σ xx so σ yy =, σ zz =, τ xy =, τ xz =, and τ yz =, and U = 2 V σ xx ɛ xx dv, where σ xx = N/A and ɛ xx = N/. Substituting dv = A dx we get U = 2 L N(x) 2 E(x) A(x) dx, (3) and if N, E, and A are constant U = N 2 L 2 E A. Alternatively, we may express the strain as a function of the displacements along the bar u x (x), ɛ xx = u x (x)/ x, and σ xx = E u x (x)/ x. Again substituting dv = A dx, U = 2 L E(x) A(x) and if E, A and u x / x = (u 2 u )/L are constants, ( ) 2 ux (x) dx, (4) x U = 2 L (u 2 u ) 2

3 Strain Energy and Matrix Methods of Structural Analysis 3.2 Beams For a beam in bending we have internal bending moments, M, and internal shear forces, V. For slender beams the effects of shear deformation are usually neglected. M zz y v" dl M zz x σ xx dl As in the axially loaded bar, σ yy =, σ zz =, τ xy =, τ xz =, and τ yz =, and U = 2 V σ xx ɛ xx dv. For bending, σ xx = My/I and ɛ xx = My/EI. Substituting dv = da dx, where A y2 da = I, so U = 2 L U = 2 A L M(x) 2 y 2 da dx, E(x) I(x) 2 M(x) 2 E(x) I(x) dx. (5) Alternatively, we may express the moment in terms of the curvature of the beam, φ 2 u y / x 2, M(x) = E(x) I(x) 2 u y (x) x 2, from which σ xx = E ( 2 u y / x 2 ) y and ɛ xx = ( 2 u y / x 2 ) y, so that U = 2 where, again, A y2 da = I, so U = 2 L L A E(x) E(x) I(x) ( 2 ) 2 u y (x) y 2 da dx x 2 ( 2 ) 2 u y (x) dx. (6) x 2

4 4 CEE 42L. Matrix Structural Analysis uke University Fall 22 H.P. Gavin.3 Summary External work is done by a set of forces, F i, on a linear elastic solid, producing a set of displacements, i, in the same locations and directions. F Fi i j F j n Fn F F i Fi Fi i n j Fj F j j F n F n n The work done by these forces is W = 2 F + 2 F F The external forces are resisted by internal moments, M, and axial forces, N. The total strain energy stored within the solid is U = M 2 2 L E I dx + Nj 2 L j (7) 2 j E j A j where the first term is the integral over all lengths of all the beams and the second term is the sum over all the bars. If torsion and shear are included, then two additional terms are T 2 2 L G J dx and V 2 2 L G A/α dx. Alternatively, we can think of external forces producing curvatures ( 2 u y / x 2 ) by bending, and axial stretches ( u x / x). In this case U = ( 2 ) 2 u y E I dx + E j A j (u 2 L x 2 2j u j ) 2 (8) 2 j L j If torsion and shear are included, then two additional terms are ( ) 2 ( ) 2 uxθ uy G J dx, and G A/α dx, 2 L x 2 L x where u xθ is the torsional rotation about the x-axis, u xθ / x is the torsional shear strain, γ xθ, (on the face perpendicular to the x-axis and in the θ-direction) and u y / x is the shear strain, γ xy, (on the face perpendicular to the x-axis and in the y-direction). Analyses using expressions of the form of equations (3), (5), or (7) are called force method or flexibility method analyses. Analyses using expressions of the form of equations (4), (6), or (8) are called displacement method or stiffness method analyses.

5 Strain Energy and Matrix Methods of Structural Analysis 5 2 Castigliano s Theorems 2. Castigliano s Theorem - Part I U = F d... strain energy F j U() j U + j j j F i = U i = U i A force, F i, on an elastic solid is equal to the derivative of the strain energy with respect to the displacement, i, in the direction and location of the force, F i. 2.2 Castigliano s Theorem - Part II U = df... complementary strain energy F+ j F j F j U* U*(F) F j j i = U F i = U F i A displacement, i, on an elastic solid is equal to the derivative of the complementary strain energy with respect to the force, F i, in the direction and location of the displacement, i. If the solid is linear elastic, then U = U.

6 6 CEE 42L. Matrix Structural Analysis uke University Fall 22 H.P. Gavin 3 Superposition Superposition is an extremely powerful idea that helps us solve problems that are statically indeterminate. To use the principle of superposition, the system must behave in a linear elastic fashion. The principle of superposition states: Any response of a system to multiple inputs can be represented as the sum of the responses to the inputs taken individually. By response we can mean a strain, a stress, a deflection, an internal force, a rotation, an internal moment, etc. By input we can mean an externally applied load, a temperature change, a support settlement, etc. 4 etailed Example of Castigliano s Theorem and Superposition An example of a statically indeterminate system with external loads w(x) and three redundant reaction forces, R B, R C, and R, is shown below. y w(x) EI A B L C x H In general, the displacements at the locations of the unknown reaction forces are known, and, in this example these displacements will be taken as zero: B =, C =, =. Invoking the principle of superposition, we may apply the external loads, (w(x)) and the unknown reactions (R B, R C, and R ) individually, and then sum-up the responses to each individual load. Further, we may represent the response to a reaction force, (e.g., R B ) as the response to a unit force co-located with the reaction force, times the value of the reaction force. Note that all four systems to the right of the equal sign in the following figure are statically determinate. Expressions for Mo(x), m (x), m 2 (x), m 3 (x), N o (x), n (x), n 2 (x), and n 3 (x) may be found from static equilibrium alone.

7 Strain Energy and Matrix Methods of Structural Analysis 7 w(x) A B C M(x) R B R C N(x) R = + w(x) A B C M (x) o m (x) B N (x) o n (x) * R B + m (x) 2 C n (x) 2 * R C + m (x) 3 n (x) 3 * R In equation form, the principle of superposition says: M(x) = M o (x) + m (x)r B + m 2 (x)r C + m 3 (x)r (9) N = N o + n R B + n 2 R C + n 3 R () (Note that in this particular example, N o (x) =, n =, n 2 =, n 3 =, m (x) = for x > x B, and m 2 (x) = for x > x C.)

8 8 CEE 42L. Matrix Structural Analysis uke University Fall 22 H.P. Gavin The total strain energy, U, in systems with bending strain energy and axial strain energy is, U = L M(x) 2 dx + N 2 H () 2 EI 2 We are told that the displacements at points B, C, and are all zero and we need to assume the structure behaves linear elastically in order to invoke superposition in the first place. Therefore, from Castigliano s Second Theorem, i = U F i = U F i, we obtain three expressions for the facts that B =, C =, and =. B = = U R B C = = U R C = = U R Inserting equation () into the three expressions for zero displacement at the fixed reactions, noting that EI and are constants in this problem, and noting that the strain energy, U, depends on the reactions R, only through the internal forces, M and N, we obtain B = = L M(x) M(x) dx + H EI R B N N R B C = = L M(x) M(x) dx + H EI R C N N R C = = L M(x) M(x) dx + H EI R N N R Now, from the superposition equations (9) and (), M(x)/ R B = m (x), M(x)/ R C = m 2 (x), M(x)/ R = m 3 (x), N(x)/ R B = n, N(x)/ R C = n 2, and N(x)/ R = n 3. Inserting these expressions and the superposition equations (9) and () into the above equations for B, C, and, B = = L [M o + m R B + m 2 R C + m 3 R ] m dx + H EI [N o + n R B + n 2 R C + n 3 R ] n C = = L [M o + m R B + m 2 R C + m 3 R ] m 2 dx + H EI [N o + n R B + n 2 R C + n 3 R ] n 2 = = L [M o + m R B + m 2 R C + m 3 R ] m 3 dx + H EI [N o + n R B + n 2 R C + n 3 R ] n 3 These three expressions contain the three unknown reactions R B, R C, and R. Everything else in these equations (m (x), m 2 (x)... n 3 ) can be found without knowing the unknown

9 Strain Energy and Matrix Methods of Structural Analysis 9 reactions. By taking the unknown reactions out of the integrals (they are constants), we can write these three equations in matrix form. L m m EI L m 2m EI L m 3m EI dx + n n H dx + n 2n H dx + n 3n H L m m 2 EI L m 2m 2 EI L m 3m 2 EI dx + n n 2 H dx + n 2n 2 H dx + n 3n 2 H L m m 3 EI L m 2m 3 EI L m 3m 3 EI dx + n n 3 H dx + n 2n 3 H dx + n 3n 3 H R B R C R = L Mom EI L Mom 2 EI L Mom 3 EI (2) This 3-by-3 matrix is called a flexibility matrix, F. The values of the terms in the flexibility matrix depend only on the responses of the structure to unit loads placed at various points in the structure. The flexibility matrix is therefore a property of the structure alone, and does not depend upon the loads on the structure. The vector on the right-hand-side depends on the loads on the structure. Recall that this matrix looks a lot like the matrix from the three-moment equation. All flexibility matrices share several properties: dx + Non H dx + Non 2H dx + Non 3H All flexibility matrices are symmetric. No diagonal terms are negative. Flexibility matrices for structures which can not move or rotate without deforming are positive definite. This means that all of the eigenvalues of a flexibility matrix describing a fixed structure are positive. The unknowns in a flexibility matrix equation are forces (or moments). The number of equations (rows of the flexibility matrix) equals the number of unknown forces (or moments). There are some fascinating cases in which the behavior does depend upon the loads, but that is a story for another day!

10 CEE 42L. Matrix Structural Analysis uke University Fall 22 H.P. Gavin It is instructive to now examine the meaning of the terms in the matrix, F F = L m m EI dx + n n H = δ displacement at due to unit force at F A B C F 2 = L m 2 m EI dx + n 2n H = δ 2 displacement at 2 due to unit force at F 2 A B C F 2 = L m m 2 EI dx + n n 2 H = δ 2 displacement at due to unit force at 2 F 2 A B C F 3 F 3 = L m 3 m EI dx + n 3n H = δ 3 displacement at 3 due to unit force at A B C The fact that F 2 = F 2 is called Maxwell s Reciprocity Theorem.

11 Strain Energy and Matrix Methods of Structural Analysis 5 Introductory Example of the Stiffness Matrix Method In this simple example, elements are springs with stiffness k. A spring with stiffness k > connecting point i to point j, will have a force f = k(d j d i ) where d i is the displacement of point i and d j is the displacement of point j. (Tension is positive so d i points into the spring and d j points away from the spring.) The stiffness matrix for this structure can be found using equilibrium and force-deflection relationships (f = kd) for the springs. #: F x = : f k d + k 2 (d 2 d ) = #2: F x = : f 2 k 2 (d 2 d ) k 4 d 2 + k 3 (d 3 d 2 ) = #3: F x = : f 3 k 3 (d 3 d 2 ) k 5 d 3 = In matrix form these three equations may be written: k + k 2 k 2 d k 2 k 2 + k 3 + k 4 k 3 d 2 k 3 k 3 + k 5 d 3 = The displacements are found by solving the stiffness matrix equation for d, d = K f. The matrix K is called a stiffness matrix. All stiffness matrices are symmetric. f f 2 f 3

12 2 CEE 42L. Matrix Structural Analysis uke University Fall 22 H.P. Gavin All diagonal terms of all stiffness matrices are positive. Stiffness matrices are diagonally dominant. This means that the diagonal terms are usually larger than the off-diagonal term. If the structure is not free to translate or rotate without deforming, then the stiffness matrix is positive definite. This mathematical property guarantees that the stiffness matrix is invertible, and a unique set of displacements, d, can be found by solving K d = f. The total potential energy, U, in this system of springs is U = 2 k d k 2(d 2 d ) k 3(d 3 d 2 ) k 4d k 5d 2 3. You should be able to confirm that this is equal to U = 2 dt K d Also, note that no matter what the values of the displacements, d, may be, the energy U is always positive. The statement 2 dt Kd > d is another way of saying that K is positive-definite. The set of forces required to deflect coordinate i by a deflection of unit equals the i-th column of the stiffness matrix. For example consider the case in which d =, d 2 =, and d 3 =, k + k 2 k 2 k 2 k 2 + k 3 + k 4 k 3 k 3 k 3 + k 5 = which is equal to the first column of the stiffness matrix. k + k 2 k 2,

13 Strain Energy and Matrix Methods of Structural Analysis 3 This fact may be used to derive the stiffness matrix: d =, d 2 =, d 3 = f = k + k 2, f 2 = k 2, f 3 =... st column d =, d 2 =, d 3 = f = k 2, f 2 = k 2 + k 3 + k 4, f 3 = k nd column d =, d 2 =, d 3 = f =, f 2 = k 3, f 3 = k 3 + k rd column

14 4 CEE 42L. Matrix Structural Analysis uke University Fall 22 H.P. Gavin 6 Basic Concepts of the Stiffness Matrix Method The previous example illustrates some of the basic concepts needed to apply the stiffness matrix method to structures made out of bars and beams. There are, however, a few additional complications. isplacements in structures can be vertical, horizontal, or rotational, and structural bars and beams have a more complicated force-displacement relationships than those of simple springs. In applying the matrix stiffness method of structural analysis, structures are described in terms of elements that connect nodes which can move in certain coordinate directions. 6. Elements In the stiffness matrix method, structures are modeled as assemblies of elements such as bars, beams, cables, shafts, plates, and walls. Elements connect the nodes of the structural model. Like the simple springs in the previous example, structural elements have clearly defined, albeit more complicated, force-displacement relationships. The stiffness properties of structural elements can be determined from equilibrium equations, Castigliano s Theorems, the principle of minimum potential energy, and/or the principle of virtual work. Structural elements can be mathematically assembled with one another (like making a structural system using a set of tinker-toys), into a system of equations for the entire structure. 6.2 Nodes The force-displacement relationship of a structural element is defined in terms of the forces and displacements at the nodes of the element. Nodes define the points where elements meet. The nodes in the model of a truss are at the joints between the truss bars. The nodes in the model of a beam or a frame are at the reaction locations, at locations at which elements connect to each other, and possibly at other intermediate locations. 6.3 Coordinates Coordinates describe the location and direction at which forces and displacements act on an element or on a structure. Trusses are loaded with vertical and horizontal forces at the joints. The joints of a 2 truss can move vertically and horizontally; so there are two coordinates per node in a 2 truss. Beams and frames carry vertical and horizontal loads as well as bending moments. The nodes of a 2 frame can move vertically, horizontally, and can rotate; so there are three coordinates per node in a 2 frame. Structural coordinates can be classified into two sets. isplacement coordinates have unknown displacements but know forces. Reaction coordinates have unknown forces but known displacements (usually zero).

15 Strain Energy and Matrix Methods of Structural Analysis Elements, Nodes and Coordinates Planar (2) truss bar elements have two nodes and four coordinates, two at each end. Space (3) truss bar elements have two nodes and six coordinates, three at each end. Planar (2) frame elements have two nodes and six coordinates, three at each end. Space (3) frame elements have two nodes and twelve coordinates, six at each end.

16 6 CEE 42L. Matrix Structural Analysis uke University Fall 22 H.P. Gavin 6.5 Structural Nodes and Coordinates Planar (2) truss nodes and coordinates Planar (2) frame nodes and coordinates

17 Strain Energy and Matrix Methods of Structural Analysis 7 7 Relate the Flexibility Matrix to the Stiffness Matrix Column j of the stiffness matrix: The set of forces at all coordinates required to produce a unit displacement at coordinate j Column j of the flexibility matrix: The set of displacements at all coordinates resulting from a unit force at coordinate j Stiffness matrix equation: Flexibility matrix equation: K K 2 K 3 K n K 2 K 22 K 23 K 2n K 3 K 32 K 33 K 3n K = F and K = F K n K n2 K n3 K nn F F 2 F 3 F n F 2 F 22 F 23 F 2n F 3 F 32 F 33 F 3n F n F n2 F n3 F nn d d 2 d 3. d n f f 2 f 3. f n = = f f 2 f 3. f n d d 2 d 3. d n A useful fact for 2-by-2 matrices... [ ] a b = c d ad bc [ d b c a ]... you should be able to prove this fact to yourself.

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Mathematical Properties of Stiffness Matrices

Mathematical Properties of Stiffness Matrices Mathematical Properties of Stiffness Matrices CEE 4L. Matrix Structural Analysis Department of Civil and Environmental Engineering Duke University Henri P. Gavin Fall, 0 These notes describe some of the

More information

Lecture 8: Flexibility Method. Example

Lecture 8: Flexibility Method. Example ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

More information

Preliminaries: Beam Deflections Virtual Work

Preliminaries: Beam Deflections Virtual Work Preliminaries: Beam eflections Virtual Work There are several methods available to calculate deformations (displacements and rotations) in beams. They include: Formulating moment equations and then integrating

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements CIVL 7/8117 Chapter 12 - Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness

More information

Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

More information

CHAPTER -6- BENDING Part -1-

CHAPTER -6- BENDING Part -1- Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Unit 15 Shearing and Torsion (and Bending) of Shell Beams

Unit 15 Shearing and Torsion (and Bending) of Shell Beams Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

Stiffness Matrices, Spring and Bar Elements

Stiffness Matrices, Spring and Bar Elements CHAPTER Stiffness Matrices, Spring and Bar Elements. INTRODUCTION The primary characteristics of a finite element are embodied in the element stiffness matrix. For a structural finite element, the stiffness

More information

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

Discontinuous Distributions in Mechanics of Materials

Discontinuous Distributions in Mechanics of Materials Discontinuous Distributions in Mechanics of Materials J.E. Akin, Rice University 1. Introduction The study of the mechanics of materials continues to change slowly. The student needs to learn about software

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,

More information

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability

More information

PLAT DAN CANGKANG (TKS 4219)

PLAT DAN CANGKANG (TKS 4219) PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, two-dimensional structural components of which

More information

Chapter 7 FORCES IN BEAMS AND CABLES

Chapter 7 FORCES IN BEAMS AND CABLES hapter 7 FORES IN BEAMS AN ABLES onsider a straight two-force member AB subjected at A and B to equal and opposite forces F and -F directed along AB. utting the member AB at and drawing the free-body B

More information

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b. From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

More information

Lecture 3: The Concept of Stress, Generalized Stresses and Equilibrium

Lecture 3: The Concept of Stress, Generalized Stresses and Equilibrium Lecture 3: The Concept of Stress, Generalized Stresses and Equilibrium 3.1 Stress Tensor We start with the presentation of simple concepts in one and two dimensions before introducing a general concept

More information

Strain Energy in Linear Elastic Solids

Strain Energy in Linear Elastic Solids Strain Energ in Linear Eastic Soids CEE L. Uncertaint, Design, and Optimiation Department of Civi and Environmenta Engineering Duke Universit Henri P. Gavin Spring, 5 Consider a force, F i, appied gradua

More information

Content. Department of Mathematics University of Oslo

Content. Department of Mathematics University of Oslo Chapter: 1 MEK4560 The Finite Element Method in Solid Mechanics II (January 25, 2008) (E-post:torgeiru@math.uio.no) Page 1 of 14 Content 1 Introduction to MEK4560 3 1.1 Minimum Potential energy..............................

More information

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

More information

Gyroscopic matrixes of the straight beams and the discs

Gyroscopic matrixes of the straight beams and the discs Titre : Matrice gyroscopique des poutres droites et des di[...] Date : 29/05/2013 Page : 1/12 Gyroscopic matrixes of the straight beams and the discs Summarized: This document presents the formulation

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Version CE IIT, Kharagpur Lesson The ultistory Frames with Sidesway Version CE IIT, Kharagpur Instructional Objectives

More information

1.105 Solid Mechanics Laboratory

1.105 Solid Mechanics Laboratory 1.105 Solid Mechanics Laboratory General Information Fall 2003 Prof. Louis Bucciarelli Rm 5-213 x3-4061 llbjr@mit.edu TA: Attasit Korchaiyapruk, Pong Rm 5-330B x 3-5170 attasit@mit.edu Athena Locker: /mit/1.105/

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

Structural Element Stiffness, Mass, and Damping Matrices

Structural Element Stiffness, Mass, and Damping Matrices Structural Element Stiffness, Mass, and Damping Matrices CEE 541. Structural Dynamics Department of Civil and Environmental Engineering Duke University Henri P. Gavin Fall 18 1 Preliminaries This document

More information

Beams. Beams are structural members that offer resistance to bending due to applied load

Beams. Beams are structural members that offer resistance to bending due to applied load Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

More information

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon. Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Dynamic Model of a Badminton Stroke

Dynamic Model of a Badminton Stroke ISEA 28 CONFERENCE Dynamic Model of a Badminton Stroke M. Kwan* and J. Rasmussen Department of Mechanical Engineering, Aalborg University, 922 Aalborg East, Denmark Phone: +45 994 9317 / Fax: +45 9815

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy

More information

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13 ARC241 Structural Analysis I Lecture 10: MM1.3 MM1.13 MM1.4) Analysis and Design MM1.5) Axial Loading; Normal Stress MM1.6) Shearing Stress MM1.7) Bearing Stress in Connections MM1.9) Method of Problem

More information

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

More information

Portal Frame Calculations Lateral Loads

Portal Frame Calculations Lateral Loads Portal Frame Calculations Lateral Loads Consider the following multi-story frame: The portal method makes several assumptions about the internal forces of the columns and beams in a rigid frame: 1) Inflection

More information

Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c

Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c Now we are going to use our free body analysis to look at Beam Bending (WL1) Problems 17, F00Q1, F00Q1c One of the most useful applications of the free body analysis method is to be able to derive equations

More information

2 Introduction to mechanics

2 Introduction to mechanics 21 Motivation Thermodynamic bodies are being characterized by two competing opposite phenomena, energy and entropy which some researchers in thermodynamics would classify as cause and chance or determinancy

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

1-1 Locate the centroid of the plane area shown. 1-2 Determine the location of centroid of the composite area shown.

1-1 Locate the centroid of the plane area shown. 1-2 Determine the location of centroid of the composite area shown. Chapter 1 Review of Mechanics of Materials 1-1 Locate the centroid of the plane area shown 650 mm 1000 mm 650 x 1- Determine the location of centroid of the composite area shown. 00 150 mm radius 00 mm

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

Lecture 27: Structural Dynamics - Beams.

Lecture 27: Structural Dynamics - Beams. Chapter #16: Structural Dynamics and Time Dependent Heat Transfer. Lectures #1-6 have discussed only steady systems. There has been no time dependence in any problems. We will investigate beam dynamics

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

More information

PLAXIS. Scientific Manual

PLAXIS. Scientific Manual PLAXIS Scientific Manual 2016 Build 8122 TABLE OF CONTENTS TABLE OF CONTENTS 1 Introduction 5 2 Deformation theory 7 2.1 Basic equations of continuum deformation 7 2.2 Finite element discretisation 8 2.3

More information

METHOD OF LEAST WORK

METHOD OF LEAST WORK METHOD OF EAST WORK 91 METHOD OF EAST WORK CHAPTER TWO The method of least work is used for the analysis of statically indeterminate beams, frames and trusses. Indirect use of the Castigliano s nd theorem

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

1 Stress and Strain. Introduction

1 Stress and Strain. Introduction 1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may

More information

3D problem: Fx Fy Fz. Forces act parallel to the members (2 5 ) / 29 (2 5 ) / 29

3D problem: Fx Fy Fz. Forces act parallel to the members (2 5 ) / 29 (2 5 ) / 29 problem: x y z 0 t each joint a a a a 5a j i W k y z x x y z Equations:S x =S y =S z =0 at each joint () Unknowns: Total of : Member forces,,, () Reactions : x, y, z, x, y, z, x, y, z (9) y z x W orces

More information

Due Monday, September 14 th, 12:00 midnight

Due Monday, September 14 th, 12:00 midnight Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided

More information

Modeling Mechanical Systems

Modeling Mechanical Systems Modeling Mechanical Systems Mechanical systems can be either translational or rotational. Although the fundamental relationships for both types are derived from Newton s law, they are different enough

More information

MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (1-17-08) Last time Introduction Units Reliability engineering

More information

Moment Distribution The Real Explanation, And Why It Works

Moment Distribution The Real Explanation, And Why It Works Moment Distribution The Real Explanation, And Why It Works Professor Louie L. Yaw c Draft date April 15, 003 To develop an explanation of moment distribution and why it works, we first need to develop

More information

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit)

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit) PROBLEM #1.1 (4 + 4 points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

More information

Geometry-dependent MITC method for a 2-node iso-beam element

Geometry-dependent MITC method for a 2-node iso-beam element Structural Engineering and Mechanics, Vol. 9, No. (8) 3-3 Geometry-dependent MITC method for a -node iso-beam element Phill-Seung Lee Samsung Heavy Industries, Seocho, Seoul 37-857, Korea Hyu-Chun Noh

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

Nonlinear static analysis PUSHOVER

Nonlinear static analysis PUSHOVER Nonlinear static analysis PUSHOVER Adrian DOGARIU European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Structural

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

EQUILIBRIUM and ELASTICITY

EQUILIBRIUM and ELASTICITY PH 221-1D Spring 2013 EQUILIBRIUM and ELASTICITY Lectures 30-32 Chapter 12 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 12 Equilibrium and Elasticity In this chapter we will

More information

C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.docx 6

C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.docx 6 C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.doc 6 p. 1 of Torsion of circular bar The cross-sections rotate without deformation. The deformation that does occur results from

More information

Theory and Analysis of Structures

Theory and Analysis of Structures 7 Theory and nalysis of Structures J.Y. Richard iew National University of Singapore N.E. Shanmugam National University of Singapore 7. Fundamental Principles oundary Conditions oads and Reactions Principle

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

Finite element modelling of structural mechanics problems

Finite element modelling of structural mechanics problems 1 Finite element modelling of structural mechanics problems Kjell Magne Mathisen Department of Structural Engineering Norwegian University of Science and Technology Lecture 10: Geilo Winter School - January,

More information

UNIT-II MOVING LOADS AND INFLUENCE LINES

UNIT-II MOVING LOADS AND INFLUENCE LINES UNIT-II MOVING LOADS AND INFLUENCE LINES Influence lines for reactions in statically determinate structures influence lines for member forces in pin-jointed frames Influence lines for shear force and bending

More information

Structural Analysis III The Moment Area Method Mohr s Theorems

Structural Analysis III The Moment Area Method Mohr s Theorems Structural Analysis III The Moment Area Method Mohr s Theorems 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Purpose... 4. Theory... 6.1 asis... 6. Mohr s First Theorem (Mohr I)... 8.3 Mohr

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

Numerical Limit Analysis of Rigid Plastic Structures

Numerical Limit Analysis of Rigid Plastic Structures Numerical Limit Analysis of Rigid Plastic Structures Hector Andres Tinoco Navarro Institute of Technology and Innovation University of Southern Denmark Supervisors: Prof. Ph.D. Linh Cao Hoang University

More information

SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION METHOD SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

More information

Statics and Influence Functions From a Modern Perspective

Statics and Influence Functions From a Modern Perspective Statics and Influence Functions From a Modern Perspective Friedel Hartmann Peter Jahn Statics and Influence Functions From a Modern Perspective 123 Friedel Hartmann Department of Civil Engineering University

More information

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support 4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Dr. Rakesh K Kapania Aerospace and Ocean Engineering Department Virginia Polytechnic Institute and State University, Blacksburg, VA AOE 524, Vehicle Structures Summer,

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.2 Lecture - 28 Matrix Analysis of Beams and Grids (Refer Slide Time: 00:23)

More information

Structural Matrices in MDOF Systems

Structural Matrices in MDOF Systems in MDOF Systems http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 9, 2016 Outline Additional Static Condensation

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

Presented By: EAS 6939 Aerospace Structural Composites

Presented By: EAS 6939 Aerospace Structural Composites A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have

More information

Stress transformation and Mohr s circle for stresses

Stress transformation and Mohr s circle for stresses Stress transformation and Mohr s circle for stresses 1.1 General State of stress Consider a certain body, subjected to external force. The force F is acting on the surface over an area da of the surface.

More information

Thermomechanical Effects

Thermomechanical Effects 3 hermomechanical Effects 3 Chapter 3: HERMOMECHANICAL EFFECS ABLE OF CONENS Page 3. Introduction..................... 3 3 3.2 hermomechanical Behavior............... 3 3 3.2. hermomechanical Stiffness

More information

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis Rotating Machinery, 10(4): 283 291, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490447728 Deflections and Strains in Cracked Shafts due to Rotating

More information

Basics of Finite Element Analysis. Strength of Materials, Solid Mechanics

Basics of Finite Element Analysis. Strength of Materials, Solid Mechanics Basics of Finite Element Analysis Strength of Materials, Solid Mechanics 1 Outline of Presentation Basic concepts in mathematics Analogies and applications Approximations to Actual Applications Improvisation

More information

FORMULATION OF THE INTERNAL STRESS EQUATIONS OF PINNED PORTAL FRAMES PUTTING AXIAL DEFORMATION INTO CONSIDERATION

FORMULATION OF THE INTERNAL STRESS EQUATIONS OF PINNED PORTAL FRAMES PUTTING AXIAL DEFORMATION INTO CONSIDERATION FORMUATION OF THE INTERNA STRESS EQUATIONS OF PINNED PORTA FRAMES PUTTING AXIA DEFORMATION INTO CONSIDERATION Okonkwo V. O. B.Eng, M.Eng, MNSE, COREN.ecturer, Department of Civil Engineering, Nnamdi Azikiwe

More information

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015 skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

More information

Sixth Term Examination Papers 9475 MATHEMATICS 3

Sixth Term Examination Papers 9475 MATHEMATICS 3 Sixth Term Examination Papers 9475 MATHEMATICS 3 Morning WEDNESDAY 26 JUNE 2013 Time: 3 hours Additional Materials: Answer Booklet Formulae Booklet INSTRUCTIONS TO CANDIDATES Please read this page carefully,

More information

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDFCATO Publishers, D-79104 Freiburg, Germany A NEW SMPLFED AND EFFCENT TECHNQUE FOR FRACTURE BEHAVOR ANALYSS OF CONCRETE STRUCTURES K.

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 4.3 Lecture - 24 Matrix Analysis of Structures with Axial Elements (Refer

More information

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

The thin plate theory assumes the following deformational kinematics:

The thin plate theory assumes the following deformational kinematics: MEG6007 (Fall, 2017) - Solutions of Homework # 8 (ue on Tuesay, 29 November 2017) 8.0 Variational Derivation of Thin Plate Theory The thin plate theory assumes the following eformational kinematics: u

More information

Plastic Analysis and Design of Steel Structures

Plastic Analysis and Design of Steel Structures Plastic Analysis and Design of Steel Structures This page intentionally left blank Plastic Analysis and Design of Steel Structures M. Bill Wong Department of Civil Engineering Monash University, Australia

More information