Presented By: EAS 6939 Aerospace Structural Composites


 Rosalyn Thomas
 2 years ago
 Views:
Transcription
1 A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1
2 Introduction Composite beams have become very common in applications like Automobile Suspensions, Hip Prosthesis etc. Unlike beams of Isotropic materials, Composite beams may exhibit strong coupling between: Extensional Flexural & Twisting modes of Deformation. There is a need for simple and efficient analysis procedures for Composite beam like structures. 2
3 Beam Theories EULERBERNOULLI BEAM THEORY Assumptions: 1. Crosssections which are plane & normal to the longitudinal axis remain plane and normal to it after deformation. 2. Shear Deformations are neglected. 3. Beam Deflections are small. EulerBernoulli eq. for bending of Isotropic beams of constant crosssection: where: w(x): deflection of the neutral axis q(x): the applied transverse load 3
4 Beam Theories TIMOSHENKO BEAM THEORY Basic difference from EulerBernoulli beam theory is that Timoshenko beam theory considers the effects of Shear and also of Rotational Inertia in the Beam Equation. So physically, Timoshenko s s theory effectively lowers the stiffness of beam and the result is a larger deflection. Timoshenko s eq. for bending of Isotropic beams of constant crosssection: where: A: Area of Crosssection G: Shear Modulus : Shear Correction Factor 4
5 Beam Theories TIMOSHENKO BEAM THEORY(Contd.) Shear Correction Factor Timoshenko Defined it as: Significance of Shear Correction Factor : Multilayered plate and Shell finite elements have a constant shear distribution across thickness. This causes a decrease in accuracy especially for sandwich structures. This problem is overcome using shear correction factors. 5
6 Objective Derivation of a Beam Theory for Laminated Composites and Application to Torsion problems The solution procedure is indicated for the case of a Cantilever Beam subjected to end loads. A closed form solution is derived for the problem of Torsion of a Specially Orthotropic laminated beam (Coupling Matrix [B] = 0, A 16 = A 26 = D 16 = D 26 = 0). 6
7 Derivation of a Composite Beam Theory A Beam Theory for Laminated Composite Beams is derived from the shear deformable laminated plate theory. The equilibrium equations are assumed to be satisfied in an average sense over the width of the beam. The Principle of Minimum Potential Energy is applied to derive the Equilibrium equations and Boundary conditions. i.e Beam cross sections normal to the xaxis do not undergo any inplane deformations. 7
8 Derivation of a Composite Beam Theory 8
9 Steps Followed for the Derivation The displacement field in the Beam is derived by retaining the First order terms in the Taylor Series expansion for the plate midplane deformations in the width coordinate. E.g. where U(x) is the displacement of points on the longitudinal axis of the beam The laminate constitutive relation is expressed in simple terms as: {F} = [C] {E} where: {F} : Vector of Force and Moment Resultants [C] : Laminate Stiffness Matrix {E} : Vector of MidPlane Deformations A new set of Force and Moment Resultants for the Beam are defined as: 9
10 Steps Followed for the Derivation The strain energy per unit area of the laminate : The strain energy per unit length of the beam : The Strain Energy in the Beam : The Principle of Minimum Potential Energy is applied to derive the Equilibrium equations and Boundary conditions. Force and Moment resultants t are substituted t in the differential equations of Equilibrium in terms of displacement variables to obtain differential equations of equilibrium. These differential equations are then solved for the particular case of a Cantilevered beam of Rectangular cross section subjected to end loads only. 10
11 Steps Followed for the Derivation Principle of Minimum Potential Energy According to the Principle of Minimum Potential energy, a structure or body shall deform or displace to a position that minimizes i i the total potential energy. The total potential energy,, is the sum of the elastic strain energy,, stored in the deformed body and the potential energy,,of the applied forces. 11
12 Torsion of Specially Orthotropic Laminated Beams Specially Orthotropic Laminated Beams: The property of Specially Orthotropic Laminated Beams used for this derivation is that they have no coupling effects. i.e. Coupling Matrix [B] = 0, A 16 = A 26 = D 16 = D 26 = 0 Actually Specially orthotropic Laminates is another name given to Symmetric Balanced Laminates. For a Specially Orthotropic Cantilever Beam Subjected to an End Torque T, Angle of Twist ( ) is derived as: where: ; ; 12
13 Results For the purpose of comparison with available results we introduce a Nondimensional tip Rotation defined as: So our solution for the tip rotation takes the form: The first term on the right corresponds to classical theory solution for isotropic beams. The shear deformations effects are reflected in the second and third term The third term represents the effect of restrained end at x=0, where warping is prevented. In Figure 2, is plotted as a function of. It shows that restrained end effects are only felt for. Further, the restrained effects are less pronounced as the ratio increases. 13
14 Figure 2: Results The results obtained can be compared with 2 available results: 1. If we ignore shear deformation i.e. let : This result is identical for an isotropic beam (Boresi, Sidebottom, Seely and Smith, 1978) 2. If we ignore the restrained end effects by letting : This result can be compared with that of (Tsai, Daniel and Yaniv, 1990) for a 0 0 Unidirectional Composite Beam. The Maximum difference between the results is about 11% 14
15 Conclusions A beam theory for Laminated Composites has been derived. A closed form solution is derived for the problem of Torsion of a Specially Laminated Orthotropic Laminate. The result for Angle of Twist compare well with available soultions. 15
16 References B.V. Sankar (1993) "A Beam Theory for Laminated Composites and Application to Torsion Problems", Journal of Applied Mechanics, 60(1):
Lecture 15 Strain and stress in beams
Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME
More informationBending of Simply Supported Isotropic and Composite Laminate Plates
Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto GutierrezMiravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,
More informationStructural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian
Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: ModeSuperposition Method ModeSuperposition Method:
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationAnalytical Strip Method for Thin Isotropic Cylindrical Shells
IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) eissn: 22781684,pISSN: 2320334X, Volume 14, Issue 4 Ver. III (Jul. Aug. 2017), PP 2438 www.iosrjournals.org Analytical Strip Method for
More informationTABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA
Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1
More informationTable of Contents. Preface... 13
Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...
More information2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C
CE1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano
More informationCOPYRIGHTED MATERIAL. Index
Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitudemodulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,
More information202 Index. failure, 26 field equation, 122 force, 1
Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic
More informationA HIGHERORDER BEAM THEORY FOR COMPOSITE BOX BEAMS
A HIGHERORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D64289 Darmstadt, Germany kroker@mechanik.tudarmstadt.de,
More informationCalculation of Shear Areas and Torsional Constant using the Boundary Element Method with Scada Pro Software
NATIONAL TECHNICAL UNIVERSITY OF ATHENS School of Civil Engineering Institute of Structural Analysis & Antiseismic Research Dr. Sapountakis J. Evangelos Dr. Civil Engineer NTUA Professor NTUA Calculation
More informationHygrothermal stresses in laminates
Hygrothermal stresses in laminates Changing environment conditions (temperature and moisture) have an important effect on the properties which are matrix dominated. Change in temperaturet and moisture
More informationPURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.
BENDING STRESS The effect of a bending moment applied to a crosssection of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally
More informationChapter 2: Deflections of Structures
Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2
More informationMechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection
Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts
More informationEffect of Specimen Dimensions on Flexural Modulus in a 3Point Bending Test
Effect of Specimen Dimensions on Flexural Modulus in a 3Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,
More informationFlexural analysis of deep beam subjected to parabolic load using refined shear deformation theory
Applied and Computational Mechanics 6 (2012) 163 172 Flexural analysis of deep beam subjected to parabolic load using refined shear deformation theory Y. M. Ghugal a,,a.g.dahake b a Applied Mechanics Department,
More informationPLAT DAN CANGKANG (TKS 4219)
PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, twodimensional structural components of which
More informationBEAMS AND PLATES ANALYSIS
BEAMS AND PLATES ANALYSIS Automotive body structure can be divided into two types: i. Frameworks constructed of beams ii. Panels Classical beam versus typical modern vehicle beam sections Assumptions:
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More informationConsider an elastic spring as shown in the Fig.2.4. When the spring is slowly
.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original
More informationAdvanced Vibrations. DistributedParameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian
Advanced Vibrations DistributedParameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian ahmadian@iust.ac.ir DistributedParameter Systems: Exact Solutions Relation between Discrete and Distributed
More informationNONLINEAR ANALYSIS OF A FUNCTIONALLY GRADED BEAM RESTING ON THE ELASTIC NONLINEAR FOUNDATION
Journal of Theoretical and Applied Mechanics, Sofia, 2014, vol. 44, No. 2, pp. 71 82 NONLINEAR ANALYSIS OF A FUNCTIONALLY GRADED BEAM RESTING ON THE ELASTIC NONLINEAR FOUNDATION M. Arefi Department of
More informationLecture notes Models of Mechanics
Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /
More informationLinear elastic analysis of thin laminated beams with uniform and symmetric crosssection
Applied and Computational Mechanics 2 (2008) 397 408 Linear elastic analysis of thin laminated beams with uniform and symmetric crosssection M. Zajíček a, a Faculty of Applied Sciences, UWB in Pilsen,
More informationIntroduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.
Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. BernoulliEuler Beams.
More informationChapter 5 Structural Elements: The truss & beam elements
Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations
More informationUNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES
UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES A Thesis by WOORAM KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the
More informationMechanics of Materials Primer
Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More informationPune, Maharashtra, India
Volume 6, Issue 6, May 17, ISSN: 78 7798 STATIC FLEXURAL ANALYSIS OF THICK BEAM BY HYPERBOLIC SHEAR DEFORMATION THEORY Darakh P. G. 1, Dr. Bajad M. N. 1 P.G. Student, Dept. Of Civil Engineering, Sinhgad
More informationAircraft Structures Beams Torsion & Section Idealization
Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Beams Torsion & Section Idealiation Ludovic Noels omputational & Multiscale Mechanics of Materials M3 http://www.ltascm3.ulg.ac.be/
More informationChapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd
Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed
More information7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses
7 TRANSVERSE SHEAR Before we develop a relationship that describes the shearstress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within
More informationIraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April015 1678 Study the Increasing of the Cantilever Plate Stiffness by Using s Jawdat Ali Yakoob Iesam Jondi Hasan Ass.
More informationAircraft Structures Structural & Loading Discontinuities
Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Structural & Loading Discontinuities Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltascm3.ulg.ac.be/
More informationBEAM DEFLECTION THE ELASTIC CURVE
BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each crosssectional area of a beam. Supports that apply a moment
More informationFlexure of Thick Cantilever Beam using Third Order Shear Deformation Theory
International Journal of Engineering Research and Development eissn: 7867X, pissn: 788X, www.ijerd.com Volume 6, Issue 1 (April 13), PP. 914 Fleure of Thick Cantilever Beam using Third Order Shear
More informationModule 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy
The Lecture Contains: Torsion of Rods Torsional Energy This lecture is adopted from the following book 1. Theory of Elasticity, 3 rd edition by Landau and Lifshitz. Course of Theoretical Physics, vol7
More informationUnit 13 Review of Simple Beam Theory
MIT  16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 1015 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics
More informationAdvanced Structural Analysis EGF Section Properties and Bending
Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear
More informationMembers Subjected to Torsional Loads
Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular
More informationLATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS
LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS By John J. Zahn, 1 M. ASCE ABSTRACT: In the analysis of the lateral buckling of simply supported beams, the ends are assumed to be rigidly restrained
More informationQUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS
QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)
More informationAERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars
AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different
More informationSTRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS
1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The
More informationSound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur
Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3D solids, thin plates have surfaces
More informationThe stiffness of plates
The stiffness of plates 1. Introduction The word plate is a collective term for elements in which forces can be transferred in two directions. Floors, walls, bridge slabs and laminates are all plates.
More informationDue Monday, September 14 th, 12:00 midnight
Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More informationChapter 4 Deflection and Stiffness
Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 41 Spring Rates 42 Tension, Compression, and Torsion 43 Deflection Due to Bending 44 Beam
More informationMechanics PhD Preliminary Spring 2017
Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n
More informationComb resonator design (2)
Lecture 6: Comb resonator design () Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationChapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements
CIVL 7/8117 Chapter 12  Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness
More informationExample 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.
162 3. The linear 3D elasticity mathematical model The 3D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides
More informationTORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)
Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thinwall open sections is not included in most commonly used frame analysis programs. Almost
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationME 176 Final Exam, Fall 1995
ME 176 Final Exam, Fall 1995 Saturday, December 16, 12:30 3:30 PM, 1995. Answer all questions. Please write all answers in the space provided. If you need additional space, write on the back sides. Indicate
More informationBilinear Quadrilateral (Q4): CQUAD4 in GENESIS
Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS The Q4 element has four nodes and eight nodal dof. The shape can be any quadrilateral; we ll concentrate on a rectangle now. The displacement field in terms
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  11
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module  01 Lecture  11 Last class, what we did is, we looked at a method called superposition
More informationMODIFIED HYPERBOLIC SHEAR DEFORMATION THEORY FOR STATIC FLEXURE ANALYSIS OF THICK ISOTROPIC BEAM
MODIFIED HYPERBOLIC SHEAR DEFORMATION THEORY FOR STATIC FLEXURE ANALYSIS OF THICK ISOTROPIC BEAM S. Jasotharan * and I.R.A. Weerasekera University of Moratuwa, Moratuwa, Sri Lanka * EMail: jasos91@hotmail.com,
More informationCE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR
CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 20142015 UNIT  1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART A 1. Define tensile stress and tensile strain. The stress induced
More informationNomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam
omenclature a b c f h Length of the panel between the supports Width of the panel between the supports/ width of the beam Sandwich beam/ panel core thickness Thickness of the panel face sheet Sandwich
More informationMarch 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE
Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano
More informationComb Resonator Design (2)
Lecture 6: Comb Resonator Design () Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory
More informationFinite element modelling of structural mechanics problems
1 Finite element modelling of structural mechanics problems Kjell Magne Mathisen Department of Structural Engineering Norwegian University of Science and Technology Lecture 10: Geilo Winter School  January,
More informationCE 715: Advanced Strength of Materials
CE 715: Advanced Strength of Materials Lecture 1 CE 715 Course Information Instructor: Tasnim Hassan Office: Mann Hall 419 Office Hours: TTh 2:004:00 pm Phone: 5158123 Email: thassan@eos.ncsu.edu 1 Course
More informationSlender Structures Load carrying principles
Slender Structures Load carrying principles Basic cases: Extension, Shear, Torsion, Cable Bending (Euler) v0171 Hans Welleman 1 Content (preliminary schedule) Basic cases Extension, shear, torsion, cable
More informationFrequently Asked Questions
Frequently Asked Questions Why do we have to make the assumption that plane sections plane? How about bars with nonaxis symmetric cross section? The formulae derived look very similar to beam and axial
More informationSection 6: PRISMATIC BEAMS. Beam Theory
Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are BernoulliEuler beam theory Timoshenko beam theory One learns the details of BernoulliEuler beam
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationExternal Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is
Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the
More informationMECHANICS OF MATERIALS
STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental
More information5. What is the moment of inertia about the x  x axis of the rectangular beam shown?
1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D  Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment
More informationMechanics of Solids notes
Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any crosssection of a beam may consists of a resultant normal force,
More informationTheories of Straight Beams
EVPM3ed02 2016/6/10 7:20 page 71 #25 This is a part of the revised chapter in the new edition of the tetbook Energy Principles and Variational Methods in pplied Mechanics, which will appear in 2017. These
More informationCHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS
61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and
More informationThe CR Formulation: BE Plane Beam
6 The CR Formulation: BE Plane Beam 6 Chapter 6: THE CR FORMUATION: BE PANE BEAM TABE OF CONTENTS Page 6. Introduction..................... 6 4 6.2 CR Beam Kinematics................. 6 4 6.2. Coordinate
More informationCHAPTER 6 BENDING Part 1
Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER 6 BENDING Part 11 CHAPTER 6 Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and
More information7. Hierarchical modeling examples
7. Hierarchical modeling examples The objective of this chapter is to apply the hierarchical modeling approach discussed in Chapter 1 to three selected problems using the mathematical models studied in
More information2 marks Questions and Answers
1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and
More informationStress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 4 ME 76 Spring 017018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a
More informationApplication of piezoelectric actuators to active control of composite spherical caps
Smart Mater. Struct. 8 (1999 18. Printed in the UK PII: S964176(9916614 Application of piezoelectric actuators to active control of composite spherical caps Victor Birman, Gareth J Knowles and John J
More informationCOMPARATIVE STUDY OF VARIOUS BEAMS UNDER DIFFERENT LOADING CONDITION USING FINITE ELEMENT METHOD
COMPARATIVE STUDY OF VARIOUS BEAMS UNDER DIFFERENT LOADING CONDITION USING FINITE ELEMENT METHOD A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology
More informationVIBRATION CONTROL OF RECTANGULAR CROSSPLY FRP PLATES USING PZT MATERIALS
Journal of Engineering Science and Technology Vol. 12, No. 12 (217) 33983411 School of Engineering, Taylor s University VIBRATION CONTROL OF RECTANGULAR CROSSPLY FRP PLATES USING PZT MATERIALS DILEEP
More information4.5 The framework element stiffness matrix
45 The framework element stiffness matri Consider a 1 degreeoffreedom element that is straight prismatic and symmetric about both principal crosssectional aes For such a section the shear center coincides
More informationA NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES
A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES J.M. MARTÍNEZ VALLE Mechanics Department, EPS; Leonardo da Vinci Building, Rabanales Campus, Cordoba
More information: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE
COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses
More informationQUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A
DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State
More informationMECHANICS OF COMPOSITE STRUCTURES
MECHANICS OF COMPOSITE STRUCTURES LÁSZLÓ P. KOLLÁR Budapest University of Technology and Economics GEORGE S. SPRINGER Stanford University PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
More informationEsben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer
Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics
More informationSpiral Cylindrical Torsion Spring Analysis
Spiral Cylindrical Torsion Spring Analysis Theory & FEA JingheSu: alwjybai@gmail.com Introduction A torsion spring is a spring that works by torsion or twisting; that is, a fleible elastic object that
More informationMECE 3321: Mechanics of Solids Chapter 6
MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported
More informationFREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON PASTERNAK FOUNDATION USING COUPLED DISPLACEMENT FIELD METHOD
A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G VOL. LXIV 17 Number 3 DOI: 1.1515/meceng17 Key words: free vibrations, Coupled Displacement Field method, uniform Timoshenko beam, Pasternak
More informationEE C245 ME C218 Introduction to MEMS Design
EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 16: Energy
More informationA Timoshenko beam theory with pressure corrections for plane stress problems
A Timoshenko beam theory with pressure corrections for plane stress problems Graeme J. Kennedy a,,, Jorn S. Hansen a,2, Joaquim R.R.A. Martins b,3 a University of Toronto Institute for Aerospace Studies,
More information