k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44


 Eileen Fletcher
 1 years ago
 Views:
Transcription
1 CE 6 ab Beam Analysis by the Direct Stiffness Method Beam Element Stiffness Matrix in ocal Coordinates Consider an inclined bending member of moment of inertia I and modulus of elasticity E subjected shear force and bending moment at its ends We will consider only bending and not include axial force for this lab Define a local coordinate system x y where the x axis is attached to the long dimension of the member and runs from the i initial) end of the member to the j terminal) end of the member Note that the SAP local axis is analogous to the x axis We seek a relationship between the shear and bending moment at the member ends and the transverse displacement and rotation at the ends of the form:! " V i M i V j M j * * = * * * )* k k k k4 k k k k 4 k k k k 4 k 4 k 4 k 4 k 44!   "  , Δ i θ i Δ j θ j where the sixteen terms in the 4x4 matrix are the stiffness influence coefficients which make up the element stiffness matrix in local coordinates θ j V j x y y θ i Δ j j M j V i EI M i Δ i i φ x Vukazich CE 6 Beam Direct Stiffness ab []
2 We can find this relationship from the analysis of a fixedfixed beam:! " V i M i V j M j ) = * EI EI 4EI EI EI EI EI 4EI,! "  Δ i θ i Δ j θ j ) we can write Eqn ) in shorthand form: Q = k where the 4x4 beam element stiffness matrix in local coordinates is [ k! ] = EI EI 4EI EI EI EI EI 4EI ) Note that, as was the case in the truss element, the [k ] matrix is symmetric k pq = k qp for p q) Note that all stiffness matrices are symmetric Example of Direct Stiffness Assembly of the Beam Structure System of Equations In order to illustrate the concept of the assembly of a system of equations for the entire beam structure, consider the beam that is made of two elements labeled and as shown: Vukazich CE 6 Beam Direct Stiffness ab []
3 y, y P x, x Note that the global degrees of freedom are labeled related to the joint numbering For a general joint with number n; n  n n For this example, the beam has joints and so there are a total of 6 global DOF for the structure and so, similar to the truss problem, the structure system of equations will be of the form: F = K ) where for this example; [K] = 6x6 global stiffness matrix; {F} = 6x vector of applied joint forces and support reactions); {Δ} = 6x vector of joint displacements Assembly of the Truss Structure Stiffness Matrix We will assemble the 6x6 structure stiffness matrix from the 4x4 element stiffness matrices Eqn 7) for elements and A connectivity table is constructed that maps each element DOF with its corresponding global DOF shaded) Element DOF Vukazich CE 6 Beam Direct Stiffness ab []
4 Δ i ) θ i ) Δ j ) 4 θ j ) Associated global DOF for element 4 Associated global DOF for element The structure global) stiffness matrix is assembled from the two element contributions [ k] = 4 k k k k4 k k k k 4 k k k k 4 4 k 4 k 4 k 4 k 44 [ k] = k k k k4 4 k k k k 4 5 k k k k 4 6 k 4 k 4 k 4 k 44 4) Note that the rows and columns of the element stiffness matrices are labeled with their corresponding global DOF in order to aid the assembly of the structure system of equations which yields the 6x6 structure global) stiffness matrix [ K] = k k k 4 k k k k k 4 k k k k k 4 k 5 k 6 k 4 k 4 k 4 k 4 k k 44 k k k 4 k k k k 4 k 4 k 4 k 4 k 44 5) Beam Structure Global) System of Equations Next the beam structure system of equations can be assembled Note that global DOF, 4 and 6 are unrestrained free) and DOF, and 5 are restrained supported) We can partition the structure system of equations by restrained and unrestrained DOF With the unrestrained partitions shaded below Vukazich CE 6 Beam Direct Stiffness ab [] 4
5 " V M P V 5 ) = * K K K K 4 K K K K 4 K K K K 4 K 5 K 6 K 4 K 4 K 4 K 44 K 45 K 46 K 5 K 54 K 55 K 56 K 6 K 64 K 65 K 66,"  Δ 6) Note at the unrestrained DOF we know the forces or moments applied to the joints but the joint displacements and rotations are unknown At the restrained DOF we know that the displacements or rotations) are equal to zero at the supports but we do not know the support reactions We can solve the following system of equations for the unknown displacements at the unrestrained DOF " P ) = * K K 4 K 4 K 6 K 44 K 64 K 6 K 46 K 66,"  Δ or equivalently! " K K 4 K 4 K 6 K 44 K 64 K 6 K 46 K 66 * ) * Δ, * *  = ) * * P, *  * 7) once Δ, θ4, and θ6 are found by solving the system of equations shown in Eqn 7, the support reactions can be found by performing the matrix multiplication! " V M V 5 * = * * )* K K 4 K K 4 K 5 K 54 K 56!  " , Δ 8) and Eqn can be used to find the shear and bending moments at the ends of the individual beam members Vukazich CE 6 Beam Direct Stiffness ab [] 5
6 CE 6 Direct Stiffness Beam Analysis ab Problem y, y k x, x ft 6 ft For the beam shown the properties of the elements are: Member Section I E W8x 8 in 4 9 ksi W8x 8 in 4 9 ksi Using the coordinate system given in the figure: Find the 4x4 element stiffness matrices be guided by Eqn ) and write the values in the spaces below Use force units of kips and length units of inches for all calculations 4 [k] = 4 Vukazich CE 6 Beam Direct Stiffness ab [] 6
7 4 5 6 [k] = Assemble the 6x6 structure stiffness matrix be guided by Eqn 5) from the element contributions found in Step and write the values in the spaces below [K] = Vukazich CE 6 Beam Direct Stiffness ab [] 7
8 From the structure system of equations write the x system of equations Eqn 7) for the unrestrained DOF in the space below Δ 4 Verify that the solution to the x system of equations from Step is:! = 855 in θ! = 559 rad θ! = 54 rad 5 Find the support reactions V, M, and V 5 ) using Eqn 8 and your results from Step 4 6 Using statics, verify that the results from Step 5 satisfy equilibrium of the beam Vukazich CE 6 Beam Direct Stiffness ab [] 8
Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University
Method of Virtual Work Frame Deflection xample Steven Vukazich San Jose State University Frame Deflection xample 9 k k D 4 ft θ " # The statically determinate frame from our previous internal force diagram
More informationChapter 11. Displacement Method of Analysis Slope Deflection Method
Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations
More informationLecture 8: Flexibility Method. Example
ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and
More informationP.E. Civil Exam Review:
P.E. Civil Exam Review: Structural Analysis J.P. Mohsen Email: jpm@louisville.edu Structures Determinate Indeterminate STATICALLY DETERMINATE STATICALLY INDETERMINATE Stability and Determinacy of Trusses
More informationThis procedure covers the determination of the moment of inertia about the neutral axis.
327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the Tbeam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination
More informationQuintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation
General elastic beam with an elastic foundation Figure 1 shows a beamcolumn on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation
More informationIndeterminate Analysis Force Method 1
Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to
More informationExperimental Lab. Principles of Superposition
Experimental Lab Principles of Superposition Objective: The objective of this lab is to demonstrate and validate the principle of superposition using both an experimental lab and theory. For this lab you
More informationLecture 11: The Stiffness Method. Introduction
Introduction Although the mathematical formulation of the flexibility and stiffness methods are similar, the physical concepts involved are different. We found that in the flexibility method, the unknowns
More informationExternal Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is
Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the
More informationSupplement: Statically Indeterminate Frames
: Statically Indeterminate Frames Approximate Analysis  In this supplement, we consider another approximate method of solving statically indeterminate frames subjected to lateral loads known as the. Like
More informationSoftware Verification
EXAMPLE 1026 FRAME MOMENT AND SHEAR HINGES EXAMPLE DESCRIPTION This example uses a horizontal cantilever beam to test the moment and shear hinges in a static nonlinear analysis. The cantilever beam has
More informationGeneral elastic beam with an elastic foundation
General elastic beam with an elastic foundation Figure 1 shows a beamcolumn on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation
More information5. What is the moment of inertia about the x  x axis of the rectangular beam shown?
1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D  Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  13
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module  01 Lecture  13 In the last class, we have seen how
More informationStructural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed
Structural Analysis of Truss Structures using Stiffness Matrix Dr. Nasrellah Hassan Ahmed FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS In general, there are three types of relationships: Equilibrium
More informationStructural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).
Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free
More informationInstitute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I
Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  11
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module  01 Lecture  11 Last class, what we did is, we looked at a method called superposition
More informationIntroduction to Structural Member Properties
Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a crosssection (measured in inches 4 or in 4 ) that gives important information
More informationCIVL 8/7117 Chapter 12  Structural Dynamics 1/75. To discuss the dynamics of a singledegreeof freedom springmass
CIV 8/77 Chapter  /75 Introduction To discuss the dynamics of a singledegreeof freedom springmass system. To derive the finite element equations for the timedependent stress analysis of the onedimensional
More informationEML4507 Finite Element Analysis and Design EXAM 1
21715 Name (underline last name): EML4507 Finite Element Analysis and Design EXAM 1 In this exam you may not use any materials except a pencil or a pen, an 8.5x11 formula sheet, and a calculator. Whenever
More informationDEFLECTION CALCULATIONS (from Nilson and Nawy)
DEFLECTION CALCULATIONS (from Nilson and Nawy) The deflection of a uniformly loaded flat plate, flat slab, or twoway slab supported by beams on column lines can be calculated by an equivalent method that
More informationLevel 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method
9210203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached
More informationInstitute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I
Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix
More informationTORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)
Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thinwall open sections is not included in most commonly used frame analysis programs. Almost
More informationReview of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis
uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods
More informationMethods of Analysis. Force or Flexibility Method
INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The SlopeDeflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods
More informationBEAM DEFLECTION THE ELASTIC CURVE
BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each crosssectional area of a beam. Supports that apply a moment
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The SlopeDeflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student
More informationUNIT IV FLEXIBILTY AND STIFFNESS METHOD
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SAII (13A01505) Year & Sem: IIIB.Tech & ISem Course & Branch: B.Tech
More information18. FAST NONLINEAR ANALYSIS. The Dynamic Analysis of a Structure with a Small Number of Nonlinear Elements is Almost as Fast as a Linear Analysis
18. FAS NONLINEAR ANALYSIS he Dynamic Analysis of a Structure with a Small Number of Nonlinear Elements is Almost as Fast as a Linear Analysis 18.1 INRODUCION he response of real structures when subjected
More informationPh.D. Preliminary Examination Analysis
UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.
More informationPart 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.
NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and
More informationFEA CODE WITH MATLAB. Finite Element Analysis of an Arch ME 5657 FINITE ELEMENT METHOD. Submitted by: ALPAY BURAK DEMIRYUREK
FEA CODE WITH MATAB Finite Element Analysis of an Arch ME 5657 FINITE EEMENT METHOD Submitted by: APAY BURAK DEMIRYUREK This report summarizes the finite element analysis of an archbeam with using matlab.
More informationMulti Linear Elastic and Plastic Link in SAP2000
26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may
More information3 Relation between complete and natural degrees of freedom
Stiffness matrix for D tapered beams by ouie. Yaw, PhD, PE, SE Walla Walla University March 9, 9 Introduction This article presents information necessary for the construction of the stiffness matrix of
More informationFLEXIBILITY METHOD FOR INDETERMINATE FRAMES
UNIT  I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These
More informationStructural Analysis III Compatibility of Displacements & Principle of Superposition
Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2dimensional structures
More information= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200
Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength
More informationStress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 3 ME 276 Spring 20172018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress
More information14. *14.8 CASTIGLIANO S THEOREM
*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by
More informationMechanical Design in Optical Engineering
OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:
More informationDue Monday, September 14 th, 12:00 midnight
Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided
More informationSLOPEDEFLECTION METHOD
SLOPEDEFLECTION ETHOD The slopedeflection method uses displacements as unknowns and is referred to as a displacement method. In the slopedeflection method, the moments at the ends of the members are
More informationSstan builds the global equation R = KG*r starting at the element level just like you did by hand
CES  Stress Analysis Spring 999 Ex. #, the following D truss is to be analyzed using Sstan (read the online stan intro first, and Ch in Hoit) k k 0 ft E= 9000 ksi A= 0 in*in 0 ft Sstan builds the global
More information4.5 The framework element stiffness matrix
45 The framework element stiffness matri Consider a 1 degreeoffreedom element that is straight prismatic and symmetric about both principal crosssectional aes For such a section the shear center coincides
More informationChapter 5 Structural Elements: The truss & beam elements
Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations
More informationSupplement: Statically Indeterminate Trusses and Frames
: Statically Indeterminate Trusses and Frames Approximate Analysis  In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads
More informationANSWERS September 2014
NSWERS September 2014 nswers to selected questions: Sheet # (1) (2) () (4) SCE55 D SCE86 D SCE88 D C MCM21 MCM12 D MMC80 C C D MCM52 D D MCM1 C D D MCM51 D D MCM57 D D MCM60 D MLS12 C D NS
More informationLecture 15 Strain and stress in beams
Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME
More informationDeflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w
CIVL 311  Conjugate eam 1/5 Conjugate beam method The development of the conjugate beam method has been atributed to several strucutral engineers. any credit Heinrich üllerreslau (1851195) with the
More informationLecture 8: Assembly of beam elements.
ecture 8: Assembly of beam elements. 4. Example of Assemblage of Beam Stiffness Matrices. Place nodes at the load application points. Assembling the two sets of element equations (note the common elemental
More informationLaboratory 4 Topic: Buckling
Laboratory 4 Topic: Buckling Objectives: To record the loaddeflection response of a clampedclamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling
More informationSection Downloads. Section Downloads. Handouts & Slides can be printed. Course binders are available for purchase. Download & Print. Version 2.
Level II: Section 03 Design Principles Section Downloads 2 Section Downloads Handouts & Slides can be printed Version 2.0 Course binders are available for purchase Not required Download & Print TTT II
More informationChapter 8 Supplement: Deflection in Beams Double Integration Method
Chapter 8 Supplement: Deflection in Beams Double Integration Method 8.5 Beam Deflection Double Integration Method In this supplement, we describe the methods for determining the equation of the deflection
More informationCIVL 7/8117 Chapter 4  Development of Beam Equations  Part 2 1/34. Chapter 4b Development of Beam Equations. Learning Objectives
CIV 7/87 Chapter 4  Development of Beam Equations  Part /4 Chapter 4b Development of Beam Equations earning Objectives To introduce the workequivalence method for replacing distributed loading by a
More informationDue Tuesday, September 21 st, 12:00 midnight
Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationTowards The. Design of Super Columns. Prof. AbdulQader Najmi
Towards The Design of Super Columns Prof. AbdulQader Najmi Description: Tubular Column Square or Round Filled with Concrete Provided with ULinks welded to its Walls as shown in Figure 1 Compression Specimen
More informationDiscretization Methods Exercise # 5
Discretization Methods Exercise # 5 Static calculation of a planar truss structure: a a F Six steps: 1. Discretization 2. Element matrices 3. Transformation 4. Assembly 5. Boundary conditions 6. Solution
More informationChapter 2: Deflections of Structures
Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2
More informationGeometric Stiffness Effects in 2D and 3D Frames
Geometric Stiffness Effects in D and 3D Frames CEE 41. Matrix Structural Analsis Department of Civil and Environmental Engineering Duke Universit Henri Gavin Fall, 1 In situations in which deformations
More informationExample: 5panel parallelchord truss. 8 ft. 5 k 5 k 5 k 5 k. F yield = 36 ksi F tension = 21 ksi F comp. = 10 ksi. 6 ft.
CE 331, Spring 2004 Beam Analogy for Designing Trusses 1 / 9 We need to make several decisions in designing trusses. First, we need to choose a truss. Then we need to determine the height of the truss
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.
GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 Ns/m. To make the system
More informationChapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14
Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.
More information4.3 Moment Magnification
CHAPTER 4: Reinforced Concrete Columns 4.3 Moment Magnification Description An ordinary or first order frame analysis does not include either the effects of the lateral sidesway deflections of the column
More information10. Applications of 1D Hermite elements
10. Applications of 1D Hermite elements... 1 10.1 Introduction... 1 10.2 General case fourthorder beam equation... 3 10.3 Integral form... 5 10.4 Element Arrays... 7 10.5 C1 Element models... 8 10.6
More informationARCE 306: MATRIX STRUCTURAL ANALYSIS. Homework 1 (Due )
Winter Quarter ARCE 6: MATRIX STRUCTURA ANAYSIS January 4, Problem Homework (Due 6) k k/ft A B C D E ft 5 ft 5 ft 5 ft () Use the slope deflection method to find the bending moment diagram for the continuous
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.
D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having
More informationSTRUCTURAL SURFACES & FLOOR GRILLAGES
STRUCTURAL SURFACES & FLOOR GRILLAGES INTRODUCTION Integral car bodies are 3D structures largely composed of approximately subassemblies SSS Planar structural subassemblies can be grouped into two categories
More informationLecture 7: The Beam Element Equations.
4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite
More informationPresented By: EAS 6939 Aerospace Structural Composites
A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More information3.4 Analysis for lateral loads
3.4 Analysis for lateral loads 3.4.1 Braced frames In this section, simple hand methods for the analysis of statically determinate or certain lowredundant braced structures is reviewed. Member Force Analysis
More informationPortal Frame Calculations Lateral Loads
Portal Frame Calculations Lateral Loads Consider the following multistory frame: The portal method makes several assumptions about the internal forces of the columns and beams in a rigid frame: 1) Inflection
More informationMechanics of Inflatable Fabric Beams
Copyright c 2008 ICCES ICCES, vol.5, no.2, pp.9398 Mechanics of Inflatable Fabric Beams C. Wielgosz 1,J.C.Thomas 1,A.LeVan 1 Summary In this paper we present a summary of the behaviour of inflatable fabric
More information2 marks Questions and Answers
1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and
More informationStructural Dynamics Lecture 4. Outline of Lecture 4. MultiDegreeofFreedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.
Outline of MultiDegreeofFreedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear
More informationUniversity of California at Berkeley Structural Engineering Mechanics & Materials Department of Civil & Environmental Engineering Spring 2012 Student name : Doctoral Preliminary Examination in Dynamics
More informationCIV 207 Winter For practice
CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions
More informationFinite Element Modelling with Plastic Hinges
01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated postyield behaviour in one or more degrees of freedom. Hinges only
More informationMechanical Properties of Materials
Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Version CE IIT, Kharagpur Lesson The ultistory Frames with Sidesway Version CE IIT, Kharagpur Instructional Objectives
More informationM.S Comprehensive Examination Analysis
UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive
More informationSeismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design
Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationtechietouch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSISI TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important
More informationErrors in FE Modelling (Section 5.10)
Errors in FE Modelling (Section 5.10) Modelling error : arises because physical reality is replaced by a mathematical model. Example: A beam that can resist both axial and transverse loads being modelled
More informationMethod of Consistent Deformation
Method of onsistent eformation Structural nalysis y R.. Hibbeler Theory of StructuresII M Shahid Mehmood epartment of ivil Engineering Swedish ollege of Engineering and Technology, Wah antt FRMES Method
More information3.5 Reinforced Concrete Section Properties
CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia
More informationCOLUMNS: BUCKLING (DIFFERENT ENDS)
COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pinconnected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43
More informationIntroduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.
Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. BernoulliEuler Beams.
More informationStructural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian
Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: ModeSuperposition Method ModeSuperposition Method:
More information1 of 12. Given: Law of Cosines: C. Law of Sines: Stress = E = G
ES230 STRENGTH OF MATERIALS FINAL EXAM: WEDNESDAY, MAY 15 TH, 4PM TO 7PM, AEC200 Closed book. Calculator and writing supplies allowed. Protractor and compass required. 180 Minute Time Limit You must have
More informationUNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SAII (13A01505) Year & Sem: IIIB.Tech & ISem Course & Branch: B.Tech
More informationChapter 7: Internal Forces
Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More information