Bending of Simply Supported Isotropic and Composite Laminate Plates


 Shon Boone
 1 years ago
 Views:
Transcription
1 Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto GutierrezMiravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b, thickness t,  with t << a, b , elastic modulus E, Poisson s ratio ν) under a uniform pressure q acting normal to the surface of the plate. Let the x axis be aligned with the length of the plate, the y axis with its width and the z axis with its thickness with z = located in the middle of the plate thickness. For isotropic plates, the (engineering) stressstrain relationships are given by Q 11 Q 1 Q 1 Q 11 Q 66 ǫ x ǫ y ǫ xy where Q is the reduced stiffness matrix with components Q 66 = Q 11 = Q 1 = E 1 ν νe 1 ν E (1 + ν) = G The KirchoffLove hypothesis is commonly used to simplify the analysis of plates. If the thickness of a plate is much smaller that its length and its width plate straight normals to the plane of the plate remain approximately straight, of constant length and normal to the plane of the plate when the plate deforms. This is equivalent to neglecting the shearing strains in planes perpendicular to the middle surface (z = z = ) as well as the normal strain normal to the plate (ǫ z = ). Under the hypothesis, the strain components in the 1
2 plate are given in terms of the strains and curvatures along the middle surface of the plate, respectively ǫ x, ǫ y, ǫ xy, κ x, κ y, κ xy, i.e. ǫ x ǫ y ǫ xy ǫ x κ ǫ x y + z κ ǫ y xy κ xy So that the stressstrain relationships become Q 11 Q 1 Q 1 Q 11 Q 66 κ x κ y ǫ x ǫ y + z ǫ xy κ xy The mid plane strains and curvatures are given respectively by ǫ x ǫ y ǫ xy u / x v / y u / y + v / x and κ x w / x κ y w / y κ xy w / x y and where u, v, w = w are the components of displacement at the middle surface of the plate. The normal and shear forces acting on the plate are given by N x N y N xy t t dz The bending and twisting moments acting on the plate are given by M x M y M xy t t zdz Combination and rearrangement of the above yields finally N x N y N xy Et 1 ν νet 1 ν νet 1 ν Et 1 ν 1 ν Et 1 ν ǫ x ǫ y ǫ xy
3 and M x M y M xy Et 3 1(1 ν ) νet 3 1(1 ν ) νet 3 1(1 ν ) Et 3 1(1 ν ) 1 ν Et 3 1(1 ν ) κ x κ y κ xy Under the KirchoffLove hypothesis, commonly used when analyzing the deformation of plates and shells, and assuming small deflections (linear elasticity), it can be shown that the condition of mechanical equilibrium assuming that the edges of the plate are free to move in the plane of the plate has the form M x x + M y y M xy x y = q Combining with the above yields the governing equation in terms of the deflection of the midsurface of the plate: where D 4 w x 4 + D 4 w x y + D 4 w y 4 = q D = Et 3 1(1 ν ) is the flexural rigidity (bending stiffness) of the plate. This is a biharmonic equation that must be solved subject to specific boundary conditions. For simply supported edges, deflections and normal moments are zero along the edges, i.e. for x = and x = a. w =, w =, w x = w y = for y = and y = b. An exact solution of this problem was obtained by Navier in 18 and it is w = 16q π 6 D with m = 1, 3, 5,... and n = 1, 3, 5,... m=1 n=1 sin( mπx a )sin(nπy b ) mn( m a + n b ) 3
4 The bending and twisting moments are given by M x = D( w x + ν w y ) M y = D( w y + ν w x ) M xy = D(1 ν) w x y Finally, the elastic strain energy of the plate V is given by V = D a b ( w x + w y ) (1 ν)[ w x w y ( w x y ) ]dxdy Composite Laminate Plates Composite plates are produced by stacking thin sheets of fiber reinforced polymer called plies. Consider simply a supported rectangular ply (ply thickness h, ply length a, width b) consisting of unidirectionally aligned reinforcing fibers embedded in a polymer matrix, (elastic moduli E 1 (longitudinal, parallel to the fibers), E (transverse to the fibers), shear modulus G 1, longitudinal Poisson ratio ν 1, transverse Poisson ratios ν 1, ν 3 ) under a uniform load q acting normal to the surface of the ply. If a ply is aligned with the fiber direction coinciding with the x axis and the transverse direction with the y axis, the material is called specially orthotropic and the stressstrain relations are Q 11 Q 1 Q 1 Q Q 66 where components of the reduced stiffness matrix are κ x κ y ǫ x ǫ y + z ǫ xy κ xy Q 11 = E 1 1 ν 1 ν 1 Q 1 = ν 1E 1 ν 1 ν 1 Q = E 1 ν 1 ν 1 4
5 Q 66 = G 1 An important design feature of composite plies is that the longitudinal and transverse directions of any individual ply can be oriented at any angle θ with respect the a x y axis system used as reference. Hence for a ply where the fiber axis is oriented at an angle θ with respect to the reference x axis the stressstrain relationships are instead given by Q 11 Q 1 Q 16 Q 1 Q Q 6 Q 16 Q6 Q66 where Q is the transformed reduced stiffness matrix with components given by Q 11 = Q 11 cos 4 θ + (Q 1 + Q 66 )sin θ cos θ + Q sin 4 θ ǫ x ǫ y ǫ xy Q 1 = (Q 11 + Q 4Q 66 )sin θ cos θ + Q 1 (sin 4 θ + cos 4 θ) Q = Q 11 sin 4 θ + (Q 1 + Q 66 )sin θ cos θ + Q cos 4 θ Q 16 = (Q 11 Q 1 Q 66 )sin θ cos 3 θ + (Q 1 Q + Q 66 )sin 3 θ cos θ Q 6 = (Q 11 Q 1 Q 66 )sin 3 θ cosθ + (Q 1 Q + Q 66 )sinθ cos 3 θ Q 66 = (Q 11 + Q Q 1 Q 66 )sin θ cos θ + Q 66 (sin 4 θ + cos 4 θ) Another very important design feature of composites is that plies can be stacked to form thicker sections called laminates. Moreover, the stacking pattern can be selected to optimize the properties of the laminate. Consider a composite laminate (thickness t) formed by stacking N composite plies each with thickness h k, k = 1,, 3,..., N such that t = N h k, following a suitably selected stacking pattern. The normal and shear forces acting on the laminate are given by N x N y N xy t t dz = N zk z k 1 dz And the bending and twisting moments acting on the laminate are given by t N zk zdz = zdz M x M y M xy t 5 z k 1
6 and Performing the indicated integrations and rearranging yields N x A 11 A 1 A 16 ǫ x B 11 B 1 B 16 N y A 1 A A 6 ǫ y + B 1 B B 6 N xy A 16 A 6 A 66 B 16 B 6 B 66 M x M y M xy ǫ xy B 11 B 1 B 16 ǫ x B 1 B B 6 ǫ y B 16 B 6 B 66 ǫ xy + κ x κ y κ xy D 11 D 1 D 16 κ x D 1 D D 6 κ y D 16 D 6 D 66 κ xy where A, B and D are, respectively, the extensional, coupling and bending stiffnesses of the laminate with components given by N A ij = ( Q ij ) k (z k z k 1 ) B ij = 1 N ( Q ij ) k (zk zk 1) D ij = 1 N ( 3 Q ij ) k (zk 3 zk 1) 3 In practice, for the computation of all the A ij, B ij, D ij, the midplane of the laminate is selected as the origin of the z axis (z = = z (N+1)/ ) and the locations z, z 1, z,..., z N (except z (N+1)/ ) representing the boundaries of each ply. For instance for a three ply laminate formed with plies of thickness (in mm) h 1 =.1, h =., h 3 =.1, one has z =., z 1 =.1, z =., z 3 =.1, z 4 =.. Again, under the KirchoffLove and small deflection hypotheses, the equation governing the deflection w(x, y) of the plate in this case is 4 w D 11 x + 4D 4 w 4 16 x 3 y + (D 4 w 1 + D 66 ) x y + 4D 4 w 6 x y + D 4 w 3 y = q 4 where D 11, D 16, D 1, D 66, D, D 6 are the bending stiffnesses of the composite plate. The boundary conditions are, for x = and x = a. w =, w =, w D 11 x + D w 1 y + D 16 w D 1 x + D w y + D 6 6 w x y = w x y =
7 for y = and y = b. The elastic strain energy of the plate V is given by V = 1 a b [D 11 ( w x ) + D 1 w x w y + D ( w y ) + 4D 66 ( w x y ) + w w 4D 16 x x y + 4D w w 6 y x y ]dxdy A specially kind of laminate is obtained when specially orthotropic plies are symmetrically arranged about the laminate middle surface. A laminate without shear or twist coupling nor bendingextension coupling is obtained (i.e. B ij = and D 16 = D 6 = ). The deflection equation in this case becomes 4 w D 11 x + (D 4 w D 66 ) x y + D 4 w y = q 4 An exact solution of this problem can be obtained by an approach similar to the one used by Navier in 18 for the isotropic plate and it is w = 16q π 6 m=1 n=1 ( 1 mn )sin(mπx a )sin(nπy b ) D 11 ( m a )4 + (D 1 + D 66 )( m a ) ( n b ) + D ( n b )4 with m = 1, 3, 5,... and n = 1, 3, 5,... However, for many laminates, the stiffness components B ij, D 16 and D 6 may be nonzero, an exact solution cannot be obtained and approximation methods are required. 3 The Ritz Method The Ritz method is a technique discovered by Ritz to determine approximate solutions to the partial differential equations encountered in plate theory. The method is an application of the principle of minimum potential energy. The total potential energy of a loaded plate consists of the internal elastic strain energy of the plate V minus the potential energy of the external forces. In the case considered here, the potential energy associated with the external forces is given by Ω = So that the total potential energy E is a B E = V Ω qw dxdy 7
8 The Ritz method is then implemented by assuming that the deflection can be expressed as a linear combination of simple orthogonal functions (basis functions) satisfying the specified boundary conditions. For the situation at hand, a suitable expression is then w (x, y) = I J i=1 j=1 c k sin( iπx a )sin(jπy b ) where the c k are unknown coefficients (k = i + (j 1)I = 1,, 3,..., K where K = I J) and the numbers I and J will determine the accuracy of the approximation. The assumed expression for w is then substituted into V and Ω and the integrations performed. The result of this is a more or less complicated looking equation involving all the unknown coefficients. The principle of minimum potential energy is implemented by differentiating the total potential energy with respect to each coefficient and equation the result to zero, i.e. E = E =... = E = c 1 c c K This operation produces a system of K simultaneous linear algebraic equations whence the values of the unknown coefficients can be determined using standard methods. Substitution of the obtained values into the assumed equation for w yields the desired approximate solution. 4 The Finite Element Method The finite element method can be regarded as a generalization of the Ritz method. First, the computational domain is subdivided into a collection of contiguous, nonoverlapping subdomains connected at nodes. As in the Ritz method, one writes down an expression for the approximated quantity as a linear combination of the basis functions and then minimizes the total potential energy of the system with respect to a set of unknown coefficients. The unknown coefficients in the case of the finite element method turn out to be the nodal values of the dependent variable whose approximation is being sought. The basis functions selected for the finite element approximation are simple functions of compact support. Perhaps the best known example are the linear roof functions with value of one at a node, zero at all next neighbor nodes and varying linearly in between according to a simple first order Lagrange interpolating polynomial. In implementing the method one proceeds as with the classic Ritz approach and minimizes the total potential energy. The result is a set of linear algebraic equations for the unknown coefficients. Most importantly, since the basis functions are of compact support, the resulting system is sparse. Solution of the system produces the nodal values and substitution into the assumed expression for the approximated quantity yields the finite element approximation. The accuracy of the approximation can be increased either by increasing the number of elements in the subdivision or by increasing the order of the interpolating polynomial or both. 8
9 5 References 1. S.P. Timoshenko and S. WoinowskyKrieger, Theory of Plates and Shells, nd ed. McGrawHill, New York, L.P. Kollar and G.S. Springer, Mechanics of Composite Structures, Cambridge U.P. Cambridge, 3. 9
Presented By: EAS 6939 Aerospace Structural Composites
A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have
More informationComposites Design and Analysis. Stress Strain Relationship
Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines
More informationChapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements
CIVL 7/8117 Chapter 12  Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness
More informationBilinear Quadrilateral (Q4): CQUAD4 in GENESIS
Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS The Q4 element has four nodes and eight nodal dof. The shape can be any quadrilateral; we ll concentrate on a rectangle now. The displacement field in terms
More informationEFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING
Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (217), NO 1, 522 EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Arnab Choudhury 1,
More informationA NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES
A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES J.M. MARTÍNEZ VALLE Mechanics Department, EPS; Leonardo da Vinci Building, Rabanales Campus, Cordoba
More informationLAMINATED COMPOSITE PLATES
LAMINATED COMPOSITE PLATES David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 February 10, 2000 Introduction This document is intended
More informationInternational Journal of Advanced Engineering Technology EISSN
Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,
More informationAPPLICATION OF THE GALERKINVLASOV METHOD TO THE FLEXURAL ANALYSIS OF SIMPLY SUPPORTED RECTANGULAR KIRCHHOFF PLATES UNDER UNIFORM LOADS
Nigerian Journal of Technology (NIJOTECH) Vol. 35, No. 4, October 2016, pp. 732 738 Copyright Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 03318443, Electronic ISSN: 24678821 www.nijotech.com
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  11
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module  01 Lecture  11 Last class, what we did is, we looked at a method called superposition
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationBuckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate
Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate Outline Introduction Representative Volume Element (RVE) Periodic Boundary Conditions on RVE Homogenization Method Analytical
More informationPLAT DAN CANGKANG (TKS 4219)
PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, twodimensional structural components of which
More informationKirchhoff Plates: Field Equations
20 Kirchhoff Plates: Field Equations AFEM Ch 20 Slide 1 Plate Structures A plate is a three dimensional bod characterized b Thinness: one of the plate dimensions, the thickness, is much smaller than the
More informationTHEORY OF PLATES AND SHELLS
THEORY OF PLATES AND SHELLS S. TIMOSHENKO Professor Emeritus of Engineering Mechanics Stanford University S. WOINOWSKYKRIEGER Professor of Engineering Mechanics Laval University SECOND EDITION MCGRAWHILL
More informationCHAPTER 6 BENDING Part 1
Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER 6 BENDING Part 11 CHAPTER 6 Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and
More informationFREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS
FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS J. Kandasamy 1, M. Madhavi 2, N. Haritha 3 1 Corresponding author Department of Mechanical
More informationDESIGN OF LAMINATES FOR INPLANE LOADING
DESIGN OF LAMINATES FOR INPLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily
More informationCellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).
1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475477 (1996). Abstract Material microstructures are presented which can exhibit coefficients
More informationCOMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS
6 th International Conference Computational Mechanics and Virtual Engineering COMEC 15 1516 October 15, Braşov, Romania COMPUER AIDED DESIGN IN CASE OF HE LAMINAED COMPOSIE MAERIALS Camelia Cerbu ransilvania
More informationIraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April015 1678 Study the Increasing of the Cantilever Plate Stiffness by Using s Jawdat Ali Yakoob Iesam Jondi Hasan Ass.
More informationThe CR Formulation: BE Plane Beam
6 The CR Formulation: BE Plane Beam 6 Chapter 6: THE CR FORMUATION: BE PANE BEAM TABE OF CONTENTS Page 6. Introduction..................... 6 4 6.2 CR Beam Kinematics................. 6 4 6.2. Coordinate
More information2008 by authors and 2008 Springer Science+Business Media
Antti H. Niemi, Harri Hakula, and Juhani Pitkäranta. 28. Point load on a shell. In: Karl Kunisch, Günther Of, and Olaf Steinbach (editors). Numerical Mathematics and Advanced Applications. Proceedings
More informationThe problem of isotropic rectangular plate with four clamped edges
Sādhanā Vol. 32, Part 3, June 2007, pp. 181 186. Printed in India The problem of isotropic rectangular plate with four clamped edges C ERDEM İMRAK and ISMAIL GERDEMELI Istanbul Technical University, Faculty
More informationStacking sequences for Extensionally Isotropic, Fully Isotropic and QuasiHomogeneous Orthotropic Laminates.
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 710 April 2008, Schaumburg, IL AIAA 20081940 Stacking sequences for Extensionally Isotropic, Fully Isotropic and QuasiHomogeneous
More informationPassive Damping Characteristics of Carbon Epoxy Composite Plates
Journal of aterials Science and Engineering A 6 (12) (2016) 3542 doi: 10.17265/21616213/2016.12.005 D DAVID PUBLISHIG Passive Damping Characteristics of Carbon Epoxy Composite Plates Dileep Kumar K
More informationGeneric Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Engineering Mechanics Dissertations & Theses Mechanical & Materials Engineering, Department of Winter 1292011 Generic
More informationAN INTEGRATED KIRCHHOFF PLATE ELEMENT BY GALERKIN METHOD FOR THE ANALYSIS OF PLATES ON ELASTIC FOUNDATION
AN INTEGRATED IRCHHOFF PLATE ELEMENT BY GALERIN METHOD FOR THE ANALYSIS OF PLATES ON ELASTIC FOUNDATION Ragesh.P.P, V.Mustafa 2, T.P.Somasundaran 3 (Research Scholar, National Institute of Technology Calicut,
More informationTHE BENDING STIFFNESSES OF CORRUGATED BOARD
AMDVol. 145/MDVol. 36, Mechanics of Cellulosic Materials ASME 1992 THE BENDING STIFFNESSES OF CORRUGATED BOARD S. Luo and J. C. Suhling Department of Mechanical Engineering Auburn University Auburn,
More informationCOMPRESSION AND BENDING STIFFNESS OF FIBERREINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction
COMPRESSION AND BENDING STIFFNESS OF FIBERREINFORCED ELASTOMERIC BEARINGS HsiangChuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,
More information3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
More information6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
More informationDavid A. Pape Department of Engineering and Technology Central Michigan University Mt Pleasant, Michigan
Session: ENG 03091 Deflection Solutions for Edge Stiffened Plates David A. Pape Department of Engineering and Technology Central Michigan University Mt Pleasant, Michigan david.pape@cmich.edu Angela J.
More informationOverview of Hygrothermally Stable Laminates with Improved Extensiontwist Coupling
Overview of Hygrothermally Stable Laminates with Improved Extensiontwist Coupling R. Haynes epartment of erospace Engineering, Georgia Institute of Technology 27 Ferst rive W, tlanta, G 33325, US robert.haynes@gatech.edu
More informationFree Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method. Eric A. Butcher and Ma en Sari
Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method Eric A. Butcher and Ma en Sari Department of Mechanical and Aerospace Engineering, New Mexico State
More informationThesis. Submitted to. The School of Engineering of the UNIVERSITY OF DAYTON. In Partial Fulfillment of the Requirements for.
FLEXURAL ANALYSIS AND COMPOSITE BEHAVIOR OF PRECAST CONCRETE SANDWICH PANEL Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The
More informationModeling of the Bending Stiffness of a Bimaterial Beam by the Approximation of OneDimensional of Laminated Theory
. FloresDomínguez Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS odeling of the Bending Stiffness of a Bimaterial Beam by the Approimation of OneDimensional of Laminated
More informationEsben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer
Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics
More informationThermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method
The Open echanics Journal, 007, 1, 937 9 Thermal Vibration of agnetostrictive aterial in Laminated Plates by the GDQ ethod C.C. Hong * Department of echanical Engineering, Hsiuping Institute of Technology,
More informationFinite Difference Dynamic Analysis of Railway Bridges Supported by Pasternak Foundation under Uniform Partially Distributed Moving Railway Vehicle
, October 2123, 2015, San Francisco, USA Finite Difference Dynamic Analysis of Railway Bridges Supported by Pasternak Foundation under Uniform Partially Distributed Moving Railway Vehicle M. C. Agarana
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More informationCLASSICAL TORSION AND AIST TORSION THEORY
CLASSICAL TORSION AND AIST TORSION THEORY Background The design of a crane runway girder has not been an easy task for most structural engineers. Many difficult issues must be addressed if these members
More informationA *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G  (  ) +"' ( + "( (' (& +" % '('%"' +"2 ( !"', % )% .C>K:GH>IN D; AF69>HH>6,+
The primary objective is to determine whether the structural efficiency of plates can be improved with variable thickness The large displacement analysis of steel plate with variable thickness at direction
More informationFinite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix)
Finite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix) Nikhil J. Chaudhari 1 Post Graduate Student Department of Mechanical Engineering Veermata Jijabai Technological Institute
More informationFlexuralTorsional Buckling of General ColdFormed Steel Columns with Unequal Unbraced Lengths
Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 2124, 2017 FlexuralTorsional Buckling of General ColdFormed Steel Columns with Unequal
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationBasic Energy Principles in Stiffness Analysis
Basic Energy Principles in Stiffness Analysis StressStrain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting
More informationInfluence of the filament winding process variables on the mechanical behavior of a composite pressure vessel
Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel G. Vargas 1 & A. Miravete 2 1 Universidad Pontificia Bolivariana, Facultad de Ingeniería Mecánica,
More informationA Study on the Tube of Integral Propeller Shaft for the Rearwheel Drive Automobile Using Carbon Composite Fiber
A Study on the Tube of Integral Propeller Shaft for the Rearwheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmuro, Goesangun, South Korea.
More informationPlane and axisymmetric models in Mentat & MARC. Tutorial with some Background
Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,
More informationA Suggested Analytical Solution for Vibration of Honeycombs Sandwich Combined Plate Structure
International Journal of Mechanical & Mechatronics Engineering IJMMEIJENS Vol:16 No:04 9 A Suggested Analytical Solution for Vibration of Honeycombs Sandwich Combined Plate Structure Muhsin J. Jweeg College
More informationChapter 3 LAMINATED MODEL DERIVATION
17 Chapter 3 LAMINATED MODEL DERIVATION 3.1 Fundamental Poisson Equation The simplest version of the frictionless laminated model was originally introduced in 1961 by Salamon, and more recently explored
More informationEFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES
EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES OF WOOD OR PLYWOOD CONSIDERED AS ORTHOTROPIC MATERIALS Information Revied and Reaffirmed March 1956 No. 1510 EFFECT OF ELLIPTIC
More information7.4 The Elementary Beam Theory
7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be
More informationSOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS
Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 3, 7985 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical University
More informationModule 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains
Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model
More informationNumerical Stability Analysis of Composite Plates Thermally Stiffened by Finite Element Method
Proceedings of COBE 005 Copyright 005 by ABC 8th International Congress of echanical Engineering ovember 6, 005, Ouro Preto, G umerical Stability Analysis of Composite Plates hermally Stiffened by Finite
More informationThe stiffness tailoring of megawatt wind turbine
IOP Conference Series: Materials Science and Engineering OPEN ACCESS The stiffness tailoring of megawatt wind turbine To cite this article: Z M Li et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 052008
More informationSANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS
SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATECSP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS
More informationMachine Direction Strength Theory of Corrugated Fiberboard
Thomas J. Urbanik 1 Machine Direction Strength Theory of Corrugated Fiberboard REFERENCE: Urbanik.T.J., Machine Direction Strength Theory of Corrugated Fiberboard, Journal of Composites Technology & Research,
More informationDispersion relation for transverse waves in a linear chain of particles
Dispersion relation for transverse waves in a linear chain of particles V. I. Repchenkov* It is difficult to overestimate the importance that have for the development of science the simplest physical and
More informationFinite Element Analysis of Dynamic Properties of Thermally Optimal Twophase Composite Structure
Vibrations in Physical Systems Vol.26 (2014) Finite Element Analysis of Dynamic Properties of Thermally Optimal Twophase Composite Structure Abstract Maria NIENARTOWICZ Institute of Applied Mechanics,
More informationHydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition
Fluid Structure Interaction and Moving Boundary Problems IV 63 Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition K.H. Jeong, G.M. Lee, T.W. Kim & J.I.
More informationAnalysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method
Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro
More informationFREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON PASTERNAK FOUNDATION USING COUPLED DISPLACEMENT FIELD METHOD
A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G VOL. LXIV 17 Number 3 DOI: 1.1515/meceng17 Key words: free vibrations, Coupled Displacement Field method, uniform Timoshenko beam, Pasternak
More informationFREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON PASTERNAK FOUNDATION USING COUPLED DISPLACEMENT FIELD METHOD
A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G VOL. LXIV 17 Number 3 DOI: 1.1515/meceng17 Key words: free vibrations, Coupled Displacement Field method, uniform Timoshenko beam, Pasternak
More informationStability of Simply Supported Square Plate with Concentric Cutout
International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Stability of Simply Supported Square Plate with Concentric Cutout Jayashankarbabu B. S. 1, Dr. Karisiddappa 1 (Civil Engineering
More informationQUESTION BANK Composite Materials
QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.
More information1 Bending of beams Mindlin theory
1 BENDNG OF BEAMS MNDLN THEORY 1 1 Bending of beams Mindlin theory Crosssection kinematics assumptions Distributed load acts in the xz plane, which is also a plane of symmetry of a body Ω v(x = 0 m Vertical
More informationSound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur
Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3D solids, thin plates have surfaces
More informationCIVL4332 L1 Introduction to Finite Element Method
CIVL L Introduction to Finite Element Method CIVL L Introduction to Finite Element Method by Joe Gattas, Faris Albermani Introduction The FEM is a numerical technique for solving physical problems such
More informationLAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS
XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds
More informationMechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA
Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA What programs are in PROMAL? Master Menu The master menu screen with five separate applications from
More informationPiezoelectric Bimorph Response with Imperfect Bonding Conditions
Copyright c 28 ICCES ICCES, vol.6, no.3, pp.556 Piezoelectric Bimorph Response with Imperfect Bonding Conditions Milazzo A., Alaimo A. and Benedetti I. Summary The effect of the finite stiffness bonding
More informationFREE VIBRATION OF THERMALLY PRE/POSTBUCKLED CIRCULAR THIN PLATES EMBEDDED WITH SHAPE MEMORY ALLOY FIBERS
Journal of Thermal Stresses, 33: 79 96, 2010 Copyright Taylor & Francis Group, LLC ISSN: 01495739 print/1521074x online DOI: 10.1080/01495730903409235 FREE VIBRATION OF THERMALLY PRE/POSTBUCKLED CIRCULAR
More informationFinite element modelling of structural mechanics problems
1 Finite element modelling of structural mechanics problems Kjell Magne Mathisen Department of Structural Engineering Norwegian University of Science and Technology Lecture 10: Geilo Winter School  January,
More informationFlexure of Thick Cantilever Beam using Third Order Shear Deformation Theory
International Journal of Engineering Research and Development eissn: 7867X, pissn: 788X, www.ijerd.com Volume 6, Issue 1 (April 13), PP. 914 Fleure of Thick Cantilever Beam using Third Order Shear
More informationTransactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X
An alternative boundary element formulation for plate bending analysis J.B. Paiva, L.O. Neto Structures Department, Sao Carlos Civil Engineering School, f, BrazzY Abstract This work presents an alternative
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationFlexure: Behavior and Nominal Strength of Beam Sections
4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kipin.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015
More informationUnderstand basic stressstrain response of engineering materials.
Module 3 Constitutive quations Learning Objectives Understand basic stressstrain response of engineering materials. Quantify the linear elastic stressstrain response in terms of tensorial quantities
More informationMechanical Design in Optical Engineering
OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationBIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS
BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6131, Ohsawa, Mitaka,
More informationSymmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
More information. D CR Nomenclature D 1
. D CR Nomenclature D 1 Appendix D: CR NOMENCLATURE D 2 The notation used by different investigators working in CR formulations has not coalesced, since the topic is in flux. This Appendix identifies the
More informationCOROTATIONAL NONLINEAR DYNAMIC ANALYSIS OF LAMINATED COMPOSITE SHELL STRUCTURES
Copyright c 009 by ABCM January 0408, 010, Foz do Iguaçu, PR, Brazil COROTATIONAL NONLINEAR DYNAMIC ANALYSIS OF LAMINATED COMPOSITE SHELL STRUCTURES Felipe Schaedler de Almeida, schaedleralmeida@gmail.com
More informationBUTT SPLICE HINGING. KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated
BUTT SPLICE HINGING BY KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated Introduction Splicing is a process used to join the tail of an expiring roll to the start
More informationShear of Thin Walled Beams. Introduction
Introduction Apart from bending, shear is another potential structural failure mode of beams in aircraft For thinwalled beams subjected to shear, beam theory is based on assumptions applicable only to
More informationAn Evaluation and Comparison of Models for Maximum Deflection of Stiffened Plates Using Finite Element Analysis
Marine Technology, Vol. 44, No. 4, October 2007, pp. 212 225 An Evaluation and Comparison of Models for Maximum Deflection of Stiffened Plates Using Finite Element Analysis Lior Banai 1 and Omri Pedatzur
More informationNATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F. A diagram of a honeycomb plate crosssection is shown in Figure 1.
NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F By Tom Irvine Email: tomirvine@aol.com August 5, 008 Bending Stiffness of a Honeycomb Sandwich Plate A diagram of a honeycomb plate crosssection
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More informationGLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE
GLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE Alessandro Spadoni, Massimo Ruzzene School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332 Fabrizio Scarpa
More informationDetermination of the Shear Buckling Load of a Large Polymer Composite ISection Using Strain and Displacement Sensors
Sensors 2012, 12, 1602416036; doi:10.3390/s121216024 Article OPEN ACCESS sensors ISSN 14248220 www.mdpi.com/journal/sensors Determination of the Shear Buckling Load of a Large Polymer Composite ISection
More informationGeometrydependent MITC method for a 2node isobeam element
Structural Engineering and Mechanics, Vol. 9, No. (8) 33 Geometrydependent MITC method for a node isobeam element PhillSeung Lee Samsung Heavy Industries, Seocho, Seoul 37857, Korea HyuChun Noh
More informationCORRELATING OFFAXIS TENSION TESTS TO SHEAR MODULUS OF WOODBASED PANELS
CORRELATING OFFAXIS TENSION TESTS TO SHEAR MODULUS OF WOODBASED PANELS By Edmond P. Saliklis 1 and Robert H. Falk ABSTRACT: The weakness of existing relationships correlating offaxis modulus of elasticity
More informationValidation of the Resonalyser method: an inverse method for material identification
Validation of the Resonalyser method: an inverse method for material identification T. Lauwagie, H. Sol,. Roebben 3, W. Heylen and Y. Shi Katholieke Universiteit Leuven (KUL) Department of Mechanical ngineering
More informationMATERIAL ELASTIC ANISOTROPIC command
MATERIAL ELASTIC ANISOTROPIC command.. Synopsis The MATERIAL ELASTIC ANISOTROPIC command is used to specify the parameters associated with an anisotropic linear elastic material idealization. Syntax The
More information