Mechanical Properties of Materials


 Rose Kennedy
 10 months ago
 Views:
Transcription
1 Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of relating deformation to external forces. 31
2 Tension Test Machine Tension Test Tensiontest Specimens P L o d o L o + δ P ε δ = σ L o P = = A o P πd o 4 Normal Stress σ σ u Ultimate Stress σ f Fracture Stress σ y Offset Yield Stress σ p A Proportional Limit I B Loading Unloading Reloading C D E Rupture O Offset strain H Plastic Strain F Elastic Strain G Normal Strain ε Total Strain 32
3 Definitions The point up to which the stress and strain are linearly related is called the proportional limit. The largest stress in the stress strain curve is called the ultimate stress. The stress at the point of rupture is called the fracture or rupture stress. The region of the stressstrain curve in which the material returns to the undeformed state when applied forces are removed is called the elastic region. The region in which the material deforms permanently is called the plastic region. The point demarcating the elastic from the plastic region is called the yield point. The stress at yield point is called the yield stress. The permanent strain when stresses are zero is called the plastic strain. The offset yield stress is a stress that would produce a plastic strain corresponding to the specified offset strain. A material that can undergo large plastic deformation before fracture is called a ductile material. A material that exhibits little or no plastic deformation at failure is called a brittle material. Hardness is the resistance to indentation. The raising of the yield point with increasing strain is called strain hardening. The sudden decrease in the area of crosssection after ultimate stress is called necking. 33
4 Material Constants σ Β B Slope = E t Normal Stress σ Slope = E A Slope = E s E = Modulus of Elasticity E t = Tangent Modulus at B E s = Secant Modulus at B O Normal Strain ε σ = Eε Hooke s Law E Young s Modulus or Modulus of Elasticity Poisson s ratio: ν = ε lateral ε longitudnal τ = Gγ G is called the Shear Modulus of Elasticity or the Modulus of Rigidity 34
5 3.23 A circular bar of length 6 inch and diameter of 1 inch is made from a material with a Modulus of Elasticity of E=30,000 ksi and a Poisson s ratio of ν=1/3. Determine the change in length and diameter of the bar when a force of 20 kips is applied to the bar. 35
6 3.27 An aluminum rectangular bar has a crosssection of 25 mm x 50 mm and a length of 500 mm. The Modulus of Elasticity of E = 70 GPa and a Poisson s ratio of ν = Determine the percentage change in the volume of the bar when an axial force of 300 kn is applied to the bar. 36
7 Logic in structural analysis Displacements Kinematics 1 External Forces and Moments Strains 4 Equilibrium Material Models 2 Static Equivalency Internal Forces and Moments 3 Stresses 37
8 3.43 A roller slides in a slot by the amount δ P = 0.25 mm in the direction of the force F. Both bars have an area of crosssection of A = 100 mm 2 and a Modulus of Elasticity E = 200 GPa. Bar AP and BP have lengths of L AP = 200 mm and L BP = 250 mm respectively. Determine the applied force F. B A 75 o 30 o P F Fig. P
9 3.46 A gap of inch exists between the rigid bar and bar A before the force F is applied as shown in Figure The rigid bar is hinged at point C. Due to force F the strain in bar A was found to be µ in/in. The lengths of bar A and B are 30 and 50 inches respectively. Both bars have an area of crosssection A= 1 in 2 and Modulus of Elasticity E = 30,000 ksi. Determine the applied force F. C 75 o B F 24 in 36 in A 60 in Fig. P
10 3.49 The pins in the truss shown in Fig. P3.49 are displaced by u and v in the x and y direction respectively, as given. All rods in the truss have an area of crosssection A= 100 mm 2 and a Modulus of Elasticity E= 200 GPa. u A = mm v A = 0 u B = mm v B = mm u C = mm v C = mm u D = mm v D = mm u E = mm v E = mm u F = mm v F = mm u G = mm v G = mm u H = mm v H = mm Determine the external force P 4 and P 5 in the truss shown in Fig. P3.49 y P 3 x P 4 G P 2 H P 5 F P A B C D E 3 m 3 m 3 m 3 m Fig. P
11 Isotropy and Homogeneity Linear relationship between stress and strain components: ε xx = C 11 σ xx + C 12 σ yy + C 13 σ zz + C 14 τ yz + C 15 τ zx + C 16 τ xy ε yy = C 21 σ xx + C 22 σ yy + C 23 σ zz + C 24 τ yz + C 25 τ zx + C 26 τ xy ε zz = C 31 σ xx + C 32 σ yy + C 33 σ zz + C 34 τ yz + C 35 τ zx + C 36 τ xy γ yz = C 41 σ xx + C 42 σ yy + C 43 σ zz + C 44 τ yz + C 45 τ zx + C 46 τ xy γ zx = C 51 σ xx + C 52 σ yy + C 53 σ zz + C 54 τ yz + C 55 τ zx + C 56 τ xy γ xy = C 61 σ xx + C 62 σ yy + C 63 σ zz + C 64 τ yz + C 65 τ zx + C 66 τ xy An isotropic material has a stressstrain relationships that are independent of the orientation of the coordinate system at a point. A material is said to be homogenous if the material properties are the same at all points in the body. Alternatively, if the material constants C ij are functions of the coordinates x, y, or z, then the material is called nonhomogenous. E For Isotropic Materials: G = ( + ν) 311
12 Generalized Hooke s Law for Isotropic Materials The relationship between stresses and strains in threedimensions is called the Generalized Hooke s Law. ε xx = [ σ xx νσ ( yy + σ zz )] E ε yy = [ σ yy νσ ( zz + σ xx )] E ε zz = [ σ zz νσ ( xx + σ yy )] E γ xy = τ xy G γ yz = τ yz G G = E ( + ν) γ zx = τ zx G ε xx ε yy ε zz = E 1 ν ν ν 1 ν ν ν 1 σ xx σ yy σ zz 312
13 Plane Stress and Plane Strain Plane Stress σ xx τ xy 0 τ yx σ yy Generalized Hooke s Law ε xx γ xy 0 γ yx ε yy 0 ν 0 0 ε zz =  ( σ E xx + σ yy ) Plane Strain ε xx γ xy 0 γ yx ε yy Generalized Hooke s Law σ xx τ xy 0 τ yx σ yy σ zz = νσ ( xx + σ yy ) Plane Stress Plane Strain 313
14 3.78 A 2in x 2 in square with a circle inscribed is stressed as shown Fig. P3.78. The plate material has a Modulus of Elasticity of E = 10,000 ksi and a Poisson s ratio ν = Assuming plane stress, determine the major and minor axis of the ellipse formed due to deformation. 10 ksi 20 ksi Fig. P3.78 Class Problem 1 The stress components at a point are as given. Determine ε xx assuming (a) Plane stress (b) Plane strain σ xx σ yy = = 100 MPa( T) 200 MPa( C) τ xy = 125 MPa E = ν = GPa 314
15 Failure and factor of safety Failure implies that a component or a structure does not perform the function it was designed for. K safety Failure producing value Computed( allowable)value =
16 3.106 An adhesively bonded joint in wood is fabricated as shown. For a factor of safety of 1.25, determine the minimum overlap length L and dimension h to the nearest 1/8th inch. The shear strength of adhesive is 400 psi and the wood strength is 6 ksi in tension. 10 kips h h L Fig. P in h 10 kips 316
17 Common Limitations to Theories in Chapter 47 The length of the member is significantly greater (approximately 10 times) then the greatest dimension in the crosssection. We are away from regions of stress concentration, where displacements and stresses can be threedimensional. The variation of external loads or changes in the crosssectional area is gradual except in regions of stress concentration. The external loads are such that the axial, torsion and bending problems can be studied individually. 317
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
More informationSamantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2
Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force
More informationME 243. Mechanics of Solids
ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET Email: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil
More information[5] Stress and Strain
[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law
More informationINTRODUCTION TO STRAIN
SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationIntroduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
More informationME 2570 MECHANICS OF MATERIALS
ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation
More informationMECHANICS OF MATERIALS
CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More informationChapter 7. Highlights:
Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true
More informationThe science of elasticity
The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction
More information4.MECHANICAL PROPERTIES OF MATERIALS
4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stressstrain diagram
More informationNORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.
NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric
More informationSolid Mechanics Chapter 1: Tension, Compression and Shear
Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics
More informationThe University of Melbourne Engineering Mechanics
The University of Melbourne 436291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 922 from Hibbeler  Statics and Mechanics of Materials) A short
More informationMECHANICS OF MATERIALS
Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal
More informationMechanics of Materials Primer
Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus
More informationMECHANICS OF MATERIALS
Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal
More informationCONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationPurpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.
ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th inclass Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on
More informationModule4. Mechanical Properties of Metals
Module4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stressstrain curves 3) Yielding under multiaxial stress, Yield criteria, Macroscopic
More informationUNIT I SIMPLE STRESSES AND STRAINS
Subject with Code : SM1(15A01303) Year & Sem: IIB.Tech & ISem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES
More informationMECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola
MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the
More informationMATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS
MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes
More informationSTANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius
MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen
More informationOutline. TensileTest Specimen and Machine. StressStrain Curve. Review of Mechanical Properties. Mechanical Behaviour
TensileTest Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress  true strain (flow curve) mechanical properties:  Resilience  Ductility  Toughness  Hardness A standard
More informationStressStrain Behavior
StressStrain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationTheory at a Glance (for IES, GATE, PSU)
1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force
More informationSTRENGTH OF MATERIALSI. Unit1. Simple stresses and strains
STRENGTH OF MATERIALSI Unit1 Simple stresses and strains 1. What is the Principle of surveying 2. Define Magnetic, True & Arbitrary Meridians. 3. Mention different types of chains 4. Differentiate between
More informationLecture 8. Stress Strain in Multidimension
Lecture 8. Stress Strain in Multidimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]
More informationMECE 3321 MECHANICS OF SOLIDS CHAPTER 1
MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.
D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having
More informationMechanical properties 1 Elastic behaviour of materials
MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical
More informationStress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 3 ME 276 Spring 20172018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress
More informationExample 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.
162 3. The linear 3D elasticity mathematical model The 3D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides
More informationConstitutive Equations (Linear Elasticity)
Constitutive quations (Linear lasticity) quations that characterize the physical properties of the material of a system are called constitutive equations. It is possible to find the applied stresses knowing
More information6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationTensile stress strain curves for different materials. Shows in figure below
Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer
More informationSolid Mechanics Homework Answers
Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield
More informationMechanics of Materials
Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change
More informationExternal Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is
Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationAluminum shell. Brass core. 40 in
PROBLEM #1 (22 points) A solid brass core is connected to a hollow rod made of aluminum. Both are attached at each end to a rigid plate as shown in Fig. 1. The moduli of aluminum and brass are EA=11,000
More information20. Rheology & Linear Elasticity
I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slidelava
More informationBasic Equations of Elasticity
A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ
More informationUnit 13 Review of Simple Beam Theory
MIT  16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 1015 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics
More informationTorsion of Shafts Learning objectives
Torsion of Shafts Shafts are structural members with length significantly greater than the largest crosssectional dimension used in transmitting torque from one plane to another. Learning objectives Understand
More informationand F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)
ME 270 3 rd Sample inal Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) IND: In your own words, please state Newton s Laws: 1 st Law = 2 nd Law = 3 rd Law = PROBLEM
More informationCHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS
CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a crosssectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationHigh Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?
High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the
More informationHomework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004
Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent
More informationA concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.
2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion
EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Crosssection shape Material Shaft design Noncircular
More informationName (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM
Name (Print) (Last) (First) Instructions: ME 323  Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM Circle your lecturer s name and your class meeting time. Gonzalez Krousgrill
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationChapter Two: Mechanical Properties of materials
Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material
More informationModule 5: Theories of Failure
Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable
More informationSTRESS. Bar. ! Stress. ! Average Normal Stress in an Axially Loaded. ! Average Shear Stress. ! Allowable Stress. ! Design of Simple Connections
STRESS! Stress Evisdom! verage Normal Stress in an xially Loaded ar! verage Shear Stress! llowable Stress! Design of Simple onnections 1 Equilibrium of a Deformable ody ody Force w F R x w(s). D s y Support
More informationFinite Element Method in Geotechnical Engineering
Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 58, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps
More informationME 207 Material Science I
ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction
More informationStrength of Materials (15CV 32)
Strength of Materials (15CV 32) Module 1 : Simple Stresses and Strains Dr. H. Ananthan, Professor, VVIET,MYSURU 8/21/2017 Introduction, Definition and concept and of stress and strain. Hooke s law, StressStrain
More informationME 323 MIDTERM # 1: SOLUTION FALL SEMESTER Time allowed: 1hour
Instructions ME 2 MIDTERM # : SOLUTION FALL SEMESTER 20 Time allowed: hour. Begin each problem in the space provided on the examination sheets. If additional space is required, use the yellow paper provided.
More informationM. Vable Mechanics of Materials: Chapter 5. Torsion of Shafts
Torsion of Shafts Shafts are structural members with length significantly greater than the largest crosssectional dimension used in transmitting torque from one plane to another. Learning objectives Understand
More informationIf the solution does not follow a logical thought process, it will be assumed in error.
Please indicate your group number (If applicable) Circle Your Instructor s Name and Section: MWF 8:309:20 AM Prof. Kai Ming Li MWF 2:303:20 PM Prof. Fabio Semperlotti MWF 9:3010:20 AM Prof. Jim Jones
More informationTentamen/Examination TMHL61
Avd Hållfasthetslära, IKP, Linköpings Universitet Tentamen/Examination TMHL61 Tentamen i Skademekanik och livslängdsanalys TMHL61 lördagen den 14/10 2000, kl 812 Solid Mechanics, IKP, Linköping University
More informationMECHANICS OF MATERIALS Sample Problem 4.2
Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A castiron machine part is acted upon by a knm couple.
More informationName :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CENEW)/SEM3/CE301/ SOLID MECHANICS
Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers
More informationMECH 401 Mechanical Design Applications
MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (11708) Last time Introduction Units Reliability engineering
More informationELASTICITY (MDM 10203)
ELASTICITY () Lecture Module 3: Fundamental Stress and Strain University Tun Hussein Onn Malaysia Normal Stress inconstant stress distribution σ= dp da P = da A dimensional Area of σ and A σ A 3 dimensional
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stressstrain relations Elasticity Surface and body
More informationConsider an elastic spring as shown in the Fig.2.4. When the spring is slowly
.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original
More informationNAME: Given Formulae: Law of Cosines: Law of Sines:
NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.
More informationStress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning
Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu Outline Stress Strain Plane Stress and Plane Strain Materials otes and News [I had leftover time and so was also able to go through Section 3.1
More informationExercise: concepts from chapter 8
Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic
More informationElasticity and Plasticity. 1.Basic principles of Elasticity and plasticity. 2.Stress and Deformation of Bars in Axial load 1 / 59
Elasticity and Plasticity 1.Basic principles of Elasticity and plasticity 2.Stress and Deformation of Bars in Axial load 1 / 59 Basic principles of Elasticity and plasticity Elasticity and plasticity in
More informationMechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection
Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts
More informationIntroduction, Basic Mechanics 2
Computational Biomechanics 18 Lecture : Introduction, Basic Mechanics Ulli Simon, Lucas Engelhardt, Martin Pietsch Scientific Computing Centre Ulm, UZWR Ulm University Contents Mechanical Basics Moment
More informationAdvanced Structural Analysis EGF Section Properties and Bending
Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationVYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ APPLIED MECHANICS Study Support Leo Václavek Ostrava 2015 Title:Applied Mechanics Code: Author: doc. Ing.
More informationPROBLEM #1.1 (4 + 4 points, no partial credit)
PROBLEM #1.1 ( + points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length
More information12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka
Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a
More information3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship
3.2 Hooke s law anisotropic elasticity Robert Hooke (16351703) Most general relationship σ = C ε + C ε + C ε + C γ + C γ + C γ 11 12 yy 13 zz 14 xy 15 xz 16 yz σ = C ε + C ε + C ε + C γ + C γ + C γ yy
More informationQUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A
DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State
More informationStructural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature
Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment TiniusOlsen LoTorq Torsion Machine (figure
More informationPDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics
Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More informationChapter 4b Axially Loaded Members
CIVL 222 STRENGTH OF MATERIALS Chapter 4b Axially Loaded Members AXIAL LOADED MEMBERS Today s Objectives: Students will be able to: a) Determine the elastic deformation of axially loaded member b) Apply
More informationProblem " Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn
Problem 0. Three cables are attached as shown. Determine the reactions in the supports. Assume R B as redundant. Also, L AD L CD cos 60 m m. uation of uilibrium: + " Â F y 0 ) R A cos 60 + R B + R C cos
More informationChapter 3. Load and Stress Analysis. Lecture Slides
Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925
More informationQUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS
QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,
More information