# Presented By: EAS 6939 Aerospace Structural Composites

Size: px
Start display at page:

## Transcription

1 A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1

2 Introduction Composite beams have become very common in applications like Automobile Suspensions, Hip Prosthesis etc. Unlike beams of Isotropic materials, Composite beams may exhibit strong coupling between: Extensional Flexural & Twisting modes of Deformation. There is a need for simple and efficient analysis procedures for Composite beam like structures. 2

3 Beam Theories EULER-BERNOULLI BEAM THEORY Assumptions: 1. Cross-sections which are plane & normal to the longitudinal axis remain plane and normal to it after deformation. 2. Shear Deformations are neglected. 3. Beam Deflections are small. Euler-Bernoulli eq. for bending of Isotropic beams of constant cross-section: where: w(x): deflection of the neutral axis q(x): the applied transverse load 3

4 Beam Theories TIMOSHENKO BEAM THEORY Basic difference from Euler-Bernoulli beam theory is that Timoshenko beam theory considers the effects of Shear and also of Rotational Inertia in the Beam Equation. So physically, Timoshenko s s theory effectively lowers the stiffness of beam and the result is a larger deflection. Timoshenko s eq. for bending of Isotropic beams of constant cross-section: where: A: Area of Cross-section G: Shear Modulus : Shear Correction Factor 4

5 Beam Theories TIMOSHENKO BEAM THEORY(Contd.) Shear Correction Factor Timoshenko Defined it as: Significance of Shear Correction Factor : Multilayered plate and Shell finite elements have a constant shear distribution across thickness. This causes a decrease in accuracy especially for sandwich structures. This problem is overcome using shear correction factors. 5

6 Objective Derivation of a Beam Theory for Laminated Composites and Application to Torsion problems The solution procedure is indicated for the case of a Cantilever Beam subjected to end loads. A closed form solution is derived for the problem of Torsion of a Specially Orthotropic laminated beam (Coupling Matrix [B] = 0, A 16 = A 26 = D 16 = D 26 = 0). 6

7 Derivation of a Composite Beam Theory A Beam Theory for Laminated Composite Beams is derived from the shear deformable laminated plate theory. The equilibrium equations are assumed to be satisfied in an average sense over the width of the beam. The Principle of Minimum Potential Energy is applied to derive the Equilibrium equations and Boundary conditions. i.e Beam cross sections normal to the x-axis do not undergo any in-plane deformations. 7

8 Derivation of a Composite Beam Theory 8

9 Steps Followed for the Derivation The displacement field in the Beam is derived by retaining the First order terms in the Taylor Series expansion for the plate mid-plane deformations in the width coordinate. E.g. where U(x) is the displacement of points on the longitudinal axis of the beam The laminate constitutive relation is expressed in simple terms as: {F} = [C] {E} where: {F} : Vector of Force and Moment Resultants [C] : Laminate Stiffness Matrix {E} : Vector of Mid-Plane Deformations A new set of Force and Moment Resultants for the Beam are defined as: 9

10 Steps Followed for the Derivation The strain energy per unit area of the laminate : The strain energy per unit length of the beam : The Strain Energy in the Beam : The Principle of Minimum Potential Energy is applied to derive the Equilibrium equations and Boundary conditions. Force and Moment resultants t are substituted t in the differential equations of Equilibrium in terms of displacement variables to obtain differential equations of equilibrium. These differential equations are then solved for the particular case of a Cantilevered beam of Rectangular cross section subjected to end loads only. 10

11 Steps Followed for the Derivation Principle of Minimum Potential Energy According to the Principle of Minimum Potential energy, a structure or body shall deform or displace to a position that minimizes i i the total potential energy. The total potential energy,, is the sum of the elastic strain energy,, stored in the deformed body and the potential energy,,of the applied forces. 11

12 Torsion of Specially Orthotropic Laminated Beams Specially Orthotropic Laminated Beams: The property of Specially Orthotropic Laminated Beams used for this derivation is that they have no coupling effects. i.e. Coupling Matrix [B] = 0, A 16 = A 26 = D 16 = D 26 = 0 Actually Specially orthotropic Laminates is another name given to Symmetric Balanced Laminates. For a Specially Orthotropic Cantilever Beam Subjected to an End Torque T, Angle of Twist ( ) is derived as: where: ; ; 12

13 Results For the purpose of comparison with available results we introduce a Non-dimensional tip Rotation defined as: So our solution for the tip rotation takes the form: The first term on the right corresponds to classical theory solution for isotropic beams. The shear deformations effects are reflected in the second and third term The third term represents the effect of restrained end at x=0, where warping is prevented. In Figure 2, is plotted as a function of. It shows that restrained end effects are only felt for. Further, the restrained effects are less pronounced as the ratio increases. 13

14 Figure 2: Results The results obtained can be compared with 2 available results: 1. If we ignore shear deformation i.e. let : This result is identical for an isotropic beam (Boresi, Sidebottom, Seely and Smith, 1978) 2. If we ignore the restrained end effects by letting : This result can be compared with that of (Tsai, Daniel and Yaniv, 1990) for a 0 0 Unidirectional Composite Beam. The Maximum difference between the results is about 11% 14

15 Conclusions A beam theory for Laminated Composites has been derived. A closed form solution is derived for the problem of Torsion of a Specially Laminated Orthotropic Laminate. The result for Angle of Twist compare well with available soultions. 15

16 References B.V. Sankar (1993) "A Beam Theory for Laminated Composites and Application to Torsion Problems", Journal of Applied Mechanics, 60(1):

### Lecture 15 Strain and stress in beams

Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

### Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

### Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

### Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

### Analytical Strip Method for Thin Isotropic Cylindrical Shells

IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 4 Ver. III (Jul. Aug. 2017), PP 24-38 www.iosrjournals.org Analytical Strip Method for

### TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1

Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

### 2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitude-modulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,

### 202 Index. failure, 26 field equation, 122 force, 1

Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

### A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

### Calculation of Shear Areas and Torsional Constant using the Boundary Element Method with Scada Pro Software

NATIONAL TECHNICAL UNIVERSITY OF ATHENS School of Civil Engineering Institute of Structural Analysis & Antiseismic Research Dr. Sapountakis J. Evangelos Dr. Civil Engineer NTUA Professor NTUA Calculation

### Hygrothermal stresses in laminates

Hygrothermal stresses in laminates Changing environment conditions (temperature and moisture) have an important effect on the properties which are matrix dominated. Change in temperaturet and moisture

### PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

### Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

### Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

### Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,

### Flexural analysis of deep beam subjected to parabolic load using refined shear deformation theory

Applied and Computational Mechanics 6 (2012) 163 172 Flexural analysis of deep beam subjected to parabolic load using refined shear deformation theory Y. M. Ghugal a,,a.g.dahake b a Applied Mechanics Department,

### PLAT DAN CANGKANG (TKS 4219)

PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, two-dimensional structural components of which

### BEAMS AND PLATES ANALYSIS

BEAMS AND PLATES ANALYSIS Automotive body structure can be divided into two types: i. Frameworks constructed of beams ii. Panels Classical beam versus typical modern vehicle beam sections Assumptions:

### Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

### Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original

### Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian

Advanced Vibrations Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Exact Solutions Relation between Discrete and Distributed

### NONLINEAR ANALYSIS OF A FUNCTIONALLY GRADED BEAM RESTING ON THE ELASTIC NONLINEAR FOUNDATION

Journal of Theoretical and Applied Mechanics, Sofia, 2014, vol. 44, No. 2, pp. 71 82 NONLINEAR ANALYSIS OF A FUNCTIONALLY GRADED BEAM RESTING ON THE ELASTIC NONLINEAR FOUNDATION M. Arefi Department of

### Lecture notes Models of Mechanics

Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /

### Linear elastic analysis of thin laminated beams with uniform and symmetric cross-section

Applied and Computational Mechanics 2 (2008) 397 408 Linear elastic analysis of thin laminated beams with uniform and symmetric cross-section M. Zajíček a, a Faculty of Applied Sciences, UWB in Pilsen,

### Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

### Chapter 5 Structural Elements: The truss & beam elements

Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

### UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES A Thesis by WOORAM KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the

### Mechanics of Materials Primer

Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

### CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric

### Pune, Maharashtra, India

Volume 6, Issue 6, May 17, ISSN: 78 7798 STATIC FLEXURAL ANALYSIS OF THICK BEAM BY HYPERBOLIC SHEAR DEFORMATION THEORY Darakh P. G. 1, Dr. Bajad M. N. 1 P.G. Student, Dept. Of Civil Engineering, Sinhgad

### Aircraft Structures Beams Torsion & Section Idealization

Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Beams Torsion & Section Idealiation Ludovic Noels omputational & Multiscale Mechanics of Materials M3 http://www.ltas-cm3.ulg.ac.be/

### Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

### 7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

### Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-015 1678 Study the Increasing of the Cantilever Plate Stiffness by Using s Jawdat Ali Yakoob Iesam Jondi Hasan Ass.

Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Structural & Loading Discontinuities Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

### BEAM DEFLECTION THE ELASTIC CURVE

BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each cross-sectional area of a beam. Supports that apply a moment

### Flexure of Thick Cantilever Beam using Third Order Shear Deformation Theory

International Journal of Engineering Research and Development e-issn: 78-67X, p-issn: 78-8X, www.ijerd.com Volume 6, Issue 1 (April 13), PP. 9-14 Fleure of Thick Cantilever Beam using Third Order Shear

### Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy

The Lecture Contains: Torsion of Rods Torsional Energy This lecture is adopted from the following book 1. Theory of Elasticity, 3 rd edition by Landau and Lifshitz. Course of Theoretical Physics, vol-7

### Unit 13 Review of Simple Beam Theory

MIT - 16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 10-15 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics

### Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

### Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

### LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS By John J. Zahn, 1 M. ASCE ABSTRACT: In the analysis of the lateral buckling of simply supported beams, the ends are assumed to be rigidly restrained

### QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

### AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars

AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different

### STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

### Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

### The stiffness of plates

The stiffness of plates 1. Introduction The word plate is a collective term for elements in which forces can be transferred in two directions. Floors, walls, bridge slabs and laminates are all plates.

### Due Monday, September 14 th, 12:00 midnight

Due Monday, September 14 th, 1: midnight This homework is considering the analysis of plane and space (3D) trusses as discussed in class. A list of MatLab programs that were discussed in class is provided

### 3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

### Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

### Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

### Comb resonator design (2)

Lecture 6: Comb resonator design () -Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

### Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

### Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

CIVL 7/8117 Chapter 12 - Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness

### Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.

162 3. The linear 3-D elasticity mathematical model The 3-D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides

### TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

### Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

### ME 176 Final Exam, Fall 1995

ME 176 Final Exam, Fall 1995 Saturday, December 16, 12:30 3:30 PM, 1995. Answer all questions. Please write all answers in the space provided. If you need additional space, write on the back sides. Indicate

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS The Q4 element has four nodes and eight nodal dof. The shape can be any quadrilateral; we ll concentrate on a rectangle now. The displacement field in terms

### Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

### MODIFIED HYPERBOLIC SHEAR DEFORMATION THEORY FOR STATIC FLEXURE ANALYSIS OF THICK ISOTROPIC BEAM

MODIFIED HYPERBOLIC SHEAR DEFORMATION THEORY FOR STATIC FLEXURE ANALYSIS OF THICK ISOTROPIC BEAM S. Jasotharan * and I.R.A. Weerasekera University of Moratuwa, Moratuwa, Sri Lanka * E-Mail: jasos91@hotmail.com,

### CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

### Nomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam

omenclature a b c f h Length of the panel between the supports Width of the panel between the supports/ width of the beam Sandwich beam/ panel core thickness Thickness of the panel face sheet Sandwich

### March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

### Comb Resonator Design (2)

Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

### Finite element modelling of structural mechanics problems

1 Finite element modelling of structural mechanics problems Kjell Magne Mathisen Department of Structural Engineering Norwegian University of Science and Technology Lecture 10: Geilo Winter School - January,

### CE 715: Advanced Strength of Materials

CE 715: Advanced Strength of Materials Lecture 1 CE 715 Course Information Instructor: Tasnim Hassan Office: Mann Hall 419 Office Hours: TTh 2:00-4:00 pm Phone: 515-8123 Email: thassan@eos.ncsu.edu 1 Course

### Slender Structures Load carrying principles

Slender Structures Load carrying principles Basic cases: Extension, Shear, Torsion, Cable Bending (Euler) v017-1 Hans Welleman 1 Content (preliminary schedule) Basic cases Extension, shear, torsion, cable

Frequently Asked Questions Why do we have to make the assumption that plane sections plane? How about bars with non-axis symmetric cross section? The formulae derived look very similar to beam and axial

### Section 6: PRISMATIC BEAMS. Beam Theory

Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are Bernoulli-Euler beam theory Timoshenko beam theory One learns the details of Bernoulli-Euler beam

### ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

### External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

### MECHANICS OF MATERIALS

STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

### 5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

### Mechanics of Solids notes

Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

### Theories of Straight Beams

EVPM3ed02 2016/6/10 7:20 page 71 #25 This is a part of the revised chapter in the new edition of the tetbook Energy Principles and Variational Methods in pplied Mechanics, which will appear in 2017. These

### CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

### The CR Formulation: BE Plane Beam

6 The CR Formulation: BE Plane Beam 6 Chapter 6: THE CR FORMUATION: BE PANE BEAM TABE OF CONTENTS Page 6. Introduction..................... 6 4 6.2 CR Beam Kinematics................. 6 4 6.2. Coordinate

### CHAPTER -6- BENDING Part -1-

Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

### 7. Hierarchical modeling examples

7. Hierarchical modeling examples The objective of this chapter is to apply the hierarchical modeling approach discussed in Chapter 1 to three selected problems using the mathematical models studied in

### 2 marks Questions and Answers

1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

### Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

### Application of piezoelectric actuators to active control of composite spherical caps

Smart Mater. Struct. 8 (1999 18. Printed in the UK PII: S964-176(991661-4 Application of piezoelectric actuators to active control of composite spherical caps Victor Birman, Gareth J Knowles and John J

### COMPARATIVE STUDY OF VARIOUS BEAMS UNDER DIFFERENT LOADING CONDITION USING FINITE ELEMENT METHOD

COMPARATIVE STUDY OF VARIOUS BEAMS UNDER DIFFERENT LOADING CONDITION USING FINITE ELEMENT METHOD A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology

### VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

Journal of Engineering Science and Technology Vol. 12, No. 12 (217) 3398-3411 School of Engineering, Taylor s University VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS DILEEP

### 4.5 The framework element stiffness matrix

45 The framework element stiffness matri Consider a 1 degree-of-freedom element that is straight prismatic and symmetric about both principal cross-sectional aes For such a section the shear center coincides

### A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES

A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES J.M. MARTÍNEZ VALLE Mechanics Department, EPS; Leonardo da Vinci Building, Rabanales Campus, Cordoba

### : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

### QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

### MECHANICS OF COMPOSITE STRUCTURES

MECHANICS OF COMPOSITE STRUCTURES LÁSZLÓ P. KOLLÁR Budapest University of Technology and Economics GEORGE S. SPRINGER Stanford University PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

### Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

### Spiral Cylindrical Torsion Spring Analysis

Spiral Cylindrical Torsion Spring Analysis Theory & FEA JingheSu: alwjybai@gmail.com Introduction A torsion spring is a spring that works by torsion or twisting; that is, a fleible elastic object that

### MECE 3321: Mechanics of Solids Chapter 6

MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported

### FREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON PASTERNAK FOUNDATION USING COUPLED DISPLACEMENT FIELD METHOD

A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G VOL. LXIV 17 Number 3 DOI: 1.1515/meceng-17- Key words: free vibrations, Coupled Displacement Field method, uniform Timoshenko beam, Pasternak