# SLOPE-DEFLECTION METHOD

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are expressed in terms of displacements and end rotations of these ends. An important characteristic of the slope-deflection method is that it does not become increasingly complicated to apply as the number of unknowns in the problem increases. In the slope-deflection method the individual equations are relatively easy to construct regardless of the number of unknowns. DERIVATION OF THE SLOPE-DEFLECTION EQUATION When the loads are applied to a frame or to a continuous beam, the member will develop end moments and become deformed as indicated. The notation used in the figure will be followed. ij i φ L j ij ji - The moments at the ends of the member are designated as ij and ji indicating that they act at ends I and j of member ij. - Rotations of ends I and j of the member are denoted by Θ i and Θ j. Since the rotations of all members of a rigid frame meeting at a common joint are equal, it is customary to refer to each of them as the joint rotation. -The term ij represents the translation of one end of the member relative to the other end in a direction normal to the axis of the member. Sometimes the rotation of the axis of the member Φ ij ij /L is used in place of ij. The moments, the rotations at the ends of the member and the rotation of the axis of the member are positive when clockwise.

2 ij i i φ j ji jil L ij L L ql L L j jil L ij L L ql L L i j i φ L i j φ L ij j ji ij ( i j φ ) ql i j ij L ji L ql φ 6 ij L ji L ql φ 6 ql L ql ji ( i j φ ) L Now we wrote ij and ji in terms of the deformations Θ i, Θ j Φ ij and the external load q acting on the member. These equations are referred to as SLOPE-DEFLECTION EQATIONS. Slope-deflection equations consider only bending deformations. Deformations due to shear forces and axial forces in bending members are ignored. nf ± L L FE n f nf

3 Example: It is required to determine the support moments for the continuous beam kn 0 kn/m I I x.m kn/m F F 00* 6.kNm F F 0*7. 9.7kNm Slope Deflection ( ) ( ) Equilibrium. equations. of. joınts E I Substitude. these. results.in. slope. deflection. equations 6.7 knm, 9.7kNm 9.7 knm, 0kNm

4 kn/m m Shear Force Diagram Bending oment Diagram

5 Example: A continuous beam is supported and loaded as shown in the figure. During loading support sinks by 0 mm. Analyze the beam for support moments and reactions. 0 kn 0 kn/m m 6 m 0.0 φ φ * 0.kNm F F 0* 0kNm F F 0*6 0kNm Slope Deflection. E 6 kn 00*0... m I 00*0... m knm E I...0 rad rad Substitude. these. results in. slope. deflection. equations 7.9 knm,.77knm.77 knm, 0kNm

6 kn/m m Shear Force Diagram Bending oment Diagram 7.9 0

7 ANALYSIS OF FRAES WITH NO SIDESWAY A frame will not side sway, or be displaced to the left or right, provided it is properly restrained. Also no side sway will occur in an unrestrained frame provided it is symmetric with respect to both loading and geometry. Example: It is required to analyze the frame for moments at the ends of members. is constant for all members. 0. kn / m 0kN Fixed-End oments 0kN m F F 0* 6.67kNm F F 0* 0kNm F F 0* 0 knm

8 Slope Deflection ( ) 0 ( ) 0 ( ) 0. ( ) Equilibrium. equations. of. joınts 0 0 ( 6 ) ( ) 0 0 E I Substitude. these. results.in. slope. deflection. equations

9 Example: Find ember end moments and draw shear and moment diagrams 60. kn / m is constant F F 60* 0. knm Slope Deflection. ( ) 0 ( ) 0 ( ) ( ) Equilibrium equations of joints E I Substitude. these. results.in. slope. deflection. equations knm, 6kNm 6 knm, 6kNm 6 knm, knm Normal Force Shear (kn) oment (kn.m)

10 Example: Find member end moments and draw the diagrams of the frame kn m 0 7.m F q0 * L * 0 0 F q0 * L * 0kNm 0 0 F Pab 0**7 7.kNm L 0 F Pa b 0* *7.kNm L 0 Slope Deflection. 0 ( ) 7. 0 ( ) Substitude. these. results.in. slope. deflection. equations 7.6 knm,.9knm.9 knm, 0kNm Shear oment

11 ANALYSIS OF FRAES WITH SIDESWAY A frame will side sway or be displaced to the side when the frame or loading acting on it is non-symmetric. In the analysis of frames with side sway it is necessary to consider the shear forces at the base of the columns and the horizontal external load must be in equilibrium (force equilibrium equation) in addition to the equilibrium of joints. Example: Using the slope-deflection method determine the end moments of the members and draw the shear force and bending moment diagrams of the frame. is constant throughout the frame. 60.kN kn m.m Q Q F F 60* 0kNm F F 0*.kNm Equilibrium Q 0 0 Q 60 0 Axial deformation is neglected (no change in length of the members) so the lateral displacement of joint and are equal. Slope Deflection. 0 0 ( ). ( ).

12 Shear forces at the base of columns Q Q 60 Q Q 0 Q * Q E I Substitude. these. results.in slope. deflection. equations.6 knm, 6.7kNm 6.79 knm, 0.kNm 0.6 knm, 0.6kNm 76.7 Shear (kn) oment (kn.m)

13 Example: Determine the member end moments of the frame and draw the shear and moment diagrams. 0kN α sinα tanα sinα 0. tanα / sin β sin β 0. tan β / β tan β m. Slope Deflection. ( 0.7 ) sin α ( 0.7 ) sin α ( 0.9 ) tan α tan β ( 0.9 ) tan α tan β ( ).7.7sin β.7 ( ).7.7sin β.7

14 0 Q * ( ) 0 0 Q *. ( ) 0 F 0 Q Q 0 0 x Equilibrium Q Q Q 0 0 Q Substitude. these. results.in slope. deflection. equations.6 knm,.knm. 0 knm, 0kNm 0 knm, knm

15 Example: Determine the member end moments and draw the shear and moment diagrams of given continuous beam. kn m kn m hinge hinge 0 0 Rotations at the left and right side of the internal hinges are different from each other Slope Deflection R ( ) R ( ) L L R L R L Equilibrium R kn m 0 0 * Shear forces at each side of the hinge must be equal to each other 0 6 Force Eq. Equation 0 0

16 L R L L 00 R 00 L kn m kn m hinge hinge Shear Force Diagram Bending oment Diagram

17 Example: Find the member end moments and draw the shear force and bending moment diagrams of the given frame. 0. kn m 0. kn m Frame is symmetrical both loading and geometry. Half of the frame can be analyzed 0 0 kn m Slope Deflection Shear Force Diagram 00 0 Equilibrium Q Q Bending oment Diagram Q

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

### Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The Slope-Deflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Version CE IIT, Kharagpur Lesson The ultistory Frames with Sidesway Version CE IIT, Kharagpur Instructional Objectives

### UNIT-IV SLOPE DEFLECTION METHOD

UNITIV SOPE EETION ETHO ontinuous beams and rigid frames (with and without sway) Symmetry and antisymmetry Simplification for hinged end Support displacements Introduction: This method was first proposed

### Example 17.3 Analyse the rigid frame shown in Fig a. Moment of inertia of all the members are shown in the figure. Draw bending moment diagram.

Example 17.3 Analyse the rigid frame shown in ig. 17.5 a. oment of inertia of all the members are shown in the figure. Draw bending moment diagram. Under the action of external forces, the frame gets deformed

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

### 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

The basis for the method comes from the similarity of eqn.1 &. to eqn 8. & 8. To show this similarity, we can write these eqn as shown dv dx w d θ M dx d M w dx d v M dx Here the shear V compares with

### UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

### UNIT IV FLEXIBILTY AND STIFFNESS METHOD

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

### Internal Internal Forces Forces

Internal Forces ENGR 221 March 19, 2003 Lecture Goals Internal Force in Structures Shear Forces Bending Moment Shear and Bending moment Diagrams Internal Forces and Bending The bending moment, M. Moment

### Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be

### The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

### MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD

ODULE 3 ANALYI O TATICALLY INDETERINATE TRUCTURE BY THE DIPLACEENT ETHOD LEON 19 THE OENT- DITRIBUTION ETHOD: TATICALLY INDETERINATE BEA WITH UPPORT ETTLEENT Instructional Objectives After reading this

### 8.3 Shear and Bending-Moment Diagrams Constructed by Areas

8.3 Shear and ending-moment Diagrams Constructed by reas 8.3 Shear and ending-moment Diagrams Constructed by reas Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving

### Structural Analysis III Moment Distribution

Structural Analysis III oment Distribution 2009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over Factor... 10 2.2 Fixed-End

### Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

*12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are very small,

### Continuous Beams - Flexibility Method

ontinuous eams - Flexibility Method Qu. Sketch the M diagram for the beam shown in Fig.. Take E = 200kN/mm 2. 50kN 60kN-m = = 0kN/m D I = 60 50 40 x 0 6 mm 4 Fig. 60.0 23.5 D 25.7 6.9 M diagram in kn-m

### Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be

### Moment Distribution Method

Moment Distribution Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Distribution Method. 2) Derive the Moment Distribution Method equations using mechanics

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

### UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

### Chapter 4.1: Shear and Moment Diagram

Chapter 4.1: Shear and Moment Diagram Chapter 5: Stresses in Beams Chapter 6: Classical Methods Beam Types Generally, beams are classified according to how the beam is supported and according to crosssection

### Structural Analysis III Moment Distribution

Structural Analysis III oment Distribution 2008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over... 10 2.2 Fixed End oments...

### Determinate portal frame

eterminate portal frame onsider the frame shown in the figure below with the aim of calculating the bending moment diagram (M), shear force diagram (SF), and axial force diagram (F). P H y R x x R y L

### QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I Unit 5 MOMENT DISTRIBUTION METHOD PART A (2 marks) 1. Differentiate between distribution factors and carry

### STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame

STRUCTURA ANAYSIS BFC 21403 Statically Indeterminate Beam & Frame Introduction Analysis for indeterminate structure of beam and frame: 1. Slope-deflection method 2. Moment distribution method Displacement

### THEORY OF STRUCTURES CHAPTER 3 : SLOPE DEFLECTION (FOR FRAME) PART 2

or updated version, please click on http://ocw.ump.edu.my THEORY O STRUTURES HAPTER : SOPE DEETION (OR RAE) PART by Saffuan Wan Ahmad aculty of ivil Engineering & Earth Resources saffuan@ump.edu.my hapter

### BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

BEM horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam INTERNL FORCES IN BEM Whether or not a beam will break, depend on the internal resistances

### Tutorial #1 - CivE. 205 Name: I.D:

Tutorial # - CivE. 0 Name: I.D: Eercise : For the Beam below: - Calculate the reactions at the supports and check the equilibrium of point a - Define the points at which there is change in load or beam

### Software Verification

EXAMPLE 1-026 FRAME MOMENT AND SHEAR HINGES EXAMPLE DESCRIPTION This example uses a horizontal cantilever beam to test the moment and shear hinges in a static nonlinear analysis. The cantilever beam has

### D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

### Chapter 7. ELASTIC INSTABILITY Dr Rendy Thamrin; Zalipah Jamellodin

Chapter 7 ESTIC INSTIITY Dr Rendy Thamrin; Zalipah Jamellodin 7. INTRODUCTION TO ESTIC INSTIITY OF COUN ND FRE In structural analysis problem, the aim is to determine a configuration of loaded system,

### Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

### Lecture 11: The Stiffness Method. Introduction

Introduction Although the mathematical formulation of the flexibility and stiffness methods are similar, the physical concepts involved are different. We found that in the flexibility method, the unknowns

### If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a two-dimensional structure and statically indeterminate reactions: Statically indeterminate structures

### ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /13

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER 2 2012/13 COURSE NAME: ENGINEERING MECHANICS - STATICS CODE: ENG 2008 GROUP: AD ENG II DATE: May 2013 TIME: DURATION: 2 HOURS INSTRUCTIONS: 1. This

### Method of Consistent Deformation

Method of onsistent eformation Structural nalysis y R.. Hibbeler Theory of Structures-II M Shahid Mehmood epartment of ivil Engineering Swedish ollege of Engineering and Technology, Wah antt FRMES Method

### Moment Area Method. 1) Read

Moment Area Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Area method. 2) Derive the Moment Area method theorems using mechanics and mathematics.

### Beams. Beams are structural members that offer resistance to bending due to applied load

Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

### Shear Force V: Positive shear tends to rotate the segment clockwise.

INTERNL FORCES IN EM efore a structural element can be designed, it is necessary to determine the internal forces that act within the element. The internal forces for a beam section will consist of a shear

### Free Body Diagram: Solution: The maximum load which can be safely supported by EACH of the support members is: ANS: A =0.217 in 2

Problem 10.9 The angle β of the system in Problem 10.8 is 60. The bars are made of a material that will safely support a tensile normal stress of 8 ksi. Based on this criterion, if you want to design the

### Due Tuesday, September 21 st, 12:00 midnight

Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider

### UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15]

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15] 2. Draw the influence line for shear to the left of B for the overhanging beam shown in Fig. Q. No. 4 [M/J-15] 3.

### Methods of Analysis. Force or Flexibility Method

INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

### Slender Structures Load carrying principles

Slender Structures Load carrying principles Basic cases: Extension, Shear, Torsion, Cable Bending (Euler) v017-1 Hans Welleman 1 Content (preliminary schedule) Basic cases Extension, shear, torsion, cable

### k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44

CE 6 ab Beam Analysis by the Direct Stiffness Method Beam Element Stiffness Matrix in ocal Coordinates Consider an inclined bending member of moment of inertia I and modulus of elasticity E subjected shear

### 7 STATICALLY DETERMINATE PLANE TRUSSES

7 STATICALLY DETERMINATE PLANE TRUSSES OBJECTIVES: This chapter starts with the definition of a truss and briefly explains various types of plane truss. The determinancy and stability of a truss also will

### 14. *14.8 CASTIGLIANO S THEOREM

*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

### Chapter 2 Basis for Indeterminate Structures

Chapter - Basis for the Analysis of Indeterminate Structures.1 Introduction... 3.1.1 Background... 3.1. Basis of Structural Analysis... 4. Small Displacements... 6..1 Introduction... 6.. Derivation...

### M.S Comprehensive Examination Analysis

UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

### QUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1

Theory of Structures eterminacy Indeterminacy 1 QUSTION NK 1. The static indeterminacy of the structure shown below (a) (b) 6 (c) 9 (d) 12 2. etermine the degree of freedom of the following frame (a) 1

### STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

### Portal Frame Calculations Lateral Loads

Portal Frame Calculations Lateral Loads Consider the following multi-story frame: The portal method makes several assumptions about the internal forces of the columns and beams in a rigid frame: 1) Inflection

### Structural Analysis III Basis for the Analysis of Indeterminate Structures

asis for the nalysis of Indeterminate Structures 2010/11 Dr. Colin Caprani 1 Contents 1. Introduction... 3 1.1 ackground... 3 1.2 asis of Structural nalysis... 4 2. Small Displacements... 5 2.1 Introduction...

### TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1

E2027 Structural nalysis I TYPES OF STRUUTRES H in ivil Engineering Page 1-1 E2027 Structural nalysis I SUPPORTS Pin or Hinge Support pin or hinge support is represented by the symbol H or H V V Prevented:

### Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

### 2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

### 6. KANIS METHOD OR ROTATION CONTRIBUTION METHOD OF FRAME ANALYSIS

288 THEORY OF INDETERMINTE STRUCTURES CHPTER SIX 6. KNIS METHOD OR ROTTION CONTRIBUTION METHOD OF FRME NLYSIS This method may be considered as a further simplification of moment distribution method wherein

### Structural Analysis III Basis for the Analysis of Indeterminate Structures

Structural nalysis III asis for the nalysis of Indeterminate Structures 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 3 1.1 ackground... 3 1. asis of Structural nalysis... 4. Small Displacements...

### Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

Deflection of Beams Equation of the Elastic Curve The governing second order differential equation for the elastic curve of a beam deflection is EI d d = where EI is the fleural rigidit, is the bending

### ENGI 1313 Mechanics I

ENGI 1313 Mechanics I Lecture 25: Equilibrium of a Rigid Body Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland spkenny@engr.mun.ca

### BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

### Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1.

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation Plan M 180 e 1.5 ft P 10 (a) B= L= 8 ft L e 1.5 ft 1.33 ft 6 1 q q P 6 (P e) 180 6 (180) 4.9 kip/ft B L B L 8(8) 8 3 P

### Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

### 3.4 Analysis for lateral loads

3.4 Analysis for lateral loads 3.4.1 Braced frames In this section, simple hand methods for the analysis of statically determinate or certain low-redundant braced structures is reviewed. Member Force Analysis

### 6. Bending CHAPTER OBJECTIVES

CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

### FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE

FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE ABSTRACT By G. C. Ezeokpube, M. Eng. Department of Civil Engineering Anambra State University,

### Where and are the factored end moments of the column and >.

11 LIMITATION OF THE SLENDERNESS RATIO----( ) 1-Nonsway (braced) frames: The ACI Code, Section 6.2.5 recommends the following limitations between short and long columns in braced (nonsway) frames: 1. The

### Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

### BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

### Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

### Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

### INFLUENCE LINE. Structural Analysis. Reference: Third Edition (2005) By Aslam Kassimali

INFLUENCE LINE Reference: Structural Analsis Third Edition (2005) B Aslam Kassimali DEFINITION An influence line is a graph of a response function of a structure as a function of the position of a downward

### Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

### Beams are bars of material that support. Beams are common structural members. Beams can support both concentrated and distributed loads

Outline: Review External Effects on Beams Beams Internal Effects Sign Convention Shear Force and Bending Moment Diagrams (text method) Relationships between Loading, Shear Force and Bending Moments (faster

### Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction

Introduction In this class we will focus on the structural analysis of framed structures. We will learn about the flexibility method first, and then learn how to use the primary analytical tools associated

### CHAPTER 7 DEFLECTIONS OF BEAMS

CHPTER 7 DEFLECTIONS OF EMS OJECTIVES Determine the deflection and slope at specific points on beams and shafts, using various analytical methods including: o o o The integration method The use of discontinuity

### Entrance exam Master Course

- 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

### DEFLECTION CALCULATIONS (from Nilson and Nawy)

DEFLECTION CALCULATIONS (from Nilson and Nawy) The deflection of a uniformly loaded flat plate, flat slab, or two-way slab supported by beams on column lines can be calculated by an equivalent method that

### Theory of structure I 2006/2013. Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES

Chapter one DETERMINACY & INDETERMINACY OF STRUCTURES Introduction A structure refers to a system of connected parts used to support a load. Important examples related to civil engineering include buildings,

### Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 3 1.1 General... 3 1. Background... 4 1.3 Discontinuity Functions...

### ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /15 PAPER A

SSOCITE DEGREE IN ENGINEERING EXMINTIONS SEMESTER 2 2014/15 PPER COURSE NME: ENGINEERING MECHNICS - STTICS CODE: ENG 2008 GROUP: D ENG II DTE: May 2015 TIME: DURTION: 2 HOURS INSTRUCTIONS: 1. This paper

### Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering 009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 General... 4 1. Background... 5 1.3 Discontinuity Functions...

### Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

Method of Virtual Work Frame Deflection xample Steven Vukazich San Jose State University Frame Deflection xample 9 k k D 4 ft θ " # The statically determinate frame from our previous internal force diagram

OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

### dv dx Slope of the shear diagram = - Value of applied loading dm dx Slope of the moment curve = Shear Force

Beams SFD and BMD Shear and Moment Relationships w dv dx Slope of the shear diagram = - Value of applied loading V dm dx Slope of the moment curve = Shear Force Both equations not applicable at the point

### Multi Linear Elastic and Plastic Link in SAP2000

26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may

### Finite Element Modelling with Plastic Hinges

01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

### External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

### EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS

EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS Today s Objectives: Students will be able to: a) Apply equations of equilibrium to solve for unknowns, and, b) Recognize two-force members. APPLICATIONS

### Lecture 8: Flexibility Method. Example

ecture 8: lexibility Method Example The plane frame shown at the left has fixed supports at A and C. The frame is acted upon by the vertical load P as shown. In the analysis account for both flexural and

### T2. VIERENDEEL STRUCTURES

T2. VIERENDEEL STRUCTURES AND FRAMES 1/11 T2. VIERENDEEL STRUCTURES NOTE: The Picture Window House can be designed using a Vierendeel structure, but now we consider a simpler problem to discuss the calculation

### 3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM

3.1 CONDITIONS FOR RIGID-BODY EQUILIBRIUM Consider rigid body fixed in the x, y and z reference and is either at rest or moves with reference at constant velocity Two types of forces that act on it, the

### CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES 14.1 GENERAL REMARKS In structures where dominant loading is usually static, the most common cause of the collapse is a buckling failure. Buckling may

### A New Jacobi-based Iterative Method for the Classical Analysis of Structures

2581 A New Jacobi-based Iterative Method for the Classical Analysis of Structures Abstract Traditionally, classical methods of structural analysis such as slope-deflection and moment distribution methods

### ARCE 306: MATRIX STRUCTURAL ANALYSIS. Homework 1 (Due )

Winter Quarter ARCE 6: MATRIX STRUCTURA ANAYSIS January 4, Problem Homework (Due -6-) k k/ft A B C D E ft 5 ft 5 ft 5 ft () Use the slope deflection method to find the bending moment diagram for the continuous