Symmetric Bending of Beams

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications for strength based design and analysis of symmetric bending of beams. Develop the discipline to visualize the normal and shear stresses in symmetric bending of beams. 6-1

2 6.5 Due to the action of the external moment M z and force P, the rigid plate shown in Fig. P6.5 was observed to rotate by 2 o and the normal strain in bar 1 was found ε 1 = 2000 µ in in. Both bars have an area of cross-section of = 1/2 in 2 and a Modulus of Elasticity of E = 30,000 ksi. Determine the applied moment M z and force P. z y x P 2 in Bar 2 Bar 1 4 in M z 48 in Fig. P

3 Internal Bending Moment M z = yσ xx d σ d xx = 0 bove equations are independent of material model as these equations represents static equivalency between the normal stress on the entire cross-section and the internal moment. The line on the cross-section where the bending normal stress is zero is called the neutral axis. Location of neutral axis is chosen to satisfy σ d xx = 0. Origin of y is always at the neutral axis, irrespective of the material model. 6-3

4 6.8 Steel (E steel = 30,000 ksi) strips are securely attached to a wooden (E wood = 2,000 ksi) beam as shown below. The normal strain at the cross-section due to bending about the z-axis is ε xx = 100 y µ where y is measured in inches, and the dimensions of the cross-section are d =2 in, h W =4 in and h S = (1/8) in. Determine the equivalent internal moment M z. y d Steel h S z Wood h W Steel h S 6-4

5 Theory of symmetric bending of beams Limitations The length of the member is significantly greater then the greatest dimension in the cross-section. We are away from the regions of stress concentration. The variation of external loads or changes in the cross-sectional areas are gradual except in regions of stress concentration. The cross-section has a plane of symmetry. The loads are in the plane of symmetry. The load direction does not change with deformation. The external loads are not functions of time. 6-5

6 Theory objectives: To obtain a formula for the bending normal stress σ xx, and bending shear stress τ xy in terms of the internal moment M z and the internal shear force V y. To obtain a formula for calculation of the beam deflection v(x). The distributed force p(x), has units of force per unit length, and is considered positive in the positive y-direction. Displacements Kinematics 1 External Forces and Moments Strains 4 Equilibrium Internal Forces and Moments Static Equivalency 3 Stresses Material Models 2 6-6

7 Kinematics z y x Original Grid Deformed Grid ssumption 1 ssumption 2 Squashing, i.e., dimensional changes in the y-direction, is significantly smaller than bending. v ε yy = 0 y v = v ( x ) Plane sections before deformation remain plane after deformation. u = u o ψ y y x ψ u o ssumption 3 Plane perpendicular to the beam axis remain nearly perpendicular after deformation. γ xy

8 ssumption 4 B 1 B 2 O C ψ ψ u D 1 D R R - y y Strains are small. B y 1 D 1 ψ bending normal strain ε xx varies linearly with y and has maximum value at either the top or the bottom of the beam. 2 1 d v --- = ( x) is the curvature of the deformed beam and R is the radius R dx 2 of curvature of the deformed beam. Material Model ssumption 5 Material is isotropic. ssumption 6 Material is linearly elastic. ssumption 7 There are no inelastic strains. From Hooke s Law: σ xx tanψ ψ Method I = dv dx B = CD = CD 1 B 1 B ε xx = = B ε xx = Method II y --- R ( R y) ψ R ψ R ψ u = ysin ψ y ψ 2 u ε xx dψ d v = lim = y = y ( x) x 0 x dx dx 2 2 d v ε xx = y ( x) dx 2 2 d v = Eε xx, we obtainσ xx = Ey ( x) dx 2 6-8

9 Location of neutral axis 2 σ d d v xx = 0 or Ey ( x) d or x 2 = 0 Eyd = 0 d ssumption 8 Material is homogenous across the cross-section of the beam. y d = 0 Neutral axis i.e, the origin, is at the centroid of the cross-section constructed from linear-elastic, isotropic, homogenous material. The axial problem and bending problem are de-coupled if the origin is at the centroid for linear-elastic, isotropic, homogenous material bending normal stress σ xx varies linearly with y and is zero at the centroid. bending normal stress σ xx is maximum at a point farthest from the neutral axis (centroid). 6-9

10 6.20 The cross-section of a beam with a coordinate system that has an origin at the centroid C of the cross-section is shown. The normal strain at point due to bending about the z-axis, and the Modulus of Elasticity are as given. (a) Plot the stress distribution across the cross-section. (b) Determine the maximum bending normal stress in the cross-section. (c) Determine the equivalent internal bending moment M z by integration. ε xx = 200 µ E = 8000 ksi z 4 in y C 4 in 1 in 1 in 6-10

11 Sign convention for internal bending moment M z = yσ xx d The direction of positive internal moment M z on a free body diagram must be such that it puts a point in the positive y direction into compression. 6-11

12 Sign convention for internal shear force Internal Forces and Moment necessary for equilibrium Recall ssumption 3: Plane perpendicular to the beam axis remain nearly perpendicular after deformation. γ xy 0. From Hooke s Law: τ xy = Gγ xy Bending shear stress is small but not zero. Check on theory: The maximum bending normal stress σ xx in the beam should be nearly an order of magnitude greater than the maximum bending shear stress τ xy. V y = τ xy d The direction of positive internal shear force on a free body diagram is in the direction of positive shear stress on the surface. 6-12

13 6.26 beam and loading in three different coordinate system is shown. Determine the internal shear force and bending moment at the section containing point for the three cases shown using the sign convention described in Section kn/m 5 kn/m 5 kn/m x x x y 0.5 m 0.5 m 0.5 m 0.5 m 0.5 m y Case 1 Case 2 Case m y 6-13

14 Flexure Formulas σ xx = 2 d v Ey ( x) dx d v d v 2 M z = yσ xx d = y Ey ( x) d x 2 = ( x) Ey d d x 2 d For homogenous cross-sections 2 d v Moment-curvature equation: M z = EI zz 2 d x I zz is the second area moment of inertia about z-axis. The quantity EI zz is called the bending rigidity of a beam cross-section. Flexure stress formula: σ xx = M z y I zz Two options for finding M z On a free body diagram M z is drawn as per the sign convention irrespective of the loading. positive values of stress σ xx are tensile negative values of σ xx are compressive. On a free body diagram M z is drawn at the imaginary cut in a direction to equilibrate the external loads. The tensile and compressive nature of σ xx must be determined by inspection. 6-14

15 6.20 The cross-section of a beam with a coordinate system that has an origin at the centroid C of the cross-section is shown. The normal strain at point due to bending about the z-axis, and the Modulus of Elasticity are as given. (d) Determine the equivalent internal bending moment M z by flexure formula. ε xx = 200 µ E = 8000 ksi z 4 in y C 4 in 1 in 1 in 6-15

16 Class Problem 1 The bending normal stress at point B is 15 ksi. (a) Determine the maximum bending normal stress on the cross-section. (b) What is the bending normal strain at point if E = 30,000 ksi. 6-16

17 6.15 Fig. P6.15(a) shows four separate wooden strips that bend independently about the neutral axis passing through the centroid of each strip. Fig. P6.15(b) shows the four strips are glued together and bend as a unit about the centroid of the glued cross-section. (a) Show that I G = 16I S, where I G is the area moment of inertias for the glued crosssection and I S is the total area moment of inertia of the four separate beams. (b) lso show, where σ G and σ S are the maximum bending normal stress at any cross-section for the glued and separate beams, respectively. (a) σ G = σ S 4 (b) Fig. P

18 6.30 For the beam and loading shown, draw an approximate deformed shape of the beam. By inspection determine whether the bending normal stress is tensile or compressive at points and B. M B Class Problem For the beam and loading shown, draw an approximate deformed shape of the beam. By inspection determine whether the bending normal stress is tensile or compressive at points and B. B 6-18

19 6.41 The beam, loading and the cross-section of the beam are as shown. Determine the bending normal stress at point and the maximum bending normal stress in the section containing point 6-19

20 6.46 wooden (E = 10 GPa) rectangular beam, loading and crosssection are as shown in Fig. P6.46. The normal strain at point in Fig. P6.46 was measured as ε xx = 600 µ. Determine the distributed force w that is acting on the beam. w kn/m 100 mm x 25mm 0.5 m 0.5 m Fig. P

21 Shear and Moment by Equilibrium Differential Beam Element Differential Equilibrium Equations: dv y dx The above equilibrium equations are applicable at all points on the beam except at points where there is a point (concentrated) force or point moment. Two Options for finding V y and M z as a function of x Integrate equilibrium equations and find integration constants by using boundary conditions or continuity conditions. This approach is preferred if p not uniform or linear. Make an imaginary cut at some location x, draw free body diagram and use static equilibrium equations to find V y and M z. Check results using the differential equilibrium equations above. This approach is preferred if p is uniform or linear. = p dm z dx = V y 6-21

22 6.51 (a) Write the equations for shear force and bending moments as a function of x for the entire beam. (b) Show your results satisfy the differential equilibrium equations. y 5 kn/m x 3 m 6-22

23 6.58 For the beam shown in Fig. P6.58, (a)write the shear force and moment equation as a function of x in segment CD and segment DE. (b) Show that your results satisfy the differential equilibrium equations. (c) What are the shear force and bending moment value just before and just after point D. Fig. P6.58 Class Problem 3 Write the shear force and moment equation as a function of x in segment B. 6-23

24 Shear and Moment Diagrams Shear and Moment diagrams are a plots of internal shear force V y and internal bending moment M z vs. x. Distributed force n integral represent area under the curve. To avoid subtracting positive areas and adding negative areas, define V = V y x 2 x 2 V 2 = V 1 + pdx M 2 = M 1 + Vdx x 1 x 1 y x (a) (b) (c) (d) w x 1 x 2 x 1 x 2 x 1 x 2 x 1 x 2 w V 1 V 2 =V 1 -w(x 2 -x 1 ) V V 2 =V 1 +w(x 2 -x 1 ) V V V x x 1 x 1 x 2 2 V V x 1 1 x 1 2 -V y -V y -V -V y y x x V 2 =V 1 -w(x 2 -x 1 ) 2 V V 1 2 =V 1 +w(x 2 -x 1 ) 1 x Increasing incline of tangent 1 Decreasing incline of tangent Increasing incline of tangent Decreasing incline of tangent M M 2 M 2 1 M z M1 M z M 1 M z M M 1 z M 2 x 1 x 2 x 1 x 2 M 2 x 1 x 2 x 1 x 2 If V y is linear in an interval then M z will be a quadratic function in that interval. Curvature rule for quadratic M z curve. The curvature of the M z curve must be such that the incline of the tangent to the M z curve must increase (or decrease) as the magnitude of the V increases (or decreases). or The curvature of the moment curve is concave if p is positive, and convex if p is negative. 6-24

25 Point Force and Moments Internal shear force jumps by the value of the external force as one crosses the external force from left to right. Internal bending moment jumps by the value of the external moment as one crosses the external moment from left to right. Shear force & moment templates can be used to determine the direction of the jump in V and M z. template is a free body diagram of a small segment of a beam created by making an imaginary cut just before and just after the section where the a point external force or moment is applied. Shear Force Template V 1 V 2 M1 Moment Template M ext M 2 x x x x F ext V 2 = V 1 + F ext M 2 = M 1 + M ext Template Equations The jump in V is in the direction of F ext 6-25

26 6.70 Draw the shear and moment diagram and determine the values of maximum shear force V y and bending moment M z. M1 M ext M 2 x x M 2 = M 1 + M ext 6-26

27 6.77 Two pieces of lumber are glued together to form the beam shown Fig. P6.77. Determine the intensity w of the distributed load, if the maximum tensile bending normal stress in the glue limited to 800 psi (T) and maximum bending normal stress is wood is limited to 1200 psi. w lb / in 2 in 30 in 70 in 4 in 1 in Fig. P

28 Shear Stress in Thin Symmetric Beams Recollect problem 6-15 for motivation for gluing beams I G = 16I S σ G = σ S 4 Separate Beams Glued Beams Relative Sliding No Relative Sliding ssumption of plane section perpendicular to the axis remain perpendicular during bending requires the following limitation. Maximum bending shear stress must be an order of magnitude less than maximum bending normal stress. 6-28

29 Shear stress direction Shear Flow: q = τ xs t The units of shear flow q are force per unit length. The shear flow along the center-line of the cross-section is drawn in such a direction as to satisfy the following rules: the resultant force in the y-direction is in the same direction as V y. the resultant force in the z-direction is zero. it is symmetric about the y-axis. This requires shear flow will change direction as one crosses the y-axis on the center-line. 6-29

30 6.88 ssuming a positive shear force V y, (a) sketch the direction of the shear flow along the center-line on the thin cross-sections shown.(b) t points, B, C, and D, determine if the stress component is τ xy or τ xz and if it is positive or negative. y B D z C Class Problem ssuming a positive shear force V y, (a) sketch the direction of the shear flow along the center-line on the thin cross-sections shown.(b) t points, B, C, and D, determine if the stress component is τ xy or τ xz and if it is positive or negative. B y D z C 6-30

31 Bending Shear Stress Formula ( N s + d N s ) N s s is the area between the free surface and the point where shear stress is being evaluated. Define: ssumption 9 + τ sx tdx = 0 τ sx t d τ sx t σ dx d d = xx = d dx = Q z s = τ sx t s = yd s The beam is not tapered. M z y d dx I zz M z Q z I zz = dn s dx d dx M z yd I zz s Q z dm q tτ sx z Q z V y V y Q = = = z τ I zz dx I zz sx = τ xs = I zz t 6-31

32 Calculation of Q z Q z = yd s is the area between the free surface and the point where shear stress is being evaluated. Q z is zero at the top surface as the enclosed area s is zero. Q z is zero at the bottom surface ( s =) by definition of centroid. s z s Line along which Shear stress is being found. Centroid of 2 y Centroid of s Q z s y s y s Neutral xis y 2 Q z = 2 y 2 = 2 Q z is maximum at the neutral axis. Bending shear stress at a section is maximum at the neutral axis. 6-32

33 Bending stresses and strains Top or Bottom Neutral xis Point in Web Point in Flange ε xx γ xy σ xx = ε νσ xx E yy νσ xx = = νε E xx ε zz = = νε E xx τ xy τ = γ xz G xz = G 6-33

34 6.97 For the beam, loading and cross-section shown, determine: (a) the magnitude of the maximum bending normal and shear stress. (b) the bending normal stress and the bending shear stress at point. Point is on the cross-section 2 m from the right end. Show your result on a stress cube. The area moment of inertia for the beam was calculated to be I zz = 453 (10 6 ) mm

35 Shear Flow q = V y Q z I zz s s V F s V F P q = V F s q = 2V F s 6-35

36 6.104 wooden cantilever box beam is to be constructed by nailing four 1 inch x 6 inch pieces of lumber in one of the two ways shown. The allowable bending normal and shear stress in the wood are 750 psi and 150 psi, respectively. The maximum force that the nail can support is 100 lbs. Determine the maximum value of load P to the nearest pound, the spacing of the nails to the nearest half inch, and the preferred nailing method.* Joining Method 1 Joining Method

37 6.115 cantilever, hollow-circular aluminum beam of 5 feet length is to support a load of 1200-lbs. The inner radius of the beam is 1 inch. If the maximum bending normal stress is to be limited to 10 ksi, determine the minimum outer radius of the beam to the nearest 1/16th of an inch. 6-37

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

Properties of Sections

ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS

CHAPTER -6- BENDING Part -1-

Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

6. Bending CHAPTER OBJECTIVES

CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

CHAPTER 6: Shearing Stresses in Beams

(130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

MECE 3321: MECHANICS OF SOLIDS CHAPTER 5

MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 SAMANTHA RAMIREZ TORSION Torque A moment that tends to twist a member about its longitudinal axis 1 TORSIONAL DEFORMATION OF A CIRCULAR SHAFT Assumption If the

Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

Mechanics of Solids notes

Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

Beams. Beams are structural members that offer resistance to bending due to applied load

Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

Outline. Organization. Stresses in Beams

Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

MECHANICS OF MATERIALS. Analysis of Beams for Bending

MECHANICS OF MATERIALS Analysis of Beams for Bending By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Define the elastic deformation of an axially

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

CIVL 7/8117 Chapter 12 - Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

Mechanics of Materials

Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (1-17-08) Last time Introduction Units Reliability engineering

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

MECHANICS OF MATERIALS

CHAPTER 6 MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Shearing Stresses in Beams and Thin- Walled Members

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

LECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure

V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 14 Strength of a Bar in Transverse Bending 1 ntroduction s we have seen, onl normal stresses occur at cross sections of a rod in pure bending. The corresponding

Unit 15 Shearing and Torsion (and Bending) of Shell Beams

Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

For more Stuffs Visit Owner: N.Rajeev. R07

Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

Chapter 1 Introduction- Concept of Stress

hapter 1 Introduction- oncept of Stress INTRODUTION Review of Statics xial Stress earing Stress Torsional Stress 14 6 ending Stress W W L Introduction 1-1 Shear Stress W W Stress and Strain L y y τ xy

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

STRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections

STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support

CHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load

CHAPTER OBJECTIVES Determine deformation of axially loaded members Develop a method to find support reactions when it cannot be determined from euilibrium euations Analyze the effects of thermal stress

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

14. *14.8 CASTIGLIANO S THEOREM

*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit)

PROBLEM #1.1 (4 + 4 points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c

Now we are going to use our free body analysis to look at Beam Bending (WL1) Problems 17, F00Q1, F00Q1c One of the most useful applications of the free body analysis method is to be able to derive equations

MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

structural analysis Excessive beam deflection can be seen as a mode of failure.

Structure Analysis I Chapter 8 Deflections Introduction Calculation of deflections is an important part of structural analysis Excessive beam deflection can be seen as a mode of failure. Extensive glass

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

ARC241 Structural Analysis I Lecture 10: MM1.3 MM1.13 MM1.4) Analysis and Design MM1.5) Axial Loading; Normal Stress MM1.6) Shearing Stress MM1.7) Bearing Stress in Connections MM1.9) Method of Problem

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

A. Objective of the Course: Objectives of introducing this subject at second year level in civil branches are: 1. Introduction 02

Subject Code: 0CL030 Subject Name: Mechanics of Solids B.Tech. II Year (Sem-3) Mechanical & Automobile Engineering Teaching Credits Examination Marks Scheme Theory Marks Practical Marks Total L 4 T 0 P

Flexure: Behavior and Nominal Strength of Beam Sections

4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The

P.E. Civil Exam Review:

P.E. Civil Exam Review: Structural Analysis J.P. Mohsen Email: jpm@louisville.edu Structures Determinate Indeterminate STATICALLY DETERMINATE STATICALLY INDETERMINATE Stability and Determinacy of Trusses

Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background

Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS Hsiang-Chuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,

Stress-Strain Behavior

Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

STRESSES IN BEAMS. David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139

STRESSES IN BEMS David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, M 02139 November 21, 2000 Introduction Understanding of the stresses induced

Torsion Stresses in Tubes and Rods

Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

Lecture 3: The Concept of Stress, Generalized Stresses and Equilibrium

Lecture 3: The Concept of Stress, Generalized Stresses and Equilibrium 3.1 Stress Tensor We start with the presentation of simple concepts in one and two dimensions before introducing a general concept

2 Introduction to mechanics

21 Motivation Thermodynamic bodies are being characterized by two competing opposite phenomena, energy and entropy which some researchers in thermodynamics would classify as cause and chance or determinancy

UNIT I SIMPLE STRESSES AND STRAINS

Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS

MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

SERVICEABILITY LIMIT STATE DESIGN

CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys

MEMS 029 Project 2 Assignment Design of a Shaft to Transmit Torque Between Two Pulleys Date: February 5, 206 Instructor: Dr. Stephen Ludwick Product Definition Shafts are incredibly important in order

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture,

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 09.21.07 1. In the beam considered in PS1, steel beams carried the distributed weight of the rooms above. To reduce stress on the beam, it

6.1 Formulation of the basic equations of torsion of prismatic bars (St. Venant) Figure 6.1: Torsion of a prismatic bar

Module 6 Torsion Learning Objectives 6.1 Formulation of the basic equations of torsion of prismatic bars (St. Venant) Readings: Sadd 9.3, Timoshenko Chapter 11 e e 1 e 3 Figure 6.1: Torsion of a prismatic

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS

ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)

Only for Reference Page 1 of 18

Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

DEFLECTION OF BEAMS WlTH SPECIAL REFERENCE TO SHEAR DEFORMATIONS

DEFLECTION OF BEAMS WlTH SPECIAL REFERENCE TO SHEAR DEFORMATIONS THE INFLUENCE OF THE FORM OF A WOODEN BEAM ON ITS STIFFNESS AND STRENGTH-I (REPRINT FROM NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS REPORT

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

Chapter 7. Highlights:

Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true