Slender Structures Load carrying principles


 Abel Jones
 11 months ago
 Views:
Transcription
1 Slender Structures Load carrying principles Basic cases: Extension, Shear, Torsion, Cable Bending (Euler) v0171 Hans Welleman 1
2 Content (preliminary schedule) Basic cases Extension, shear, torsion, cable Bending (EulerBernoulli) Combined systems  Parallel systems  Special system Bending (Timoshenko) Continuously Elastic Supported (basic) Cases Cable revisit and Arches Matrix Method Hans Welleman
3 Learning trajectory Order of topics based on increasing complexity of the governing differential equation (!!! not in line with the notes!!!) Recap of math partly in class but primarily DIY! Extensive use of MAPLE, so install MAPLE and get involved in it! Hans Welleman 3
4 Learning objectives Understand the outline of the classical displacement method for finding the ODE s for basic load cases Find the general solution for these loadcases and define the boundary and/or matching conditions for a specific application Solve the ODE s (by hand and MAPLE) Investigate consequences/limitations of the model and check results with limit cases Hans Welleman 4
5 Model (ordinary) Differential Equation (O)DE Boundary conditions Matching conditions Hans Welleman 5
6 General recipe to find DE (classical displacement method) Kinematic relation Constitutive relation Equilibrium condition DIFFERENTIAL EQUATION + Conditions at boundaries/interfaces = The Solution Hans Welleman 6
7 Extension (prismatic) axial stiffness EA external load q internal generalised stress, normal force N. BC axial deformation or strain ε displacement field (longtitudinal) u. BC Hans Welleman 7
8 Fundamental relations Kinematic relation ε = du Constitutive relation N = EAε (Hooke) Equilibrium N + q + N + dn = 0 dn = q du dn d u N = EA = EA = q ODE Hans Welleman 8
9 Example q = 5 kn/m F = 5 kn l = 10 m EA = 500 kn Solve the ODE using parameters Write down the boundary conditions Hans Welleman 9
10 I found as an answer u(x) = Boundary Conditions: Hans Welleman 10
11 Plot the results Suggestions for a check? Maple > restart; > ODE:=EA*diff(u(x),x$)=q; > u:=rhs(dsolve(ode,u(x))); > eps:=diff(u,x); N:=EA*eps; kinematic or Dirichlet boundary condition at x=0 > x:=0: eq1:=u=0; dynamic or Neumann boundary condition at x=l > x:=l; eq:=n+f=0; > sol:=solve({eq1,eq},{_c1,_c}); assign(sol); > x:='x'; u; N; > L:=10; F:=5; q:=5; EA:=500; > _C1; _C; > plot(u,x=0..l,title="displacement u(x)"); > plot(n,x=0..l,title="normal force N(x)"); Hans Welleman 11
12 What if Hans Welleman 1
13 Assignment : Foundation Pile Dimensions: l A EA Pile capacity: = 0 m = mm = N  point bearing, modulus of subgrade reaction (Beddingsconstante) c = N/m 3  (positive) friction or adhesion: Load: F τ = N/m = 500 kn Find the DE to model this pile and the boundary conditions. Solve the DE and plot the normal force distribution in the pile. Find the displacement of the pile tip. Hans Welleman 13
14 Shear shear stiffness k external load q internal generalised stress, shear force V. BC Shear deformation or shear strain γ displacement field w. BC Hans Welleman 14
15 Fundamental relations Kinematic relation γ = dw Constitutive relation V = k γ (Hooke) Equilibrium V + q + V + dv = 0 dv = q dw dv d w V = k = k = q ODE Hans Welleman 15
16 Conclusion Basic Extension and Shear result in an identical ODE We now know all about this. What about the shear stiffness? Hans Welleman 16
17 Shear stiffness for beams 1 (in bending) assumption in this model:  constant V  constant γ discrete model Shear force V is integrated shear stress distribution. 1 Work, energy methods & influence lines, appendix A, ISBN , J.W. Welleman Hans Welleman 17
18 Shear stress due to bending for a rectangular cross section fibre model parabolic shear stress distribution so.. no constant shear stress τ and no constant shear deformation γ Hans Welleman 18
19 Both models should generate the same amount of strain energy E discrete model: 1 1 E = V dw = V γ with: V = k γ discrete 1 1 Fibremodel: ( prereqisuite knowledge ) h z= τ ( z) E fibre = bd z with : τ ( z) = h z= G ( 1 ) 6V h z 4 bh 3 Hans Welleman 19
20 Elaborate z= h z= h τ ( z) G 1 bdz = V γ 1 ( ) h z= 1 b 6 V 4 h z dz V 3 1 G = γ h z= bh 6V γ1 = with: V = k γ1 and A = bh 5GA k 5 GA = GA = with: η = 1, 6 η Hans Welleman 0
21 Cross section is not a plane. V E discrete h γ 1 dw = γ 1 dw Hans Welleman 1
22 Shear Stiffness for Frames Source: Hans Welleman
23 Shear Stiffness k for Frames rigid floors general model Although the frame is loaded in bending a shear beam model can be used based on the global behaviour. Hans Welleman 3
24 Model with rigid floors k =?? use virtual work δu 4Mδγ = Hδu δγ = h M = 1 4 Hh : deformation : zero rotation at foundation : try this quickly.. 3 u Mh Mh Mh Hh 4EI + = 0 u = = = γ h H = γ h 3EI 6EI 6EI 4EI h 4EI thus : k = h Hans Welleman 4
25 General model k =??.. try this yourself.. answer : 4 k = h b h + EI k EI r Hans Welleman 5
26 Examples of shear beams Sketch the deformed situation Proof it! Hans Welleman 6
27 More examples of shear beams Sketch the deformed situation Proof it! Hans Welleman 7
28 Assignment F = 10 kn; k = 1000 kn; a = 5 m; n = 5 Find the displacement at midspan C for both cases Hans Welleman 8
29 So we need an extension Add a degree of freedom (rotation) And add an additional equation (moments) dw γ = + φ d M = V M = V d x NOTE Not in the notes, all shear beams in the notes have zero rotation of the cross sections Hans Welleman 9
30 Torsion torsional stiffness GI t external load m internal generalised stress, shear force M t. BC torsional deformation or specific twist θ displacement field ϕ x. BC Hans Welleman 30
31 Fundamental relations Kinematic relation θ = dϕx Constitutive relation M t = GI θ t (Hooke) Equilibrium M + m + M + dm = 0 dm ODE Hans Welleman 31 t t t t = m dϕx dm t d ϕ M x t = GIt = GIt = m
32 Cable 1 cable stiffness H load distributed along the projection of the cable cable without elongation??!! external load q internal generalised stress, vertical component V. BC Cable slope tanα displacement field w. BC Hans Welleman 3
33 Fundamental relations geometrical relation tanα = dz Moment equilibrium Equilibrium V = H tanα V + q + V + dv = 0 dv = q dz dv d z V = H = H = q ODE Hans Welleman 33
34 Remarks Cable takes no bending Cable ODE describes an equilibirum in the deflected state (funicular curve) so this is a nonlinear approach! (no superposition) H can be regarded as constant only if no horizontal loads are applied This model is not valid for loads distributed along the cable! Derivation is strictly based upon equilibrium only! Cable force can be expressed in H and z : dz T = H + V = H + ( H tanα ) = H 1+ Hans Welleman 34
35 Examples Find the funicular curve and express f in terms of H, q and l. Hans Welleman 35
36 Horizontal component H support reaction of the block A A H V l q f f L B. q Vkatrol T H L F. B block F support reaction of the block components of the cable force T H T = F F Free Body Diagram of the block l T = F V V = 1 ql f ql = 8H force polygon for the block F H = F ql 1 f = 8 F ql 1 ql F 36
37 Results assume : ql = λf H f H = F 1 = 1 F 1 1 λ λ 4 4 8ql λl f λ = = = 8H 8 1 l λ λ 4 4 H, F f l H F f l λ = Hans Welleman F 37 ql
38 Bending in xz plane bending stiffness EI external load q internal generalised stresses M, V. BC deformation is the curvature κ displacement field w, ϕ. BC Hans Welleman 38
39 u( z) = zϕ A lot d u( zof ) parameters dϕ ε ( z) = = z = κ z z= z= z= h h h M = dm = zd N = zσ ( z)da z= z= z= h h h z= z= h h M = E z ε ( z)da = Eκ z da = EI κ z= z= h h Hans Welleman 39
40 Equilibrium vertical equilibrium dv = q moment equilibirum dm = V Proof this in a minute! Hans Welleman 40
41 Fundamental relations Kinematic relation dw dϕ ϕ = ; κ = ; Constitutive relation M = EI κ (Hooke) Equilibrium dv dm = q; = V ODE Hans Welleman 41
42 Result Bending in xz plane M = EI d M = q; d w ; Hans Welleman 4 d d w EI q = Sufficient to solve static determinate structures
43 Bending  Euler Bernoulli Mind the coordinate system used! Basic model for simple bending with symmetrical cross sections For prismatic beams use: EI d 4 w 4 = q; 3 d w d w dw V = EI ; M = EI ; ϕ = ; 3 Hans Welleman 43
44 Options for Boundary Conditions kinematic ϕ and/or w dynamic SD SD V=0 V M and or V SI Note: SI M or ϕ V or w V=0 V Static Indeterminate (SI) for 3 or more kinematic BC V=0 V=0 V V Hans Welleman 44
45 Examples Find the deflection line and the force distribution. Bending: Neglect the influence of possible axial deformation. Hans Welleman 45
46 Wrapup Basic Cases Second order DE Extension Shear Torsion Cable Fourth order DE Bending d u EA = q d w k = q d ϕ GI x t = m d z H = q 4 d w EI = q 4 Hans Welleman 46
47 Assignment k = 1000 kn; EI = 1500 knm ; F = 5 kn; q = 8 kn/m; Compare force distributions and deflections Hans Welleman 47
Slender Structures Load carrying principles
Slender Structures Load carrying principles Continuously Elastic Supported (basic) Cases: Etension, shear EulerBernoulli beam (Winkler 1867) v20172 Hans Welleman 1 Content (preliminary schedule) Basic
More informationChapter 5 Structural Elements: The truss & beam elements
Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations
More informationReview of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis
uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods
More informationUnit 13 Review of Simple Beam Theory
MIT  16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 1015 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More informationLecture 7: The Beam Element Equations.
4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite
More informationLecture notes Models of Mechanics
Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /
More informationIndeterminate Analysis Force Method 1
Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to
More informationConsider an elastic spring as shown in the Fig.2.4. When the spring is slowly
.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original
More informationMarch 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE
Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano
More informationM5 Simple Beam Theory (continued)
M5 Simple Beam Theory (continued) Reading: Crandall, Dahl and Lardner 7.7.6 In the previous lecture we had reached the point of obtaining 5 equations, 5 unknowns by application of equations of elasticity
More informationMECHANICS OF MATERIALS
STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental
More informationTHEME IS FIRST OCCURANCE OF YIELDING THE LIMIT?
CIE309 : PLASTICITY THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT? M M  N N + + σ = σ = + f f BENDING EXTENSION Ir J.W. Welleman page nr 0 kn Normal conditions during the life time WHAT HAPPENS DUE TO
More informationCHAPTER 5. Beam Theory
CHPTER 5. Beam Theory SangJoon Shin School of Mechanical and erospace Engineering Seoul National University ctive eroelasticity and Rotorcraft Lab. 5. The EulerBernoulli assumptions One of its dimensions
More informationMechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection
Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts
More information1 Static Plastic Behaviour of Beams
1 Static Plastic Behaviour of Beams 1.1 Introduction Many ductile materials which are used in engineering practice have a considerable reserve capacity beyond the initial yield condition. The uniaxial
More informationDeflection of Flexural Members  Macaulay s Method 3rd Year Structural Engineering
Deflection of Flexural Members  Macaulay s Method 3rd Year Structural Engineering 008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 3 1.1 General... 3 1. Background... 4 1.3 Discontinuity Functions...
More information14. *14.8 CASTIGLIANO S THEOREM
*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by
More informationDeflection of Flexural Members  Macaulay s Method 3rd Year Structural Engineering
Deflection of Flexural Members  Macaulay s Method 3rd Year Structural Engineering 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 General... 4 1. Background... 5 1.3 Discontinuity Functions...
More informationMethods of Analysis. Force or Flexibility Method
INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses
More informationChapter 4 Deflection and Stiffness
Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 41 Spring Rates 42 Tension, Compression, and Torsion 43 Deflection Due to Bending 44 Beam
More informationStructural Analysis. For. Civil Engineering.
Structural Analysis For Civil Engineering By www.thegateacademy.com ` Syllabus for Structural Analysis Syllabus Statically Determinate and Indeterminate Structures by Force/ Energy Methods; Method of Superposition;
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.
GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 Ns/m. To make the system
More informationLecture 15 Strain and stress in beams
Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME
More informationL13 Structural Engineering Laboratory
LABORATORY PLANNING GUIDE L13 Structural Engineering Laboratory Content Covered subjects according to the curriculum of Structural Engineering... 2 Main concept... 4 Initial training provided for laboratory
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student
More informationBEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam
BEM horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam INTERNL FORCES IN BEM Whether or not a beam will break, depend on the internal resistances
More informationSection 6: PRISMATIC BEAMS. Beam Theory
Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are BernoulliEuler beam theory Timoshenko beam theory One learns the details of BernoulliEuler beam
More informationReview Lecture. AE1108II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas
Review Lecture AE1108II: Aerospace Mechanics of Materials Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Aerospace Structures & Materials Faculty of Aerospace Engineering Analysis of an Engineering System
More informationSLOPEDEFLECTION METHOD
SLOPEDEFLECTION ETHOD The slopedeflection method uses displacements as unknowns and is referred to as a displacement method. In the slopedeflection method, the moments at the ends of the members are
More informationExample 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.
162 3. The linear 3D elasticity mathematical model The 3D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides
More informationUNIT IV FLEXIBILTY AND STIFFNESS METHOD
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SAII (13A01505) Year & Sem: IIIB.Tech & ISem Course & Branch: B.Tech
More informationA HIGHERORDER BEAM THEORY FOR COMPOSITE BOX BEAMS
A HIGHERORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D64289 Darmstadt, Germany kroker@mechanik.tudarmstadt.de,
More informationSTATICALLY INDETERMINATE STRUCTURES
STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal
More informationPresented By: EAS 6939 Aerospace Structural Composites
A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The SlopeDeflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationtechietouch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSISI TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.
D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having
More informationQUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1
Theory of Structures eterminacy Indeterminacy 1 QUSTION NK 1. The static indeterminacy of the structure shown below (a) (b) 6 (c) 9 (d) 12 2. etermine the degree of freedom of the following frame (a) 1
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationIntroduction to Finite Element Method. Dr. Aamer Haque
Introduction to Finite Element Method 4 th Order Beam Equation Dr. Aamer Haque http://math.iit.edu/~ahaque6 ahaque7@iit.edu Illinois Institute of Technology July 1, 009 Outline EulerBernoulli Beams Assumptions
More informationChapter 2: Deflections of Structures
Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2
More informationFIXED BEAMS IN BENDING
FIXED BEAMS IN BENDING INTRODUCTION Fixed or builtin beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported
More informationDeflection of Beams. Equation of the Elastic Curve. Boundary Conditions
Deflection of Beams Equation of the Elastic Curve The governing second order differential equation for the elastic curve of a beam deflection is EI d d = where EI is the fleural rigidit, is the bending
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More information7 Vlasov torsion theory
7 Vlasov torsion theory P.C.J. Hoogenboom, October 006 Restrained Warping The typical torsion stresses according to De Saint Venant only occur if warping can take place freely (Fig. 1). In engineering
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The SlopeDeflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods
More informationMechanical Design in Optical Engineering
OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:
More informationChapter 11. Displacement Method of Analysis Slope Deflection Method
Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations
More informationStructural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian
Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: ModeSuperposition Method ModeSuperposition Method:
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More informationChapter 3 Variational Formulation & the Galerkin Method
Institute of Structural Engineering Page 1 Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 2 Today s Lecture Contents: Introduction Differential formulation
More informationVariational Formulation of Plane Beam Element
13 Variational Formulation of Plane Beam Element IFEM Ch 13 Slide 1 Beams Resist Primarily Transverse Loads IFEM Ch 13 Slide 2 Transverse Loads are Transported to Supports by Flexural Action Neutral surface
More informationLecture M1 Slender (one dimensional) Structures Reading: Crandall, Dahl and Lardner 3.1, 7.2
Lecture M1 Slender (one dimensional) Structures Reading: Crandall, Dahl and Lardner 3.1, 7.2 This semester we are going to utilize the principles we learnt last semester (i.e the 3 great principles and
More informationC:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.docx 6
C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.doc 6 p. 1 of Torsion of circular bar The crosssections rotate without deformation. The deformation that does occur results from
More informationCHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE
CHAPTER ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE.1 INTRODUCTION An important objective of this research is to determine whether accurate analyses of the lateral loaddeflection behavior
More information2 marks Questions and Answers
1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and
More informationA METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECONDORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES
A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECONDORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES Konuralp Girgin (Ph.D. Thesis, Institute of Science and Technology,
More informationExternal Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is
Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the
More informationLecture 11: The Stiffness Method. Introduction
Introduction Although the mathematical formulation of the flexibility and stiffness methods are similar, the physical concepts involved are different. We found that in the flexibility method, the unknowns
More informationAdvanced Structural Analysis EGF Section Properties and Bending
Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear
More informationComb resonator design (2)
Lecture 6: Comb resonator design () Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory
More informationExternal work and internal work
External work and internal work Consider a load gradually applied to a structure. Assume a linear relationship exists between the load and the deflection. This is the same assumption used in Hooke s aw
More informationLecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction
Introduction In this class we will focus on the structural analysis of framed structures. We will learn about the flexibility method first, and then learn how to use the primary analytical tools associated
More information7. Hierarchical modeling examples
7. Hierarchical modeling examples The objective of this chapter is to apply the hierarchical modeling approach discussed in Chapter 1 to three selected problems using the mathematical models studied in
More informationENGINEERING MECHANICS
ENGINEERING MECHANICS Engineering Mechanics Volume 2: Stresses, Strains, Displacements by C. HARTSUIJKER Delft University of Technology, Delft, The Netherlands and J.W. WELLEMAN Delft University of Technology,
More informationM.S Comprehensive Examination Analysis
UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive
More informationFLEXIBILITY METHOD FOR INDETERMINATE FRAMES
UNIT  I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These
More informationε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram
CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case
More informationBEAM DEFLECTION THE ELASTIC CURVE
BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each crosssectional area of a beam. Supports that apply a moment
More informationUsing the finite element method of structural analysis, determine displacements at nodes 1 and 2.
Question 1 A pinjointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical
More informationEE C245 ME C218 Introduction to MEMS Design
EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy
More informationMulti Linear Elastic and Plastic Link in SAP2000
26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may
More informationComb Resonator Design (2)
Lecture 6: Comb Resonator Design () Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory
More informationMechanics in Energy Resources Engineering  Chapter 5 Stresses in Beams (Basic topics)
Week 7, 14 March Mechanics in Energy Resources Engineering  Chapter 5 Stresses in Beams (Basic topics) KiBok Min, PhD Assistant Professor Energy Resources Engineering i Seoul National University Shear
More informationLecture Slides. Chapter 4. Deflection and Stiffness. The McGrawHill Companies 2012
Lecture Slides Chapter 4 Deflection and Stiffness The McGrawHill Companies 2012 Chapter Outline Force vs Deflection Elasticity property of a material that enables it to regain its original configuration
More informationIf the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.
1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a twodimensional structure and statically indeterminate reactions: Statically indeterminate structures
More informationMoment Area Method. 1) Read
Moment Area Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Area method. 2) Derive the Moment Area method theorems using mechanics and mathematics.
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More information2. Trusses and bars in axial load Contents
2. Trusses and bars in axial load Contents 2. Trusses and bars in axial load... 1 2.1 Introduction... 2 2.2 Physics recap: spring mechanics... 3 2.3 Statics: Equilibrium of internal and external forces
More informationAircraft Structures KirchhoffLove Plates
University of Liège erospace & Mechanical Engineering ircraft Structures KirchhoffLove Plates Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltascm3.ulg.ac.be/ Chemin
More informationFinite Element Modelling with Plastic Hinges
01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated postyield behaviour in one or more degrees of freedom. Hinges only
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  13
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module  01 Lecture  13 In the last class, we have seen how
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method
Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be
More informationStress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 3 ME 276 Spring 20172018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress
More informationQ. 1 Q. 5 carry one mark each.
General ptitude G Set8 Q. 1 Q. 5 carry one mark each. Q.1 The chairman requested the aggrieved shareholders to him. () bare with () bore with (C) bear with (D) bare Q.2 Identify the correct spelling out
More informationAvailable online at ScienceDirect. Procedia IUTAM 13 (2015 ) 82 89
Available online at www.sciencedirect.com ScienceDirect Procedia IUTAM 13 (215 ) 82 89 IUTAM Symposium on Dynamical Analysis of Multibody Systems with Design Uncertainties The importance of imperfections
More informationInterstate 35W Bridge Collapse in Minnesota (2007) AP Photo/Pioneer Press, Brandi Jade Thomas
7 Interstate 35W Bridge Collapse in Minnesota (2007) AP Photo/Pioneer Press, Brandi Jade Thomas Deflections of Trusses, Beams, and Frames: Work Energy Methods 7.1 Work 7.2 Principle of Virtual Work 7.3
More informationERM  Elasticity and Strength of Materials
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 205  ESEIAAT  Terrassa School of Industrial, Aerospace and Audiovisual Engineering 712  EM  Department of Mechanical Engineering
More information2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C
CE1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano
More informationNonlinear and timedependent material models in Mentat & MARC. Tutorial with Background and Exercises
Nonlinear and timedependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009
More informationMAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.
It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the
More informationBeam Models. Wenbin Yu Utah State University, Logan, Utah April 13, 2012
Beam Models Wenbin Yu Utah State University, Logan, Utah 8434130 April 13, 01 1 Introduction If a structure has one of its dimensions much larger than the other two, such as slender wings, rotor blades,
More informationLaboratory 4 Topic: Buckling
Laboratory 4 Topic: Buckling Objectives: To record the loaddeflection response of a clampedclamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling
More informationModule 1. Energy Methods in Structural Analysis
Module 1 Energy Methods in Structural Analysis esson 5 Virtual Work Instructional Objecties After studying this lesson, the student will be able to: 1. Define Virtual Work.. Differentiate between external
More informationChapter 2 Basis for Indeterminate Structures
Chapter  Basis for the Analysis of Indeterminate Structures.1 Introduction... 3.1.1 Background... 3.1. Basis of Structural Analysis... 4. Small Displacements... 6..1 Introduction... 6.. Derivation...
More informationMechanics of Materials Primer
Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus
More informationLECTURE 13 Strength of a Bar in Pure Bending
V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 13 Strength of a Bar in Pure Bending Bending is a tpe of loading under which bending moments and also shear forces occur at cross sections of a rod. f the bending
More informationENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1
ENG2000 Chapter 7 Beams ENG2000: R.I. Hornsey Beam: 1 Overview In this chapter, we consider the stresses and moments present in loaded beams shear stress and bending moment diagrams We will also look at
More information