UNIT I ENERGY PRINCIPLES

Size: px
Start display at page:

Download "UNIT I ENERGY PRINCIPLES"

Transcription

1 UNIT I ENERGY PRINCIPLES Strain energy and strain energy density- strain energy in traction, shear in flexure and torsion- Castigliano s theorem Principle of virtual work application of energy theorems for computing deflections in beams and trusses Maxwell s reciprocal theorem. 1. Define strain energy and Proof stress. Two Marks Questions and Answers Strain energy Whenever a body is strained, the energy is absorbed in the body. The energy which is absorbed in the body due to straining effect is known as strain energy. The strain energy stored in the body is equal to the work done by the applied load in stretching the body Proof stress The stress induced in an elastic body when it possesses maximum strain energy is termed as its proof stress. 3. Define Resilience, Proof Resilience and Modulus of Resilience. Resilience The resilience is defined as the capacity of a strained body for doing work on the removal of the straining force. The total strain energy stored in a body is commonly known as resilience. Proof Resilience The proof resilience is defined as the quantity of strain energy stored in a body when strained up to elastic limit. The maximum strain energy stored in a body is known as proof resilience. Modulus of Resilience It is defined as the proof resilience of a material per unit volume. Proof resilience Modulus of resilience = Volume of the body 4. State the two methods for analyzing the statically indeterminate structures. a.displacement method (equilibrium method (or) stiffness coefficient method b. Force method (compatibility method (or) flexibility coefficient method) 5. Define Castigliano s first theorem second Theorem.

2 First Theorem. It states that the deflection caused by any external force is equal to the partial derivative of the strain energy with respect to that force. Second Theorem It states that If U is the total strain energy stored up in a frame work in equilibrium under an external force; its magnitude is always a minimum. 6. State the Principle of Virtual work. It states that the workdone on a structure by external loads is equal to the internal energy stored in a structure (Ue = U i ) Work of external loads = work of internal loads 7. What is the strain energy stored in a rod of length l and axial rigidity AE to an axial force P? Strain energy stored P L U= AE 8. State the various methods for computing the joint deflection of a perfect frame. 1. The Unit Load method. Deflection by Castigliano s First Theorem 3. Graphical method : Willot Mohr Diagram 9. State the deflection of the joint due to linear deformation. n δ v = Σ U x 1 n δ H = Σ U x 1 PL = Ae U= vertical deflection U = horizontal deflection 10. State the deflection of joint due to temperature variation. n δ = Σ U X A 1 = U U + + U n n If the change in length ( ) of certain member is zero, the product U. for those members will be substituted as zero in the above equation. 11. State the deflection of a joint due to lack of fit.

3 n δ = Σ U 1 = U U + + U n n If there is only one member having lack of fit 1, the deflection of a particular joint will be equal to U What is the effect of change in temperature in a particular member of a redundant frame? When any member of the redundant frame is subjected to a change in temperature, it will cause a change in length of that particular member, which in turn will cause lack of fit stresses in all other members of the redundant frame. 13. State the difference between unit load and strain energy method in the determination of structures. In strain energy method, an imaginary load P is applied at the point where the deflection is desired to be determined. P is equated to zero in the final step and the deflection is obtained. In the Unit Load method, a unit load (instead of P) is applied at the point where the deflection is desired. 14. State the assumptions made in the Unit Load method. 1. The external and internal forces are in equilibrium. Supports are rigid and no movement is possible 3. The material is strained well within the elastic limit. 15. State the comparison of Castigliano s first theorem and unit load method. The deflection by the unit load method is given by n PUL δ = Σ AE δ = n PL Σ x U 1 AE n = Σ x U (i) 1 The deflection by castigliano s theorem is given by n δ= 1 PL AE P W (ii) By comparing (i) & (ii) P W =U

4 16. State Maxwell s Reciprocal Theorem. The Maxwell s Reciprocal theorem states as The work done by the first system of loads due to displacements caused by a second system of loads equals the work done by the second system of loads due to displacements caused by the first system of loads. 17. Define degree of redundancy. A frame is said to be statically indeterminate when the no of unknown reactions or stress components exceed the total number of condition equations of equilibrium. 0. Define Perfect Frame. If the number of unknowns is equal to the number of conditions equations available, the frame is said to be a perfect frame. 1. State the two types of strain energies. a.strain energy of distortion (shear strain energy) b. strain energy of uniform compression (or) tension (volumetric strain energy). State in which cases, Castigliano s theorem can be used. 1. To determine the displacements of complicated structures.. To find the deflection of beams due to shearing (or) bending forces (or) bending moments are unknown. 3. To find the deflections of curved beams springs etc. 3. Define Proof stress. The stress induced in an elastic body when it possesses maximum strain energy is termed as its proof stress. 16 Marks Questions And Answers 1. Derive the expression for strain energy in Linear Elastic Systems for the following cases. (i) Axial loading (ii) Flexural Loading (moment (or) couple) (i)axial Loading Let us consider a straight bar of Length L, having uniform cross- sectional area A. If an axial load P is applied gradually, and if the bar undergoes a deformation, the work done, stored as strain energy (U) in the body, will be equal to average force (1/ P) multiplied by the deformation. Thus U = ½ P. But = PL / AE U = ½ P. PL/AE = P L / AE (i) If, however the bar has variable area of cross section, consider a small of length dx and area of cross section Ax. The strain energy du stored in this small element of length dx will be, from equation (i) P dx

5 du = A x E The total strain energy U can be obtained by integrating the above expression over the length of the bar. L U = 0 P dx A x E (ii) Flexural Loading (Moment or couple ) Let us now consider a member of length L subjected to uniform bending moment M. Consider an element of length dx and let d i be the change in the slope of the element due to applied moment M. If M is applied gradually, the strain energy stored in the small element will be du = ½ Md i But d i d = (dy/dx) = d y/d x = M/EI d x d x M d i = dx EI Hence du = ½ M (M/EI) dx Integrating = (M /EI) dx U = M dx EI L 0. State and prove the expression for castigliano s first theorem. Castigliano s first theorem: It states that the deflection caused by any external force is equal to the partial derivative of the strain energy with respect to that force. A generalized statement of the theorem is as follows: If there is any elastic system in equilibrium under the action of a set of a forces W 1, W, W 3.W n and corresponding displacements δ 1, δ, δ 3. δ n and a set of moments M 1, M, M 3 M n and corresponding rotations Φ 1, Φ, Φ 3,.. Φ n, then the partial derivative of the total strain energy U with respect to any one of the

6 forces or moments taken individually would yield its corresponding displacements in its direction of actions. Proof: Expressed mathematically, U =δ W (i) U M 1 =φ (ii) Consider an elastic body as show in fig subjected to loads W 1, W, W 3 etc. each applied independently. Let the body be supported at A, B etc. The reactions R A,R B etc do not work while the body deforms because the hinge reaction is fixed and cannot move (and therefore the work done is zero) and the roller reaction is perpendicular to the displacements of the roller. Assuming that the material follows the Hooke s law, the displacements of the points of loading will be linear functions of the loads and the principles of superposition will hold. Let δ 1, δ, δ3 etc be the deflections of points 1,, 3, etc in the direction of the loads at these points. The total strain energy U is then given by U = ½ (W 1 δ 1 + W δ +.) (iii) Let the load W 1 be increased by an amount dw 1, after the loads have been applied. Due to this, there will be small changes in the deformation of the body, and the strain energy will be increased slightly by an amount du. expressing this small increase as the rate of change of U with respect to W 1 times dw 1, the new strain energy will be U + U W 1 xdw (iv) On the assumption that the principle of superposition applies, the final strain energy does not depend upon the order in which the forces are applied. Hence assuming that dw 1 is acting on the body, prior to the application of W1, W, W 3 etc, the deflections will be infinitely small and the corresponding strain energy of the second order can be neglected. Now when W1, W, W 3 etc, are applied (with dw 1 still acting initially), the points 1,, 3 etc will move through δ 1, δ, δ3 etc. in the direction of these forces and the strain energy will be given as above. Due to the application of W 1, rides through a distance δ 1 and produces the external work increment du = dw 1. δ 1. Hence the strain energy, when the loads are applied is U+dW 1.δ (v)

7 Since the final strain energy is by equating (iv) & (v). U xdw W 1 U+dW 1.δ 1 = U + δ 1 = 1 1 U Walignl Which proves the proportion. Similarly it can be proved that Φ 1 = U M 1. Deflection of beams by castigliano s first theorem: If a member carries an axial force the energies stored is given by L U = 0 P dx A x E In the above expression, P is the axial force in the member and is the function of external load W 1, W,W 3 etc. To compute the deflection δ 1 in the direction of W 1 L P p δ 1 = U = dx 0 AE W 1 Walignl If the strain energy is due to bending and not due to axial load L U = M dx EI L δ 1 = U = M M dx 0 W 1 EI Walignl If no load is acting at the point where deflection is desired, fictitious load W is applied at the point in the direction where the deflection is required. Then after differentiating but before integrating the fictitious load is set to zero. This method is sometimes known as the fictitious load method. If the rotation Φ 1 is required in the direction of M 1. L Φ 1 = U M = 1 0 M M dx M 1 EI 3. Calculate the central deflection and the slope at ends of a simply supported beam carrying a UDL w/ unit length over the whole span. Solution: a) Central deflection: Since no point load is acting at the center where the deflection is required, apply the fictitious load W, then the reaction at A and B will (WL/ + W/) each.

8 L δ c = U W = 0 M W dx EI Consider a section at a distance x from A. Bending moment at x, M= ( wl + W wx ) x Putting W=0, b) Slope at ends M x = x l δ c = EI 0 l δ c = EI 0 = δ c = (( wl + W wx ) x ) x dx (( wl x ) wx ) x dx EI (( wlx 3 wx4 1 wl 4 EI l 16 ))0 To obtain the slope at the end A, say apply a frictions moment A as shown in fig. The reactions at A and B will be ( wl m l ) and ( wl + m l ) Measuring x from b, we get φ A = u m = 1 l EI Mx 0 Mx M. Dx Where Mx is the moment at a point distant x from the origin (ie, B) is a function of M. Mx = ( wl + m l ) x - Wx Mx m = x l in

9 φ A = 1 l EI 0 ( wl + m l ) x - Wx X/ Dx Putting M=0 φa= 1 Ei 0 l wl x WX x l dx φ A = 1 EI [ wx 3 wx 4 L 6 8L ]0 φ A = wl3 4 EI 4. State and prove the Castigliano s second Theorem. Castigliano s second theorem: It states that the strain energy of a linearly elastic system that is initially unstrained will have less strain energy stored in it when subjected to a total load system than it would have if it were self-strained. u = 0 t For example, if λ is small strain (or) displacement, within the elastic limit in the direction of the redundant force T, u = λ t λ =0 when the redundant supports do not yield (or) when there is no initial lack of fit in the redundant members. Proof: Consider a redundant frame as shown in fig.in which Fc is a redundant member of geometrical length L.Let the actual length of the member Fc be (L- λ ), λ being the initial lack of fit.f C represents thus the actual length (L- λ ) of the member. When it is fitted to the truss, the member will have to be pulled such that F and F coincide.

10 According to Hooke s law F F 1 = Deformation = T (l λ ) AE = TL AE (approx ) Where T is the force (tensile) induced in the member. Hence FF 1 =FF -F 1 F λ = TL AE ( i ) Let the member Fc be removed and consider a tensile force T applied at the corners F and C as shown in fig. FF 1 = relative deflection of F and C = u ( ii ) T According to castigliano s first theorem where U 1 is the strain energy of the whole frame except that of the member Fc. (or) Equating (i) and (ii) we get u1 TL = λ -- T AE u1 T + TL AE = λ ( iii ) To strain energy stored in the member Fc due to a force T is U FC = ½ T. TL AE = TL AE U FC T = TL AE Substitute the value of TL AE in (iii) we get

11 u' T + U FC U =λ (or) T T =λ When U= U 1 + U Fc.If there is no initial lack of fit, λ =0 and hence U T =0 Note: i) Castigliano s theorem of minimum strain energy is used for the for analysis of statically indeterminate beam ands portal tranes,if the degree of redundancy is not more than two. ii) If the degree of redundancy is more than two, the slope deflection method or the moment distribution method is more convenient. 5) A beam AB of span 3mis fixed at both the ends and carries a point load of 9 KN at C distant 1m from A. The M.O.I. of the portion AC of the beam is I and that of portion CB is I. calculate the fixed end moments and reactions. Solution: There are four unknowns M a, Ra, M b and R b.only two equations of static are available (ie) v=0 and M =0 This problem is of second degree indeterminacy. First choose M A and M B as redundant. δ A = Mx EI M x R A dx U AB R A =0= (1) θ A = U AB =0= M A A 1) For portion AC: B M x EI Taking A as the origin M x M A dx () M x = -M A + R A x M x R A = x; M x M A = 1

12 M.O. I=I Limits of x: 0 to 1m Hence C M x M 1 x (-M dx= A + R A x ) x dx A EI R A 0 EI = 1 EI ( M A (1 ) 1 EI ( R A 3 M A ) + R A (1 )3 3 ) C M x And A EI M x R A 1 (-M dx= A + R A x) ( 1 ) dx 0 EI = 1 EI ( M A (1 ) R A (1 ) ) =1 EI ( M A R A ) For portion CB, Taking A as the origin we have M x = M A +R A X 9( X 1) M x R A = x; M x M A = 1 M.O.I = I Limits of x : 1 to 3 m Hence B C M x EI M 3 x (-M A + R A x-9(x-1)) x dx= dx R A 1 EI = 1 EI [ 4M A +6 3 R A 4 ] And B M x M 3 x (-M A + R A x-9(x-1))-1 dx= C EI M A 1 EI = 1 EI [ M A 4R A +18 ] dx Subs these values in (1) & () we get

13 U AB R A =0 1 EI [ R A 3 M A ] +1 EI [ 4M A +6 3 R A 4 ] =0.08 M A = 9.88 (3) U AB M A =0 1 EI [ M A 1 Solving (3) & (4) R A ] +1 EI [ M A 4R A +18 ]=0 M A 1.7R A = (4) M A = 4.8 KN M (assumed direction is correct) R A = 7.05 KN To find M B, take moments at B, and apply the condition M=0 there. Taking clockwise moment as positive and anticlockwise moment as negative. Taking M B clockwise, we have M B M A =R A (3) 9x = 0 M B (7.05x 3) -18 = 0 M B = 1.65 KN m (assumed direction is correct) To find R B Apply V =0 for the whole frame. R B = 9 R A = = 1.95 KN 6.Using Castigliano s First Theorem, determine the deflection and rotation of the overhanging end A of the beam loaded as shown in Fig. Sol: Rotation of A: R B x L = -M R B = -M/L R B = M/L ( )

14 & R C = M/L ( ) θ A = U M = 1 B EI A M x. M x M dx+ 1 B EI C M x. M x.dx (1) M For any point distant x from A, between A and B (i.e.) x = 0 to x = L/3 M x = M ; and M x =1 () M For any point distant x from C, between C and B (i.e.) x = 0 to x = L Subs () & (3) in (1) M x = (M/L) x ; and M x M = x L (3) θ A = U M = 1 L/3 M (1).dx+ 1 L EI 0 EI ( M 0 L x ) x L dx = ML 3 EI = ML 3 EI + ML 3 EI ( clockwise) b) Deflection of A: To find the deflection at A, apply a fictitious load W at A, in upward direction as shown in fig. R B xl= ( M WL) 1 L 1 L R B = ( M+ 4 3 WL) R B =( M WL) ( ) R C =(M WL) 1 L ( ) δ A = U W = 1 B EI A For the portion AB, x = 0 at A and x = L/3 at B M M x x W + 1 B EI C M x M x W.dx M x = M + W x

15 M x W = x For the portion CB, x = 0 at C and x = L at B M x = ( M+ 1 8 WL ) 1 L. x M x W = x 3 Putting W = 0 L/3 δ A = 1 EI 0 L/3 δ A = 1 EI 0 (M +Wx ) x+ 1 EI 0 L (Mx )dx+ 1 EI 0 L ( Mx 3L ) dx ( M WL ) x L. x 3 dx δ A = M EI ( x ) L/3 0 + M 3 EI ( x3 3 ) L 0 δ A = ML 18 EI + ML 9 EI δ A = ML 6 EI 7. Determine the vertical and horizontal displacements of the point C of the pin-jointed frame shown in fig. The cross sectional area of AB is 100 sqmm and of AC and BC 150 mm each. E= x 10 5 N/mm. (By unit load method) Sol: The vertical and horizontal deflections of the joint C are given by PuL AE δ H = Pu ' L AE δ V = A) Stresses due to External Loading: AC = 3 +4 =5m Reaction: R A = -3/4 R B = 3/4 Sin θ = 3/5 = 0.6; Cos θ = 4/5 = 0.8

16 Resolving vertically at the joint C, we get 6 = P AC cos θ + P BC sin θ Resolving horizontally at the joint C, we get P AC cos θ = P BC sin θ; P AC = P BC P AC sin θ + P BC sin θ = 6 P AC sin θ = 6 P AC = 6/sin θ = 6/ x 0.6 = 5 KN (tension) P AC = P BC = 5 KN (tension) Resolving horizontally at the joint C, we get P AB = P AC cos θ P AB = 5 cos θ ; P AB = 5 x 0.8 P AB = 4 KN (comp) B) Stresses due to unit vertical load at C: Apply unit vertical load at C. The Stresses in each member will be 1/6 than of those obtained due to external load. u AC =u BC =5 /6 u AB = 4/6= /3 C) Stresses due to unit horizontal load at C: Assume the horizontal load towards left as shown in fig. Resolving vertically at the joint C, we get (u CA )'sinθ=(u CB )'sin θ (u CA )'=(u CB )' Resolving horizontally at the joint C, we get (u CB )'cosθ+ (u CA )'cosθ=1 (u CB )'cosθ+ (u CB )'cosθ=1 u CB 'cosθ=1 u CB '= 1 cosθ =1 =5/8 KN (tension) x0.8 u CA '= 5/8 KN u CA '=5/8 KN (comp) Resolving horizontally at the joint B, we get u AB '= u BC 'cosθ u AB '= 5 /8x0.8= 0.5 KN u AB '=0.5 KN (comp )

17 P(KN) U (kn) PUL/A U (KN) PU L/A Member Length(L) Area mm (mm) AB /3 640/3-1/ 160 BC /6 500/18 5/8 500/4 CA /6 500/18-5/8 500/4 E = X 10 5 n/mm = 00 KN/m δv= Pul AE = =.45mm δh= pu' l AE = =0.8mm 8) The frame shown in fig. Consists of four panels each 5m wide, and the cross sectional areas of the member are such that, when the frame carries equal loads at the panel points of the lower chord, the stress in all the tension members is f n/mm and the stress in all the comparison members of 0.8 f N/mm.Determine the values of f if the ratio of the maximum deflection to span is 1/900 Take E=.0 x 10 5 N/mm. Sol: The top chord members will be in compression and the bottom chord members, verticals, and diagonals will be in tension. Due to symmetrical loading, the maximum deflection occurs at C. Apply unit load at C to find u in all the members. All the members have been numbered 1,, 3.. etc., by the rule u 8 = u10 = u 1 = 0. u 7 = R A sinθ = ( comp) Reaction R A = R B = 1/ θ = 45º ; cos θ = sin θ = u 3 =u 7 cos θ=.1 =1 =u 4 (tension) 1 u 9 = u 4 cosθ = (tension) Also, u 7 cosθ +u 9 cosθ=u 1

18 u 1 = x 1 + x 1 =1.0( comp) Member Length (L) mm P (N/mm ) U PUL F F F +1/ +150F F +1/ +150F () F -() 0.5 / +000F F () 0.5 +F +() 0.5 / +500F n δ C = 1 PUL E =9000+ =0.09 F mm 5 x10 Sum: +9000F δ C = xspan= x10000=100 mm 9 Hence 0.09 F = 100/9 (or) F = 100/(9 x 0.09) = 13.5 N/mm. 9. Determine the vertical deflection of the joint C of the frame shown in fig. due to temperature rise of 60º F in the upper chords only. The coefficient of expansion = 6.0 x 10-6 per 1º F and E = x 10 6 kg /cm. Sol: Increase in length of each member of the upper chord = L α t = 400 x 6x 10-6 x 60 = cm The vertical deflection of C is given by δ= uδ To find u, apply unit vertical load at C. Since the change in length ( ) occurs only in the three top chord members, stresses in these members only need be found out. Reaction at A = 4/1 = 1/3 Reaction at B = 8/1 = /3 Passing a section cutting members 1 and 4, and taking moments at D, we get U 1 = (1/3 x 4) 1/3 = 4/9 (comp)

19 get Also Similarly, passing a section cutting members 3 and 9 and taking moments at C, we u 3 = ( 3 x4 ) 1 3 =8 9 (comp) u =u 1 = 4 9 (comp ) δ C =u 1 Δ 1 +u Δ +u 3 Δ 3 δ C ={( 4 9 ) + ( 4 9 ) + ( 8 δ C = 0.56 cm 9 )} x ( ) 10) Using the principle of least work, analyze the portal frame shown in Fig. Also plot the B.M.D. Sol: The support is hinged. Since there are two equations at each supports. They are H A, V A, H D, and V D. The available equilibrium equation is three. (i.e.) M=0, H =0, V =0. The structure is statically indeterminate to first degree. Let us treat the horizontal H ( ) at A as redundant. The horizontal reaction at D will evidently be = (3-H) ( ). By taking moments at D, we get (V A x 3) + H (3-) + (3 x 1) ( 1.5) (6 x ) = 0 V A = 3.5 H/3 V D = 6 V A =.5 + H/3 By the theorem of minimum strain energy, U H =0 U AB H + U BE H + U CE H + U DC H =0 (1)For member AB: Taking A as the origin.

20 1. x M= M H =x U AB H =1 EI 0 +H.x 3 M M H dx 3 3 = 1 EI 0 1 EI [ Hx3 3 ( x + Hx) x dx = 1 [9H 10.1 ] EI x4 8 ]0 () For the member BE: Taking B as the origin. M=( Hx3 ) (3x11.5 )+ ( 3.5 H 3 ) x M=3H x Hx 3 M H =3 x 3 U BE 1 H =1 EI 0 M M H dx 1 = 1 EI 0 1 = 1 EI 0 1 = 1 EI 0 ( 3H x Hx 3 )( 3 x 3 ) dx ( 9H x Hx Hx+1.5x 1.67 x Hx + 9 ) dx ( 9H x Hx x Hx + 9 ) dx = 1 EI ( 9 Hx 13.5x +6x Hx 0.389x 3 + Hx3 1 7 ) 0 = 1 EI ( 9H H H 7 ) = 1 [9H 7.9] EI (3) For the member CE: Taking C as the origin

21 M= (3 H ) x+(.5+ H 3 )x M= 6+H+.5x+ Hx 3 U CE H =1 EI 0 = 1 EI 0 = 1 EI 0 = 1 EI 0 M M H 3 Hx 6+H+.5x+ [( 3 )( + x 3 )] [ 1+4H+5x+6.67 Hx x+6.67 Hx x Hx + 9 ] dx [ 1+4H+3x Hx x x Hx + 9 ] dx 1 = (10.96H ) EI (4) For the member DC: Taking D as the origin M= (3 H ) x= 3x+Hx M x =x U DC H =1 EI 0 M M H dx = 1 EI 0 ( 3x+Hx ) ( x ) dx = 1 EI 0 ( 3x +Hx ) dx = 1 EI ( 3x3 3 + Hx 3 3 ) dx = 1 0 EI ( x3 + Hx3 3 ) dx 0 1 = (.67H -8) EI Subs the values U H =0 1/EI (9-10.) + (8.04H-7.9) + (10.96H-15.78) + (-8+.67H) = H = H = 1.36 KN Hence V A = H/3 = /3 = 3.05 KN V D =.5 + H/3 = /3 =.95 KN

22 M A = M D =0 M B = (-1 x 3 )/ + (1.36 x 3) = -0.4 KN m M C = - (3-H) = - (3-1.36) =-3.8KNm Bending moment Diagram: 11) A simply supported beam of span 6m is subjected to a concentrated load of 45 KN at m from the left support. Calculate the deflection under the load point. Take E = 00 x 10 6 KN/m and I = 14 x 10-6 m 4. Solution: Taking moments about B. V A x 6 45 x 4=0 V A x = 0 V A = 30 KN V B = Total Load V A = 15 KN Virtual work equation: L (δ c ) V = 0 mmdx EI Apply unit vertical load at c instead of 45 KN R A x 6-1 x 4 =0 R A = /3 KN R B = Total load R A = 1/3 KN Virtual Moment: Consider section between AC M 1 = /3 X 1 [limit 0 to ] Section between CB M = /3 X -1 (X - ) [limit to 6 ] Real Moment:

23 The internal moment due to given loading M 1 = 30 x X 1 M = 30 x X -45 (X -) (δ c ) V = m 1 M 1 dx 1 0 EI + 6 m M dx EI ( x 1 3 ) (30 x 1 ) = 0 EI 6 ( 3 dx 1 + x (x )) (30 x 45 ( x ) ) dx EI ( 3 x x + ) ( 30x 45 x +90)dx 1 EI x 1 + = 1 EI 0 = 1 EI 0 = 1 EI [ 0 x x x ]0 ( x 3 + ) ( 15 x +90)dx 5x 30 x 30x +180dx +[ 5x x +180 x ] = 0 EI ( 8 3 ) + 1 EI ( 5 3 (63 3 ) 30 (6 )+180 (6 1 ) ) = 1 [ ] EI = 160 = 160 = m(or)57.1mm EI 00 x x 14 x10 The deflection under the load = 57.1 mm 1) Define and prove the Maxwell s reciprocal theorem. The Maxwell s reciprocal theorem stated as The work done by the first system loads due to displacements caused by a second system of loads equals the work done by the second system of loads due to displacements caused by the first system of loads. Maxwell s theorem of reciprocal deflections has the following three versions:

24 1. The deflection at A due to unit force at B is equal to deflection at B due to unit force at A. δ AB = δ BA. The slope at A due to unit couple at B is equal to the slope at B due to unit couple A Φ AB = Φ BA 3. The slope at A due to unit load at B is equal to deflection at B due to unit couple. ' φ ' AB =δ AB Proof: By unit load method, Where, δ= Mmdx EI M= bending moment at any point x due to external load. m= bending moment at any point x due to unit load applied at the point where deflection is required. Let m XA= bending moment at any point x due to unit load at A Let m XB = bending moment at any point x due to unit load at B. When unit load (external load) is applied at A,

25 M=m XA To find deflection at B due to unit load at A, apply unit load at B.Then m= m XB Hence, Similarly, δ BA = Mmdx = m XA.m XB dx (i) EI EI When unit load (external load) is applied at B, M=m XB To find the deflection at A due to unit load at B, apply unit load at A.then m= m XA δ AB = Mmdx = mb.m XA dx (ii) EI EI Comparing (i) & (ii) we get δ AB = δ BA 13. Using Castigliano s theorem, determine the deflection of the free end of the cantilever beam shown in the fig. Take EI = 4.9 MN/m. (NOV / DEC 003) Solution: Apply dummy load W at B. Since we have to determine the deflection of the free end. Consider a section xx at a distance x from B. Then M x =Wx+30 ( x 1)+0 1 ( x 1.5 )+16 (x ) δ= M M EI W dx [ 1 1 EI 0 3 x 1 Wx xdx + Wx x+30( x 1)x+0( x 1)( {{ 1 ) x } dx+ Wx x+30( x 1)x {0 1( x 1.5) x+1

26 = 1 EI [ W ( x3 +[ Wx ) 0 +[ 1 Wx ( x3 3 x ) ( ] +10 x4 4 x3 + x 3 )]1 +30( x3 x ) ( +0 x3 3 ) ( 0.75 x +16 x3 3 3 ) ] x Putting W =0 δ= 1 EI [ 30 ( ) +10 ( ) +30 ( ) 0 ( ) +16 ( )] δ= 1 EI [ ] δ= 1x x 10 6 ( ) δ=0.446m(or )44.64 mm 14. Fig shows a cantilever, 8m long, carrying a point loads 5 KN at the center and an udl of KN/m for a length 4m from the end B. If EI is the flexural rigidity of the cantilever find the reaction at the prop. (NOV/DEC 004) Solution: To find Reaction at the prop, R (in KN) Portion AC: ( origin at A ) 4 ( Rx ) dx EI U 1 = 0 =[ R x 3 64 R R 4= =3 6 EI ]0 6 EI 3 EI Portion CB: ( origin at C ) Bending moment M x = R (x+4) 5x x / = R (x+4) 5x x U = 0 Total strain energy = U 1 +U 4 (M x ) dx EI

27 At the propped end U R =0 4 U R =64 R 3EI + 0 ( M x EI x dm x dr ) dx = 64 R 3 EI EI [ R ( x 4) 5x x ]( x+4)dx 0 = 64 R 3 EI EI [ R (x 4 ) 5x ( x+4 ) x ( x+4)] dx 0 = 64 R 3 EI + 1 EI 0 4 [ R (x +8x+16) 5( x +4x) ( x 3 +4x )] dx 0 = 64 R 3 EI + 1 [ 4 EI ( R x3 3 +4x x3 +16 x) 5 ( 3 +x ) ( x4 4 4x3 3 ) ]0 = 64 R 3 + [ R ( ) 5( ) ( ) ] = 1.33 R + (149.33R ) = 1.33 R + ( R 416) 1.33 R R 416 =0 R =.347 KN 15. A simply supported beam of span L is carrying a concentrated load W at the centre and a uniformly distributed load of intensity of w per unit length. Show that Maxwell s reciprocal theorem holds good at the centre of the beam. Solution: Let the load W is applied first and then the uniformly distributed load w. Deflection due to load W at the centre of the beam is given by δ W = 5Wl4 384 EI Hence work done by W due to w is given by: 5 wl EI U A, B =Wx Deflection at a distance x from the left end due to W is given by

28 δ W (x ) = W 48 EI (3l x 4x ) Work done by w per unit length due to W, l/ U B,A = 0 W wx 48EI (3l x 4x )dx U B,A = Ww 4 EI [ 3l l ( ) 4] l Hence proved. U B,A = Ww 4 EI [ 3l4 8 ( l4 U A, B = Wwl 4 EI 16 )]

29 Strength of Materials (FOR IV SEMESTER) Question bank UNIT II INDETERMINATE BEAMS Compiled by, K.DIVYA ASSISTANT PROFESSOR DEPARTMENT OF CIVIL ENGINEERING FATIMA MICHAEL COLLEGE OF ENGINEERING AND TECHNOLOGY MADURAI - 0

30 UNIT II INDETERMINATE BEAMS Propped Cantilever and fixed end moments and reactions for concentrated load (central, non central), uniformly distributed load, triangular load (maximum at centre and maximum at end) Theorem of three moments analysis of continuous beams shear force and bending moment diagrams for continuous beams (qualitative study only) Two Marks Questions and Answers 1. Define statically indeterminate beams. If the numbers of reaction components are more than the conditions equations, the structure is defined as statically indeterminate beams. E = R r E = Degree of external redundancy R = Total number of reaction components r = Total number of condition equations available. A continuous beam is a typical example of externally indeterminate structure.. State the degree of indeterminacy in propped cantilever. For a general loading, the total reaction components (R) are equal to (3+) =5, While the total number of condition equations (r) are equal to 3. The beam is statically indeterminate, externally to second degree. For vertical loading, the beam is statically determinate to single degree. E = R r = 5 3 = 3. State the degree of indeterminacy in a fixed beam. For a general system of loading, a fixed beam is statically indeterminate to third degree. For vertical loading, a fixed beam is statically indeterminate to second degree. E = R r For general system of loading: R = and r = 3 E = 6-3 = 3

31 For vertical loading: R = + and r = E = 4 = 4. State the degree of indeterminacy in the given beam. The beam is statically indeterminate to third degree of general system of loading. R = = 6 E = R-r = 6-3 = 3 5. State the degree of indeterminacy in the given beam. The beam is statically determinate. The total numbers of condition equations are equal to 3+ = 5. Since, there is a link at B. The two additional condition equations are at link. E = R-r = = 5-5 E = 0 6. State the methods available for analyzing statically indeterminate structures. i. Compatibility method ii. Equilibrium method 7. Write the expression fixed end moments and deflection for a fixed beam carrying point load at centre. M A =M B = WL 8 y max = WL3 19 EI 8. Write the expression fixed end moments and deflection for a fixed beam carrying eccentric point load.

32 M A = Wab L M B = Wa b L y max = Wa3 b 3 (under theload ) 3 3 EIL 9. Write the expression fixed end moments for a fixed due to sinking of support. M A =M B = 6 EI δ L 10. State the Theorem of three moments. Theorem of three moments: It states that If BC and CD are only two consecutive span of a continuous beam subjected to an external loading, then the moments M B, M C and M D at the supports B, C and D are given by M B L 1 +M C ( L 1 +L )=M D. L = 6a 1 x 1 + 6a x L 1 L Where M B = Bending Moment at B due to external loading M C = Bending Moment at C due to external loading M D = Bending Moment at D due to external loading L 1 = length of span AB L = length of span BC a 1 = area of B.M.D due to vertical loads on span BC = area of B.M.D due to vertical loads on span CD a x 1 x = Distance of C.G of the B.M.D due to vertical loads on BC from B = Distance of C.G of the B.M.D due to vertical loads on CD from D. 11. Draw the shape of the BMD for a fixed beam having end moments M in one support and +M in the other. (NOV/DEC 003)

33 1. What are the fixed end moments for a fixed beam of length L subjected to a concentrated load w at a distance a from left end? (Nov/Dec 004) Fixed End Moment: M A = Wab L M B = Wab L 13. Explain the effect of settlement of supports in a continuous beam. (Nov/Dec 003) Due to the settlement of supports in a continuous beam, the bending stresses will alters appreciably. The maximum bending moment in case of continuous beam is less when compare to the simply supported beam. 14. What are the advantages of Continuous beams over Simply Supported beams? (i)the maximum bending moment in case of a continuous beam is much less than in case of a simply supported beam of same span carrying same loads. (ii) In case of a continuous beam, the average B.M is lesser and hence lighter materials of construction can be used it resist the bending moment. 15. A fixed beam of length 5m carries a uniformly distributed load of 9 kn/m run over the entire span. If I = 4.5x10-4 m 4 and E = 1x10 7 kn/m, find the fixing moments at the ends and deflection at the centre. Solution: Given: L = 5m W = 9 kn/m, I = 4.5x10-4 m 4 and E = 1x10 7 kn/m (i) The fixed end moment for the beam carrying udl: M A = M B = WL 1 = 9x(5) =18.75 KNm 1 (ii) The deflection at the centre due to udl:

34 y c = WL4 384 EI y c = 9x(5)4 =3.54mm 384 x1x x4.5x 10 Deflection is in downward direction. 16. A fixed beam AB, 6m long is carrying a point load of 40 kn at its center. The M.O.I of the beam is 78 x 10 6 mm 4 and value of E for beam material is.1x10 5 N/mm. Determine (i) Fixed end moments at A and B. Solution: Fixed end moments: M A =M B = WL 8 M A =M B = 50x6 8 =37.5 knm 17. A fixed beam AB of length 3m is having M.O.I I = 3 x 10 6 mm 4 and value of E for beam material is x10 5 N/mm. The support B sinks down by 3mm. Determine (i) fixed end moments at A and B. Solution: Given: L = 3m = 3000mm I = 3 x 10 6 mm 4 E = x10 5 N/mm δ = 3mm M A =M B = 6 EI δ L = 6xx 105 x3x10 6 x3 (3000 ) =1x10 5 N mm = 1 kn m. 18. A fixed beam AB, 3m long is carrying a point load of 45 kn at a distance of m from A. If the flexural rigidity (i.e) EI of the beam is 1x10 4 knm. Determine (i) Deflection under the Load. Solution: Given:

35 L = 3m W = 45 kn EI = 1x10 4 knm Deflection under the load: In fixed beam, deflection under the load due to eccentric load Wa 3 b 3 3 EIL 3 y C = y C = 45 x ()3 x(1 ) 3 3x1x 10 4 x(3) y C = m y C =0.444mm The deflection is in downward direction. 19. A fixed beam of 5m span carries a gradually varying load from zero at end A to 10 kn/m at end B. Find the fixing moment and reaction at the fixed ends. Solution: Given: L = 5m W = 10 kn/m (i) Fixing Moment: M A = WL 30 and M B = WL 0 M A = 10(5) = 50 =8.33 knm M B = 10(5) 0 = 50 0 =1.5kNm (ii) Reaction at support: R A = 3WL 0 R A = R B = and R B = 7WL 0 = 150 =7. 5 kn 0 = =17.5kN

36 0. A cantilever beam AB of span 6m is fixed at A and propped at B. The beam carries a udl of kn/m over its whole length. Find the reaction at propped end. Solution: Given: L=6m, w = kn/m Downward deflection at B due to the udl neglecting prop reaction P, y B = wl4 8 EI Upward deflection at B due to the prop reaction P at B neglecting the udl, y B = Pl3 3 EI Upward deflection = Downward deflection Pl 3 3 EI = wl 4 8EI P = 3WL/8 = 3**6/8 =4.5 kn 16 Marks Questions And Answers

37 1. A fixed beam AB of length 6m carries point load of 160 kn and 10 kn at a distance of m and 4m from the left end A. Find the fixed end moments and the reactions at the supports. Draw B.M and S.F diagrams. Solution: Given: L = 6m Load at C, W C = 160 kn Load at D, W C = 10 kn Distance AC = m Distance AD =4m First calculate the fixed end moments due to loads at C and D separately and then add up the moments. Fixed End Moments: For the load at C, a=m and b=4m M B1 = W C a b L M A1 = W C ab L 160 xx(4) M A1 = =14.kNm (6) M B1 = 160 x x( 4) (6) =71.11kNm For the load at D, a = 4m and b = m M A = W D ab L M A = 10 x x( 4) (6) =53.33kNm M B = W D a b L 160xx( 4) M B = =106.66kNm (6) Total fixing moment at A, M A = M A1 + M A = = knm M A

38 Total fixing moment at B, M B =M B1 + M B = = kn m B.M diagram due to vertical loads: Consider the beam AB as simply supported. Let R A * and R B * are the reactions at A and B due to simply supported beam. Taking moments about A, we get R B x6 =160 x +10 x4 R B = 800 = kn 6 * R A = Total load - R B* =( ) = kn B.M at A = 0 * B.M at C = R A x = x = kn m B.M at D = x = kn m B.M at B= 0 S.F Diagram: Let R A = Resultant reaction at A due to fixed end moments and vertical loads R B = Resultant reaction at B Equating the clockwise moments and anti-clockwise moments about A, R B x 6 + M A = 160 x + 10 x 4 + M B R B = kn R A = total load R B = kn S.F at A = R A = kn S.F at C = = kn S.F at D = = kn S.F at B= KN

39 . A fixed beam AB of length 6m carries two point loads of 30 kn each at a distance of m from the both ends. Determine the fixed end moments and draw the B.M diagram. Sloution: Given: Length L = 6m Point load at C = W 1 = 30 kn Point load at D = W = 30 kn Fixed end moments: M A = Fixing moment due to load at C + Fixing moment due to load at D W 1 a 1 b 1 W a b = + L L 30 xx4 30 x4x + =40kN m 6 6 Since the beam is symmetrical, M A = M B = 40 knm B.M Diagram: To draw the B.M diagram due to vertical loads, consider the beam AB as simply supported. The reactions at A and B is equal to 30kN. B.M at A and B = 0 B.M at C =30 x = 60 knm B.M at D = 30 x = 60 knm

40 3. Find the fixing moments and support reactions of a fixed beam AB of length 6m, carrying a uniformly distributed load of 4kN/m over the left half of the span. Solution: Macaulay s method can be used and directly the fixing moments and end reactions can be calculated. This method is used where the areas of B.M diagrams cannot be determined conveniently. For this method it is necessary that UDL should be extended up to B and then compensated for upward UDL for length BC as shown in fig. The bending at any section at a distance x from A is given by, EI d y dx =R A x M A wx x +w*(x-3) ( x 3) =R A x M A - ( 4x x 3) ) +4( ) = R A x M A - x +(x-3) Integrating, we get EI dy dx =R A x -M Ax - x3 3 +C 1 + ( x 3)3 3 When x=0, dy dx =0. Substituting this value in the above equation up to dotted line, C 1 = 0 Therefore equation (1) becomes EI dy dx =R x A -M Ax - x3 ( x 3) Integrating we get x EI y=r 3 A 6 M A x x4 1 +C ( x 3)4 + 1 When x = 0, y = 0 By substituting these boundary conditions upto the dotted line, C = 0 EI y= R A x3 M A x x 1( x 3 ) By subs x =6 & y = 0 in equation (ii) (1) (ii)

41 0= R A 63 6 M A (6 3 ) =36 R A 18 M A R A 9 M A = At x =6, dy dx =0 in equation (i) (iii) 0=R A x 6 M A x6 3 x (6 )3 + (6 3 )3 3 18R A M A x =0 18R A 6M A =16 By solving (iii) & (iv) M A = 8.5 knm By substituting M A in (iv) 16 = 18 R A 6 (8.5) R A = 9.75 kn R B = Total load R A R B =.5 kn By equating the clockwise moments and anticlockwise moments about B M B + R A x 6 = M A + 4x3 (4.5) M B = 3.75 knm Result: M A = 8.5 knm M B = 3.75 knm R A = 9.75 kn R B =.5 KN 4. A continuous beam ABC covers two consecutive span AB and BC of lengths 4m and 6m, carrying uniformly distributed loads of 6kN/m and 10kN/m respectively. If the ends A and C are simply supported, find the support moments at A,B and C. draw also B.M.D and S.F.D. Solution: Given Data: Length AB, L 1 =4m. Length BC, L =6m UDL on AB, w 1 =6kN/m UDL on BC, w =10kN/m

42 (i) Support Moments: Since the ends A and C are simply supported, the support moments at A and C will be zero. By using cleyperon s equation of three moments, to find the support moments at B (ie) M B. M A L 1 + M B (L 1 +L ) + M C L = 6a 1 x 1 6a x M B (4+6) + 0 = 6a 1 x 1 6a x 4 6 0M B = 3a 1 x 1 a x The B.M.D on a simply supported beam is carrying UDL is a parabola having an attitude of wl 8. Area of B.M.D = 3 *L*h = wl * Span * 3 8 The distance of C.G of this area from one end, = span. a 1 =Area of B.M.D due to UDL on AB, = 3 *4* 6(4 ) 8 =3 x 1 = L 1 = 4/ = m. a = Area of B.M.D due to UDL on BC, = 3 *6* 10(6 ) 8 = 180m. x =L / = 6 / =3m Substitute these values in equation(i). We get, 0M B = 3 3 +(180 3) = M B =31.8 knm. (ii) B.M.D

43 (iii) The B.M.D due to vertical loads (UDL) on span AB and span BC. Span AB: = w 1 L 1 8 = =1kNm Span BC: = w L 8 = =45kNm S.F.D: To calculate Reactions, For span AB, taking moments about B, we get (R A *4)-(6*4*) M B =0 4R A 48 = 31.8 (M B =31.8, -ve sign is due to hogging moment. R A =4.05kN Similarly, For span BC, taking moment about B, (R c *6)-(6*10*3) M B =0 6R C 180=-31.8 R C =4.7kN. R B =Total load on ABC (R A +R B ) =(6*4*(10*6))-( ) =55.5kN. RESULT: M A =M C =0 M B =31.8kNm R A =4.05kN R B =55.5kN R C =4.7kN

44 5. A continuous beam ABCD of length 15m rests on four supports covering 3 equal spans and carries a uniformly distributed load of 1.5 kn/m length.calculate the moments and reactions at the supports. Draw The S.F.D and B.M.D. Solution: Given: Length AB = L 1 = 5m Length BC = L = 5m Length CD = L 3 = 5m u.d.l w 1 = w = w 3 = 1.5 kn/m Since the ends A and D are simply supported, the support moments at A and D will be Zero. M A =0 and M D =0 For symmetry M B =0

45 (i)to calculate support moments: To find the support moments at B and C, by using claperon s equations of three moments for ABC and BCD. For ABC, M A L 1 +[M B (L 1 +L )]+M C L = 6a 1 x 1 L 1 6a x L 0+[M B (5+5)]+[M C (5)]= 6a 1 x 1 6a x 5 5 0M B +5M C = 6 5 ( a 1 x 1 +a x ) (i) a 1 =Area of BMD due to UDL on AB when AB is considered as simply supported beam. = 3 AB Altitude of parabola (Altitude of parabola= w 1 L 1 8 ) = (5) 8 =15.65 x 1 =L 1 / =5/=.5m Due to symmetry.a =a 1 =15.65 x =x 1 =.5 subs these values in eqn(i) 0M B +5M C = 6 [( )+( )] 5 =93.75 Due to symmetry M B =M C 0M B +5M B =93.75 M B =3.75kNm. M B =M C =3.75kNm. (ii) To calculate BM due to vertical loads: The BMD due to vertical loads(here UDL) on span AB, BC and CD (considering each span as simply supported ) are shown by parabolas of altitude w 1 L = = knm each. 8 8 (iii)to calculate support Reactions: Let R A,R B,R C and R D are the support reactions at A,B,C and D. Due to symmetry R A =R D R B =R C For span AB, Taking moments about B, We get M B =(R A *5)-(1.5*5*.5) -3.75=(R A *5)-18.75

46 R A =3.0kN. Due to symmetry R A =R D =3.0kN R B =R C R A +R B +R C +R D =Total load on ABCD 3+R B +R B +3=1.5*15 R B =8.5kN R C =8.5kN. Result: M A = M D = 0 M B =M C =3.75kNm. R A =R D =3.0kN R B =8.5kN R C =8.5kN. 6. a continuous beam ABCD, simply supported at A,B, C and D is loaded as shown in fig. Find the moments over the beam and draw B.M.D and S.F.D. (Nov/ Dec 003)

47 Solution: Given: Length AB = L 1 = 6m Length BC = L = 5m Length CD = L 3 = 4m Point load W 1 = 9kN Point load W = 8kN u.d.l on CD, w = 3 kn/m (i) B.M.D due to vertical loads taking each span as simply supported: Consider beam AB, B.M at point load at E = W 1 ab = 9 4 =1 knm L 1 6 W ab Similarly B.M at F = = 8 3 =9.6kNm L 6 B.M at the centre of a simply supported beam CD, carrying U.D.L = wl 3 8 = =6 knm (ii) B.M.D due to support moments: Since the beam is simply supported M A =M D = 0 By using Clapeyron s Equation of Three Moments: a) For spans AB and BC M A L 1 + M B (L 1 +L ) + M C L = 6a 1 x 1 6a x M B (6+5 )+M c (5 )= 6a 1 x 1 6a x M B +5M C =a 1 x 1 5 a x (i) a 1 x 1 = ½*6*1*L+a/3 = ½*6*1*(6+)/3 = 96 a x = ½*5*9.6*L+b/3 = ½*5*9.6*(6+4)/3 = 64 Substitute the values in equation (i) M B + 5M C = 96+6/5*64 M B + 5M C = (ii) b) For spans BC and CD M B L + M C (L +L 3 ) + M D L 3 = 6a x L 6a 3 x 3 L 3 M B *5 + M C (5+4) +0 = 6a x 6a 3 x 3 5 4

48 5M B +18M C = 6 ax 5 +6a 3 x (iii) 4 a x = ½ * 5 * 9.6 *(L+a)/3 =1/ * 5 * 9.6 *(5+)/3 = 56 a 3 x 3 = /3 * 4*6*4/ =3 Substitute these values in equation (iii) 5M B +18M C = M B +18M C =115. By solving equations (ii) &(iv) M B = 6.84 knm and M C = 4.48 knm (iii) Support Reactions: For the span AB, Taking moment about B, M B = R A * 6 9*4 = 6R A 36 R A = =4.86 KN 6 For the span CD, taking moments about C M C =R D (M C = 4.48) R D = 4.88KN For ABC taking moment about C M c = R A (6+5) 9 (5+4 )+R B R B = R B = 9.41 kn R C = Total load on ABCD (R A +R B +R D ) R C = (9+8+4*3) ( ) R C = 9.85 kn Result: M A = M D = 0 M B = 6.84 knm and M C = 4.48 knm R A = 4.86kN R B = 9.41kN R C = 9.85 kn R D = 4.88KN

49 7. Using the theorem of three moments draw the shear force and bending moment diagrams for the following continuous beam. (April / May 003) Solution: Given: Length AB, L 1 =4m. Length BC, L =3m. Length CD, L 3 =4m. UDL on AB, w=4 kn/m Point load in BC, W 1 =4kN/m Point load in CD, W 1 =6kN (i) Bending Moment to Vertical Loads: Consider beam AB, B.M= wl 8 = =8kNm.

50 Similarly for beam BC, B.M= W 1 ab = 6 1 L 3 =4kNm Similarly for beam CD, B.M= W ab = L 3 4 =6kNm (ii) Bending Moment to support moments: Let M A,M B,M C And M D be the support moments at A,B,C and D. Since the ends is simply supported, M A =M D =0. By using Clayperon s equation of three moments for span AB and BC, M A L 1 +[M B (L 1 +L ) ]+ M C L = 6a 1 x 1 L 1 + 6a x L 0+[M B (4+3)] M C (3) = 6a 1 x 1 + 6a x M B + 3M C = 1.5a 1 x 1 + a x (i) a 1 x 1 = Moment of area BMD due to UDL = 3 Base (Base Altitude) = 3 4 (4 8) =4.33 a x = Moment of area BMD due to point load about point B = 1 3 ( 4) =5.33 Using these values in eqn (i), 14M B + 3M C =1.5(4.33) +(*5.33) 14M B + 3M C = (ii) For span BC and CD, M B L 1 +[M C (L +L 3 ) ]+ M D L 3 = 6a x L + 6a 3 x 3 L 3 M B (3)+[M C (3+3) ]+ M D L 3 = 6a x + 6a 3 x M B +1M C = a x + a 3 x (iii) a x = Moment of area BMD due to point load about point C =(1/)**4* 1 3

51 =.66 a 3 x 3 = Moment of area BMD due to point load about point D 1 = =6 Using these values in Eqn(iii), 3M B + 1M C =(.66) + (*6) 3M B + 1M C = (iv) Using eqn (ii) and (iii), M B = 5.69 kn m M C = 0.19 kn m (iii) Support Reaction: For span AB, taking moment about B M B =R A = R A *4 3 R A *4=6.731 R A = 6.68 kn For span CD, taking moment about C M C =R D = R D *4-8 R D = kn Now taking moment about C for ABC M C =R A (7) 4 (4 5 )+R B M C =7R A 4(0)+3R B =7(6.68) 80+3R B 6 R B = kn R C = Total load (R A +R B + R C ) = [ (4 4 )+6 +8] ( ) R C = kn Result: M A = M D = 0 M B = 5.69 kn m M C = 0.19 kn m R A = 6.68 kn R B = kn R C = kn R D = kn

52 8. A beam AB of 4m span is simply supported at the ends and is loaded as shown in fig. Determine (i) Deflection at C (ii) Maximum deflection (iii) Slope at the end A. E= 00 x 10 6 kn/m and I = 0 x 10-6 m 4 Solution: Given: L = 4m E= 00 x 10 6 kn/m and I = 0 x 10-6 m 4 To calculate Reaction: Taking moment about A R B 4= ( +1+1) R B *4 = 0 + 0(3) R B = 80/4 = 0 kn R A = Total load - R B = (10*+0) -0 R A = 0 kn

53 By using Macaulay s method: M X =EI d y x ) =0 x 0( x 1) 10( dx Integrating we get EI dy dx =10x +C 1 10( x 1 ) 5( x ) 3 3 Integrating we get 10 x3 EIy= 3 +C 1 x+c x 1)3 5( x )4 10( (ii) 3 1 When x = 0, y = 0 in equation (ii) we get C = 0 When x = 4m, y = 0 in equation (ii) 0= 10 3 (4)3 +4C (4 1)3 5 1 ( 4 )4 = C C 1 = Hence the slope and deflection equations are Slope Equation: EI dy dx =10x ( x 1) 5( x ) 3 3 Deflection Equation: EIy= 10 x x 10( x 1 )3 3 (i) Deflection at C, y C : 5( x )4 1 Putting x = m in the deflection equation, we get EIy= 10()3 9.16() 10( 1)3 3 3 = = y c = 8.74 (downward) (ii) Maximum Deflection, y max : The maximum deflection will be very near to mid-point C. Let us assume that it occurs in the sections between D and C. For maximum deflection equating the slope at the section to zero, we get EI dy dx =10x ( x 1)

54 (iii) Slope at the end A, θ A : 10x (x-1) = 0 10x (x -x+1) = 0 x = 39.16/0 =1.958 m 10(1. 958)3 EIy= 3 y max = -35/EI y max = 8.75 mm (downward) Putting x = 0 in the slope equation, EI dy dx = 9.16 θ A = dy/dx = -9.16/EI θ A = radians θ A = º Result: (i) Deflection at C = 8.74 mm (ii) Maximum deflection = 8.75 mm (iii) Slope at the end A, θ A = º 9.16(1.958 ) 10( ) A continuous beam is shown in fig. Draw the BMD indicating salient points. (Nov/Dec 004) Solution: Given: Length L 1 = 4m Length L = 8m Length L 3 = 6m Udl on BC w = 10 kn/m Point load W 1 = 40 kn Point load W = 40 kn (i) For beam BC, For beam CD, B.M due to vertical loads: Consider beam AB, B.M = W 1 ab = =30 knm L 1 4 B.M = wl 8 =10(8) =80 knm 8 B.M = W L 3 = (ii) B.M due to support moments: 60 knm

55 Let M A, M B, M C, M D be the support moments at A, B, C, D. Since the end A and D are simply supported M A = M D = 0 For Span AB and BC: By using Clapeyron s Equation of Three moments. M A L 1 +M B (L 1 +L )+M C L = 6a 1 x 1 L 1 6a x L 0+M B (4+8)+M C (8)= 6a 1 x 1 6a x 4 8 M B (1) +8 M C = -1.5a 1 x a x 4 M B +8 M C = -1.5a 1 x a x (i) a 1 x 1 = Moment of area of B.M.D due to point load = ½*4*30*/3*3 = 10 a x = Moment of area of B.M.D due to udl = /3 (Base x Altitude) x Base/ = /3 (8*80)*8/ = Using these values in equation (i) 4 M B +8 M C = -1.5(10) 0.75 ( ) 4 M B +8 M C = (ii) For Span BC and CD: M B L +M C ( L +L 3 )+M D L 3 = 6a x L 6a 3 x 3 L 3 M B (8 )+M C (8+6 )+0= 6a x 6a 3 x M B + 8 M C = a x - a 3 x (iii) a x = Moment of area of B.M.D due to udl = /3 (Base x Altitude) x Base/ = /3 (8*80)*8/ = a 3 x 3 = Moment of area of B.M.D due to point load = ½ * b*h*l/3 = ½ * 6*60*6/3 = 360 Using these values in equation (iii) 8 M B + 8 M C = ( ) M B + 8 M C = (iv) From (ii) & (iv) M C = knm M B = knm Result: M A = M D = 0 M C = knm M B = knm

56 10. For the fixed beam shown in fig. draw BMD and SFD. (Nov / Dec 004) Solution: (i) B.M.D due to vertical loads taking each span as simply supported: Consider beam AB as simply supported. The B.M at the centre of AB = wl 1 8 = (3) =.5kNm 8

UNIT I ENERGY PRINCIPLES

UNIT I ENERGY PRINCIPLES UNIT I ENERGY PRINCIPLES Strain energy and strain energy density- strain energy in traction, shear in flexure and torsion- Castigliano s theorem Principle of virtual work application of energy theorems

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE AHAAKSHI ENGINEERING COEGE TIRUCHIRAPAI - 611. QUESTION WITH ANSWERS DEPARTENT : CIVI SEESTER: V SU.CODE/ NAE: CE 5 / Strength of aterials UNIT INDETERINATE EAS 1. Define statically indeterminate beams.

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE CE840-STRENGTH OF TERIS - II PGE 1 HKSHI ENGINEERING COEGE TIRUCHIRPI - 611. QUESTION WITH NSWERS DEPRTENT : CIVI SEESTER: IV SU.CODE/ NE: CE 840 / Strength of aterials -II UNIT INDETERINTE ES 1. Define

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam BEM horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam INTERNL FORCES IN BEM Whether or not a beam will break, depend on the internal resistances

More information

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

More information

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SUBJECT: CE 2252 STRENGTH OF MATERIALS UNIT: I ENERGY METHODS 1. Define: Strain Energy When an elastic body is under the action of external

More information

Beams. Beams are structural members that offer resistance to bending due to applied load

Beams. Beams are structural members that offer resistance to bending due to applied load Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

More information

Unit II Shear and Bending in Beams

Unit II Shear and Bending in Beams Unit II Shear and Bending in Beams Syllabus: Beams and Bending- Types of loads, supports - Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

FIXED BEAMS CONTINUOUS BEAMS

FIXED BEAMS CONTINUOUS BEAMS FIXED BEAMS CONTINUOUS BEAMS INTRODUCTION A beam carried over more than two supports is known as a continuous beam. Railway bridges are common examples of continuous beams. But the beams in railway bridges

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 General... 4 1. Background... 5 1.3 Discontinuity Functions...

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

Chapter 2 Basis for Indeterminate Structures

Chapter 2 Basis for Indeterminate Structures Chapter - Basis for the Analysis of Indeterminate Structures.1 Introduction... 3.1.1 Background... 3.1. Basis of Structural Analysis... 4. Small Displacements... 6..1 Introduction... 6.. Derivation...

More information

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 3 1.1 General... 3 1. Background... 4 1.3 Discontinuity Functions...

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

More information

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I QUESTION BANK DEPARTMENT: CIVIL SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I Unit 5 MOMENT DISTRIBUTION METHOD PART A (2 marks) 1. Differentiate between distribution factors and carry

More information

Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be

More information

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11. Displacement Method of Analysis Slope Deflection Method Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 10 The Force Method of Analysis: Trusses Instructional Objectives After reading this chapter the student will

More information

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

More information

Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

More information

Shear Force V: Positive shear tends to rotate the segment clockwise.

Shear Force V: Positive shear tends to rotate the segment clockwise. INTERNL FORCES IN EM efore a structural element can be designed, it is necessary to determine the internal forces that act within the element. The internal forces for a beam section will consist of a shear

More information

MECHANICS OF MATERIALS. Analysis of Beams for Bending

MECHANICS OF MATERIALS. Analysis of Beams for Bending MECHANICS OF MATERIALS Analysis of Beams for Bending By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Define the elastic deformation of an axially

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

More information

CE 2302 STRUCTURAL ANALYSIS I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES

CE 2302 STRUCTURAL ANALYSIS I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES CE 2302 STRUCTURAL ANALYSIS I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES 1.Why is it necessary to compute deflections in structures? Computation of deflection of structures is necessary for the following

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains STRENGTH OF MATERIALS-I Unit-1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between

More information

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate. 1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

More information

CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY

CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY METHOD FOR INDETERMINATE FRAMES PART-A(2MARKS) 1. What is

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

14. *14.8 CASTIGLIANO S THEOREM

14. *14.8 CASTIGLIANO S THEOREM *14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

More information

Theory of Structures

Theory of Structures SAMPLE STUDY MATERIAL Postal Correspondence Course GATE, IES & PSUs Civil Engineering Theory of Structures C O N T E N T 1. ARCES... 3-14. ROLLING LOADS AND INFLUENCE LINES. 15-9 3. DETERMINACY AND INDETERMINACY..

More information

BUILT-IN BEAMS. The maximum bending moments and maximum deflections for built-in beams with standard loading cases are as follows: Summary CHAPTER 6

BUILT-IN BEAMS. The maximum bending moments and maximum deflections for built-in beams with standard loading cases are as follows: Summary CHAPTER 6 ~ or CHAPTER 6 BUILT-IN BEAMS Summary The maximum bending moments and maximum deflections for built-in beams with standard loading cases are as follows: MAXIMUM B.M. AND DEFLECTION FOR BUILT-IN BEAMS Loading

More information

Chapter 8 Supplement: Deflection in Beams Double Integration Method

Chapter 8 Supplement: Deflection in Beams Double Integration Method Chapter 8 Supplement: Deflection in Beams Double Integration Method 8.5 Beam Deflection Double Integration Method In this supplement, we describe the methods for determining the equation of the deflection

More information

UNIT I. S.NO 2 MARKS PAGE NO 1 Why it is necessary to compute deflections in structures? 4 2 What is meant by cambering technique, in structures?

UNIT I. S.NO 2 MARKS PAGE NO 1 Why it is necessary to compute deflections in structures? 4 2 What is meant by cambering technique, in structures? 1 UNIT I UNIT I INDETERMINATE FRAMES 9 Degree of static and kinematic indeterminacies for plane frames - analysis of indeterminate pin-jointed frames - rigid frames (Degree of statical indeterminacy up

More information

Shear force and bending moment of beams 2.1 Beams 2.2 Classification of beams 1. Cantilever Beam Built-in encastre' Cantilever

Shear force and bending moment of beams 2.1 Beams 2.2 Classification of beams 1. Cantilever Beam Built-in encastre' Cantilever CHAPTER TWO Shear force and bending moment of beams 2.1 Beams A beam is a structural member resting on supports to carry vertical loads. Beams are generally placed horizontally; the amount and extent of

More information

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method?

29. Define Stiffness matrix method. 30. What is the compatibility condition used in the flexibility method? CLASS: III YEAR / VI SEMESTER CIVIL SUBJECTCODE AND NAME: CE 2351 - STRUCTURAL ANALYSIS-II UNIT1 FLEXIBILITY MATRIX METHOD. PART A 1. What is meant by indeterminate structures? 2. What are the conditions

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

ENGINEERING MECHANICS SOLUTIONS UNIT-I

ENGINEERING MECHANICS SOLUTIONS UNIT-I LONG QUESTIONS ENGINEERING MECHANICS SOLUTIONS UNIT-I 1. A roller shown in Figure 1 is mass 150 Kg. What force P is necessary to start the roller over the block A? =90+25 =115 = 90+25.377 = 115.377 = 360-(115+115.377)

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

More information

UNIT-II MOVING LOADS AND INFLUENCE LINES

UNIT-II MOVING LOADS AND INFLUENCE LINES UNIT-II MOVING LOADS AND INFLUENCE LINES Influence lines for reactions in statically determinate structures influence lines for member forces in pin-jointed frames Influence lines for shear force and bending

More information

Part IB Paper 2: Structures. Examples Paper 2/3 Elastic structural analysis

Part IB Paper 2: Structures. Examples Paper 2/3 Elastic structural analysis ISSUEB 011 15 NOV 2013 1 Engineering Tripos Part IB SECOND YEAR Part IB Paper 2: Structures Examples Paper 2/3 Elastic structural analysis Straightforward questions are marked by t; Tripos standard questions

More information

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure. CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be

More information

Problem 1: Calculating deflection by integration uniform load. Problem 2: Calculating deflection by integration - triangular load pattern

Problem 1: Calculating deflection by integration uniform load. Problem 2: Calculating deflection by integration - triangular load pattern Problem 1: Calculating deflection by integration uniform load Problem 2: Calculating deflection by integration - triangular load pattern Problem 3: Deflections - by differential equations, concentrated

More information

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b. From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The Slope-Deflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student

More information

METHOD OF LEAST WORK

METHOD OF LEAST WORK METHOD OF EAST WORK 91 METHOD OF EAST WORK CHAPTER TWO The method of least work is used for the analysis of statically indeterminate beams, frames and trusses. Indirect use of the Castigliano s nd theorem

More information

Structural Analysis III The Moment Area Method Mohr s Theorems

Structural Analysis III The Moment Area Method Mohr s Theorems Structural Analysis III The Moment Area Method Mohr s Theorems 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Purpose... 4. Theory... 6.1 asis... 6. Mohr s First Theorem (Mohr I)... 8.3 Mohr

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALS-I 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus

More information

Procedure for drawing shear force and bending moment diagram:

Procedure for drawing shear force and bending moment diagram: Procedure for drawing shear force and bending moment diagram: Preamble: The advantage of plotting a variation of shear force F and bending moment M in a beam as a function of x' measured from one end of

More information

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are *12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are very small,

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF CIVIL ENGINEERING QUESTION BANK IV SEMESTER CE6402 STRENGTH OF MATERIALS Regulation 2013 Academic Year 2017 18 Prepared by

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

Interstate 35W Bridge Collapse in Minnesota (2007) AP Photo/Pioneer Press, Brandi Jade Thomas

Interstate 35W Bridge Collapse in Minnesota (2007) AP Photo/Pioneer Press, Brandi Jade Thomas 7 Interstate 35W Bridge Collapse in Minnesota (2007) AP Photo/Pioneer Press, Brandi Jade Thomas Deflections of Trusses, Beams, and Frames: Work Energy Methods 7.1 Work 7.2 Principle of Virtual Work 7.3

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

Continuous Beams - Flexibility Method

Continuous Beams - Flexibility Method ontinuous eams - Flexibility Method Qu. Sketch the M diagram for the beam shown in Fig.. Take E = 200kN/mm 2. 50kN 60kN-m = = 0kN/m D I = 60 50 40 x 0 6 mm 4 Fig. 60.0 23.5 D 25.7 6.9 M diagram in kn-m

More information

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 5A - MOMENT DISTRIBUTION METHOD

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 5A - MOMENT DISTRIBUTION METHOD Outcome 1 The learner can: CITY AND GUIDS 910 UNIT 15 ECHANICS OF SOIDS evel 6 TUTORIA 5A - OENT DISTRIBUTION ETHOD Calculate stresses, strain and deflections in a range of components under various load

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY, VIRUDHUNAGAR CE 6602 STRUCTURAL ANALYSIS - II DEPARTMENT OF CIVIL ENGINEERING CE 6501 STRUCTURAL ANALYSIS - I 2 MARK QUESTION BANK UNIT II - INFLUENCE LINES

More information

Internal Internal Forces Forces

Internal Internal Forces Forces Internal Forces ENGR 221 March 19, 2003 Lecture Goals Internal Force in Structures Shear Forces Bending Moment Shear and Bending moment Diagrams Internal Forces and Bending The bending moment, M. Moment

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

More information

CIV E 205 Mechanics of Solids II. Course Notes

CIV E 205 Mechanics of Solids II. Course Notes Department of Civil Engineering CIV E 205 Mechanics of Solids II Instructor: Tarek Hegazi Email: tarek@uwaterloo.ca Course Notes Mechanics of Materials Objectives: - Solve Problems in a structured systematic

More information

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Introduction A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings,

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

More information

Equilibrium of a Particle

Equilibrium of a Particle ME 108 - Statics Equilibrium of a Particle Chapter 3 Applications For a spool of given weight, what are the forces in cables AB and AC? Applications For a given weight of the lights, what are the forces

More information

Structural Analysis. For. Civil Engineering.

Structural Analysis. For. Civil Engineering. Structural Analysis For Civil Engineering By www.thegateacademy.com ` Syllabus for Structural Analysis Syllabus Statically Determinate and Indeterminate Structures by Force/ Energy Methods; Method of Superposition;

More information

Structural Analysis III The Moment Area Method Mohr s Theorems

Structural Analysis III The Moment Area Method Mohr s Theorems Structural Analysis III The Moment Area Method Mohr s Theorems 010/11 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Purpose... 4. Theory... 5.1 asis... 5. Mohr s First Theorem (Mohr I)... 7.3 Mohr

More information

CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions

CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions 1. Deflections of Beams and Shafts CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 1. Integration method. Discontinuity functions 3. Method

More information

Lecture 8: Flexibility Method. Example

Lecture 8: Flexibility Method. Example ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

More information

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS Time Allowed:2 Hours Maximum Marks: 300 Attention: 1. Paper consists of Part A (Civil & Structural) Part B (Electrical) and Part C (Mechanical)

More information

3.4 Analysis for lateral loads

3.4 Analysis for lateral loads 3.4 Analysis for lateral loads 3.4.1 Braced frames In this section, simple hand methods for the analysis of statically determinate or certain low-redundant braced structures is reviewed. Member Force Analysis

More information