# Bending of Simply Supported Isotropic and Composite Laminate Plates

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b, thickness t, - with t << a, b -, elastic modulus E, Poisson s ratio ν) under a uniform pressure q acting normal to the surface of the plate. Let the x axis be aligned with the length of the plate, the y axis with its width and the z axis with its thickness with z = located in the middle of the plate thickness. For isotropic plates, the (engineering) stress-strain relationships are given by Q 11 Q 1 Q 1 Q 11 Q 66 ǫ x ǫ y ǫ xy where Q is the reduced stiffness matrix with components Q 66 = Q 11 = Q 1 = E 1 ν νe 1 ν E (1 + ν) = G The Kirchoff-Love hypothesis is commonly used to simplify the analysis of plates. If the thickness of a plate is much smaller that its length and its width plate straight normals to the plane of the plate remain approximately straight, of constant length and normal to the plane of the plate when the plate deforms. This is equivalent to neglecting the shearing strains in planes perpendicular to the middle surface (z = z = ) as well as the normal strain normal to the plate (ǫ z = ). Under the hypothesis, the strain components in the 1

2 plate are given in terms of the strains and curvatures along the middle surface of the plate, respectively ǫ x, ǫ y, ǫ xy, κ x, κ y, κ xy, i.e. ǫ x ǫ y ǫ xy ǫ x κ ǫ x y + z κ ǫ y xy κ xy So that the stress-strain relationships become Q 11 Q 1 Q 1 Q 11 Q 66 κ x κ y ǫ x ǫ y + z ǫ xy κ xy The mid plane strains and curvatures are given respectively by ǫ x ǫ y ǫ xy u / x v / y u / y + v / x and κ x w / x κ y w / y κ xy w / x y and where u, v, w = w are the components of displacement at the middle surface of the plate. The normal and shear forces acting on the plate are given by N x N y N xy t t dz The bending and twisting moments acting on the plate are given by M x M y M xy t t zdz Combination and rearrangement of the above yields finally N x N y N xy Et 1 ν νet 1 ν νet 1 ν Et 1 ν 1 ν Et 1 ν ǫ x ǫ y ǫ xy

3 and M x M y M xy Et 3 1(1 ν ) νet 3 1(1 ν ) νet 3 1(1 ν ) Et 3 1(1 ν ) 1 ν Et 3 1(1 ν ) κ x κ y κ xy Under the Kirchoff-Love hypothesis, commonly used when analyzing the deformation of plates and shells, and assuming small deflections (linear elasticity), it can be shown that the condition of mechanical equilibrium assuming that the edges of the plate are free to move in the plane of the plate has the form M x x + M y y M xy x y = q Combining with the above yields the governing equation in terms of the deflection of the mid-surface of the plate: where D 4 w x 4 + D 4 w x y + D 4 w y 4 = q D = Et 3 1(1 ν ) is the flexural rigidity (bending stiffness) of the plate. This is a bi-harmonic equation that must be solved subject to specific boundary conditions. For simply supported edges, deflections and normal moments are zero along the edges, i.e. for x = and x = a. w =, w =, w x = w y = for y = and y = b. An exact solution of this problem was obtained by Navier in 18 and it is w = 16q π 6 D with m = 1, 3, 5,... and n = 1, 3, 5,... m=1 n=1 sin( mπx a )sin(nπy b ) mn( m a + n b ) 3

4 The bending and twisting moments are given by M x = D( w x + ν w y ) M y = D( w y + ν w x ) M xy = D(1 ν) w x y Finally, the elastic strain energy of the plate V is given by V = D a b ( w x + w y ) (1 ν)[ w x w y ( w x y ) ]dxdy Composite Laminate Plates Composite plates are produced by stacking thin sheets of fiber reinforced polymer called plies. Consider simply a supported rectangular ply (ply thickness h, ply length a, width b) consisting of unidirectionally aligned reinforcing fibers embedded in a polymer matrix, (elastic moduli E 1 (longitudinal, parallel to the fibers), E (transverse to the fibers), shear modulus G 1, longitudinal Poisson ratio ν 1, transverse Poisson ratios ν 1, ν 3 ) under a uniform load q acting normal to the surface of the ply. If a ply is aligned with the fiber direction coinciding with the x axis and the transverse direction with the y axis, the material is called specially orthotropic and the stress-strain relations are Q 11 Q 1 Q 1 Q Q 66 where components of the reduced stiffness matrix are κ x κ y ǫ x ǫ y + z ǫ xy κ xy Q 11 = E 1 1 ν 1 ν 1 Q 1 = ν 1E 1 ν 1 ν 1 Q = E 1 ν 1 ν 1 4

5 Q 66 = G 1 An important design feature of composite plies is that the longitudinal and transverse directions of any individual ply can be oriented at any angle θ with respect the a x y axis system used as reference. Hence for a ply where the fiber axis is oriented at an angle θ with respect to the reference x axis the stress-strain relationships are instead given by Q 11 Q 1 Q 16 Q 1 Q Q 6 Q 16 Q6 Q66 where Q is the transformed reduced stiffness matrix with components given by Q 11 = Q 11 cos 4 θ + (Q 1 + Q 66 )sin θ cos θ + Q sin 4 θ ǫ x ǫ y ǫ xy Q 1 = (Q 11 + Q 4Q 66 )sin θ cos θ + Q 1 (sin 4 θ + cos 4 θ) Q = Q 11 sin 4 θ + (Q 1 + Q 66 )sin θ cos θ + Q cos 4 θ Q 16 = (Q 11 Q 1 Q 66 )sin θ cos 3 θ + (Q 1 Q + Q 66 )sin 3 θ cos θ Q 6 = (Q 11 Q 1 Q 66 )sin 3 θ cosθ + (Q 1 Q + Q 66 )sinθ cos 3 θ Q 66 = (Q 11 + Q Q 1 Q 66 )sin θ cos θ + Q 66 (sin 4 θ + cos 4 θ) Another very important design feature of composites is that plies can be stacked to form thicker sections called laminates. Moreover, the stacking pattern can be selected to optimize the properties of the laminate. Consider a composite laminate (thickness t) formed by stacking N composite plies each with thickness h k, k = 1,, 3,..., N such that t = N h k, following a suitably selected stacking pattern. The normal and shear forces acting on the laminate are given by N x N y N xy t t dz = N zk z k 1 dz And the bending and twisting moments acting on the laminate are given by t N zk zdz = zdz M x M y M xy t 5 z k 1

6 and Performing the indicated integrations and rearranging yields N x A 11 A 1 A 16 ǫ x B 11 B 1 B 16 N y A 1 A A 6 ǫ y + B 1 B B 6 N xy A 16 A 6 A 66 B 16 B 6 B 66 M x M y M xy ǫ xy B 11 B 1 B 16 ǫ x B 1 B B 6 ǫ y B 16 B 6 B 66 ǫ xy + κ x κ y κ xy D 11 D 1 D 16 κ x D 1 D D 6 κ y D 16 D 6 D 66 κ xy where A, B and D are, respectively, the extensional, coupling and bending stiffnesses of the laminate with components given by N A ij = ( Q ij ) k (z k z k 1 ) B ij = 1 N ( Q ij ) k (zk zk 1) D ij = 1 N ( 3 Q ij ) k (zk 3 zk 1) 3 In practice, for the computation of all the A ij, B ij, D ij, the mid-plane of the laminate is selected as the origin of the z axis (z = = z (N+1)/ ) and the locations z, z 1, z,..., z N (except z (N+1)/ ) representing the boundaries of each ply. For instance for a three ply laminate formed with plies of thickness (in mm) h 1 =.1, h =., h 3 =.1, one has z =., z 1 =.1, z =., z 3 =.1, z 4 =.. Again, under the Kirchoff-Love and small deflection hypotheses, the equation governing the deflection w(x, y) of the plate in this case is 4 w D 11 x + 4D 4 w 4 16 x 3 y + (D 4 w 1 + D 66 ) x y + 4D 4 w 6 x y + D 4 w 3 y = q 4 where D 11, D 16, D 1, D 66, D, D 6 are the bending stiffnesses of the composite plate. The boundary conditions are, for x = and x = a. w =, w =, w D 11 x + D w 1 y + D 16 w D 1 x + D w y + D 6 6 w x y = w x y =

7 for y = and y = b. The elastic strain energy of the plate V is given by V = 1 a b [D 11 ( w x ) + D 1 w x w y + D ( w y ) + 4D 66 ( w x y ) + w w 4D 16 x x y + 4D w w 6 y x y ]dxdy A specially kind of laminate is obtained when specially orthotropic plies are symmetrically arranged about the laminate middle surface. A laminate without shear or twist coupling nor bending-extension coupling is obtained (i.e. B ij = and D 16 = D 6 = ). The deflection equation in this case becomes 4 w D 11 x + (D 4 w D 66 ) x y + D 4 w y = q 4 An exact solution of this problem can be obtained by an approach similar to the one used by Navier in 18 for the isotropic plate and it is w = 16q π 6 m=1 n=1 ( 1 mn )sin(mπx a )sin(nπy b ) D 11 ( m a )4 + (D 1 + D 66 )( m a ) ( n b ) + D ( n b )4 with m = 1, 3, 5,... and n = 1, 3, 5,... However, for many laminates, the stiffness components B ij, D 16 and D 6 may be non-zero, an exact solution cannot be obtained and approximation methods are required. 3 The Ritz Method The Ritz method is a technique discovered by Ritz to determine approximate solutions to the partial differential equations encountered in plate theory. The method is an application of the principle of minimum potential energy. The total potential energy of a loaded plate consists of the internal elastic strain energy of the plate V minus the potential energy of the external forces. In the case considered here, the potential energy associated with the external forces is given by Ω = So that the total potential energy E is a B E = V Ω qw dxdy 7

8 The Ritz method is then implemented by assuming that the deflection can be expressed as a linear combination of simple orthogonal functions (basis functions) satisfying the specified boundary conditions. For the situation at hand, a suitable expression is then w (x, y) = I J i=1 j=1 c k sin( iπx a )sin(jπy b ) where the c k are unknown coefficients (k = i + (j 1)I = 1,, 3,..., K where K = I J) and the numbers I and J will determine the accuracy of the approximation. The assumed expression for w is then substituted into V and Ω and the integrations performed. The result of this is a more or less complicated looking equation involving all the unknown coefficients. The principle of minimum potential energy is implemented by differentiating the total potential energy with respect to each coefficient and equation the result to zero, i.e. E = E =... = E = c 1 c c K This operation produces a system of K simultaneous linear algebraic equations whence the values of the unknown coefficients can be determined using standard methods. Substitution of the obtained values into the assumed equation for w yields the desired approximate solution. 4 The Finite Element Method The finite element method can be regarded as a generalization of the Ritz method. First, the computational domain is subdivided into a collection of contiguous, non-overlapping sub-domains connected at nodes. As in the Ritz method, one writes down an expression for the approximated quantity as a linear combination of the basis functions and then minimizes the total potential energy of the system with respect to a set of unknown coefficients. The unknown coefficients in the case of the finite element method turn out to be the nodal values of the dependent variable whose approximation is being sought. The basis functions selected for the finite element approximation are simple functions of compact support. Perhaps the best known example are the linear roof functions with value of one at a node, zero at all next neighbor nodes and varying linearly in between according to a simple first order Lagrange interpolating polynomial. In implementing the method one proceeds as with the classic Ritz approach and minimizes the total potential energy. The result is a set of linear algebraic equations for the unknown coefficients. Most importantly, since the basis functions are of compact support, the resulting system is sparse. Solution of the system produces the nodal values and substitution into the assumed expression for the approximated quantity yields the finite element approximation. The accuracy of the approximation can be increased either by increasing the number of elements in the subdivision or by increasing the order of the interpolating polynomial or both. 8

9 5 References 1.- S.P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, nd ed. McGraw-Hill, New York, L.P. Kollar and G.S. Springer, Mechanics of Composite Structures, Cambridge U.P. Cambridge, 3. 9

### Presented By: EAS 6939 Aerospace Structural Composites

A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have

### Composites Design and Analysis. Stress Strain Relationship

Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines

### Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

CIVL 7/8117 Chapter 12 - Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS The Q4 element has four nodes and eight nodal dof. The shape can be any quadrilateral; we ll concentrate on a rectangle now. The displacement field in terms

### EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING

Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (217), NO 1, 5-22 EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Arnab Choudhury 1,

### A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES

A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES J.M. MARTÍNEZ VALLE Mechanics Department, EPS; Leonardo da Vinci Building, Rabanales Campus, Cordoba

### LAMINATED COMPOSITE PLATES

LAMINATED COMPOSITE PLATES David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 February 10, 2000 Introduction This document is intended

### International Journal of Advanced Engineering Technology E-ISSN

Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,

### APPLICATION OF THE GALERKIN-VLASOV METHOD TO THE FLEXURAL ANALYSIS OF SIMPLY SUPPORTED RECTANGULAR KIRCHHOFF PLATES UNDER UNIFORM LOADS

Nigerian Journal of Technology (NIJOTECH) Vol. 35, No. 4, October 2016, pp. 732 738 Copyright Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com

### Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

### Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

### Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate

Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate Outline Introduction Representative Volume Element (RVE) Periodic Boundary Conditions on RVE Homogenization Method Analytical

### PLAT DAN CANGKANG (TKS 4219)

PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, two-dimensional structural components of which

### Kirchhoff Plates: Field Equations

20 Kirchhoff Plates: Field Equations AFEM Ch 20 Slide 1 Plate Structures A plate is a three dimensional bod characterized b Thinness: one of the plate dimensions, the thickness, is much smaller than the

### THEORY OF PLATES AND SHELLS

THEORY OF PLATES AND SHELLS S. TIMOSHENKO Professor Emeritus of Engineering Mechanics Stanford University S. WOINOWSKY-KRIEGER Professor of Engineering Mechanics Laval University SECOND EDITION MCGRAW-HILL

### CHAPTER -6- BENDING Part -1-

Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

### FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS J. Kandasamy 1, M. Madhavi 2, N. Haritha 3 1 Corresponding author Department of Mechanical

DESIGN OF LAMINATES FOR IN-PLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily

### Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).

1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475-477 (1996). Abstract Material microstructures are presented which can exhibit coefficients

6 th International Conference Computational Mechanics and Virtual Engineering COMEC 15 15-16 October 15, Braşov, Romania COMPUER AIDED DESIGN IN CASE OF HE LAMINAED COMPOSIE MAERIALS Camelia Cerbu ransilvania

### Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-015 1678 Study the Increasing of the Cantilever Plate Stiffness by Using s Jawdat Ali Yakoob Iesam Jondi Hasan Ass.

### The CR Formulation: BE Plane Beam

6 The CR Formulation: BE Plane Beam 6 Chapter 6: THE CR FORMUATION: BE PANE BEAM TABE OF CONTENTS Page 6. Introduction..................... 6 4 6.2 CR Beam Kinematics................. 6 4 6.2. Coordinate

### 2008 by authors and 2008 Springer Science+Business Media

Antti H. Niemi, Harri Hakula, and Juhani Pitkäranta. 28. Point load on a shell. In: Karl Kunisch, Günther Of, and Olaf Steinbach (editors). Numerical Mathematics and Advanced Applications. Proceedings

### The problem of isotropic rectangular plate with four clamped edges

Sādhanā Vol. 32, Part 3, June 2007, pp. 181 186. Printed in India The problem of isotropic rectangular plate with four clamped edges C ERDEM İMRAK and ISMAIL GERDEMELI Istanbul Technical University, Faculty

### Stacking sequences for Extensionally Isotropic, Fully Isotropic and Quasi-Homogeneous Orthotropic Laminates.

49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 7-10 April 2008, Schaumburg, IL AIAA 2008-1940 Stacking sequences for Extensionally Isotropic, Fully Isotropic and Quasi-Homogeneous

### Passive Damping Characteristics of Carbon Epoxy Composite Plates

Journal of aterials Science and Engineering A 6 (1-2) (2016) 35-42 doi: 10.17265/2161-6213/2016.1-2.005 D DAVID PUBLISHIG Passive Damping Characteristics of Carbon Epoxy Composite Plates Dileep Kumar K

### Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Engineering Mechanics Dissertations & Theses Mechanical & Materials Engineering, Department of Winter 12-9-2011 Generic

### AN INTEGRATED KIRCHHOFF PLATE ELEMENT BY GALERKIN METHOD FOR THE ANALYSIS OF PLATES ON ELASTIC FOUNDATION

AN INTEGRATED IRCHHOFF PLATE ELEMENT BY GALERIN METHOD FOR THE ANALYSIS OF PLATES ON ELASTIC FOUNDATION Ragesh.P.P, V.Mustafa 2, T.P.Somasundaran 3 (Research Scholar, National Institute of Technology Calicut,

### THE BENDING STIFFNESSES OF CORRUGATED BOARD

AMD-Vol. 145/MD-Vol. 36, Mechanics of Cellulosic Materials ASME 1992 THE BENDING STIFFNESSES OF CORRUGATED BOARD S. Luo and J. C. Suhling Department of Mechanical Engineering Auburn University Auburn,

### COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS Hsiang-Chuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,

### 3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

### 6. Bending CHAPTER OBJECTIVES

CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

### David A. Pape Department of Engineering and Technology Central Michigan University Mt Pleasant, Michigan

Session: ENG 03-091 Deflection Solutions for Edge Stiffened Plates David A. Pape Department of Engineering and Technology Central Michigan University Mt Pleasant, Michigan david.pape@cmich.edu Angela J.

### Overview of Hygrothermally Stable Laminates with Improved Extension-twist Coupling

Overview of Hygrothermally Stable Laminates with Improved Extension-twist Coupling R. Haynes epartment of erospace Engineering, Georgia Institute of Technology 27 Ferst rive W, tlanta, G 3332-5, US robert.haynes@gatech.edu

### Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method. Eric A. Butcher and Ma en Sari

Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method Eric A. Butcher and Ma en Sari Department of Mechanical and Aerospace Engineering, New Mexico State

### Thesis. Submitted to. The School of Engineering of the UNIVERSITY OF DAYTON. In Partial Fulfillment of the Requirements for.

FLEXURAL ANALYSIS AND COMPOSITE BEHAVIOR OF PRECAST CONCRETE SANDWICH PANEL Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The

### Modeling of the Bending Stiffness of a Bimaterial Beam by the Approximation of One-Dimensional of Laminated Theory

. Flores-Domínguez Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS odeling of the Bending Stiffness of a Bimaterial Beam by the Approimation of One-Dimensional of Laminated

### Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

### Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method

The Open echanics Journal, 007, 1, 9-37 9 Thermal Vibration of agnetostrictive aterial in Laminated Plates by the GDQ ethod C.C. Hong * Department of echanical Engineering, Hsiuping Institute of Technology,

### Finite Difference Dynamic Analysis of Railway Bridges Supported by Pasternak Foundation under Uniform Partially Distributed Moving Railway Vehicle

, October 21-23, 2015, San Francisco, USA Finite Difference Dynamic Analysis of Railway Bridges Supported by Pasternak Foundation under Uniform Partially Distributed Moving Railway Vehicle M. C. Agarana

### 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

### CLASSICAL TORSION AND AIST TORSION THEORY

CLASSICAL TORSION AND AIST TORSION THEORY Background The design of a crane runway girder has not been an easy task for most structural engineers. Many difficult issues must be addressed if these members

### A *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G - ( - ) +"' ( + -"( (' (& -+" % '('%"' +"-2 ( -!"',- % )% -.C>K:GH>IN D; AF69>HH>6,-+

The primary objective is to determine whether the structural efficiency of plates can be improved with variable thickness The large displacement analysis of steel plate with variable thickness at direction

### Finite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix)

Finite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix) Nikhil J. Chaudhari 1 Post Graduate Student Department of Mechanical Engineering Veermata Jijabai Technological Institute

### Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths

Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 21-24, 2017 Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal

### five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

### five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

### Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

### Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel

Influence of the filament winding process variables on the mechanical behavior of a composite pressure vessel G. Vargas 1 & A. Miravete 2 1 Universidad Pontificia Bolivariana, Facultad de Ingeniería Mecánica,

### A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmu-ro, Goesan-gun, South Korea.

### Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background

Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,

### A Suggested Analytical Solution for Vibration of Honeycombs Sandwich Combined Plate Structure

International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:16 No:04 9 A Suggested Analytical Solution for Vibration of Honeycombs Sandwich Combined Plate Structure Muhsin J. Jweeg College

### Chapter 3 LAMINATED MODEL DERIVATION

17 Chapter 3 LAMINATED MODEL DERIVATION 3.1 Fundamental Poisson Equation The simplest version of the frictionless laminated model was originally introduced in 1961 by Salamon, and more recently explored

### EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES OF WOOD OR PLYWOOD CONSIDERED AS ORTHOTROPIC MATERIALS Information Revied and Reaffirmed March 1956 No. 1510 EFFECT OF ELLIPTIC

### 7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

### SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 3, 79-85 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical University

### Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model

### Numerical Stability Analysis of Composite Plates Thermally Stiffened by Finite Element Method

Proceedings of COBE 005 Copyright 005 by ABC 8th International Congress of echanical Engineering ovember 6-, 005, Ouro Preto, G umerical Stability Analysis of Composite Plates hermally Stiffened by Finite

### The stiffness tailoring of megawatt wind turbine

IOP Conference Series: Materials Science and Engineering OPEN ACCESS The stiffness tailoring of megawatt wind turbine To cite this article: Z M Li et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 052008

### SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

### Machine Direction Strength Theory of Corrugated Fiberboard

Thomas J. Urbanik 1 Machine Direction Strength Theory of Corrugated Fiberboard REFERENCE: Urbanik.T.J., Machine Direction Strength Theory of Corrugated Fiberboard, Journal of Composites Technology & Research,

### Dispersion relation for transverse waves in a linear chain of particles

Dispersion relation for transverse waves in a linear chain of particles V. I. Repchenkov* It is difficult to overestimate the importance that have for the development of science the simplest physical and

### Finite Element Analysis of Dynamic Properties of Thermally Optimal Two-phase Composite Structure

Vibrations in Physical Systems Vol.26 (2014) Finite Element Analysis of Dynamic Properties of Thermally Optimal Two-phase Composite Structure Abstract Maria NIENARTOWICZ Institute of Applied Mechanics,

### Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition

Fluid Structure Interaction and Moving Boundary Problems IV 63 Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition K.-H. Jeong, G.-M. Lee, T.-W. Kim & J.-I.

### Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method

Analysis of asymmetric radial deformation in pipe with local wall thinning under internal pressure using strain energy method V.M.F. Nascimento Departameto de ngenharia Mecânica TM, UFF, Rio de Janeiro

### FREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON PASTERNAK FOUNDATION USING COUPLED DISPLACEMENT FIELD METHOD

A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G VOL. LXIV 17 Number 3 DOI: 1.1515/meceng-17- Key words: free vibrations, Coupled Displacement Field method, uniform Timoshenko beam, Pasternak

### FREE VIBRATIONS OF UNIFORM TIMOSHENKO BEAMS ON PASTERNAK FOUNDATION USING COUPLED DISPLACEMENT FIELD METHOD

A R C H I V E O F M E C H A N I C A L E N G I N E E R I N G VOL. LXIV 17 Number 3 DOI: 1.1515/meceng-17- Key words: free vibrations, Coupled Displacement Field method, uniform Timoshenko beam, Pasternak

### Stability of Simply Supported Square Plate with Concentric Cutout

International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Stability of Simply Supported Square Plate with Concentric Cutout Jayashankarbabu B. S. 1, Dr. Karisiddappa 1 (Civil Engineering

### QUESTION BANK Composite Materials

QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

### 1 Bending of beams Mindlin theory

1 BENDNG OF BEAMS MNDLN THEORY 1 1 Bending of beams Mindlin theory Cross-section kinematics assumptions Distributed load acts in the xz plane, which is also a plane of symmetry of a body Ω v(x = 0 m Vertical

### Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

### CIVL4332 L1 Introduction to Finite Element Method

CIVL L Introduction to Finite Element Method CIVL L Introduction to Finite Element Method by Joe Gattas, Faris Albermani Introduction The FEM is a numerical technique for solving physical problems such

### LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS

XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds

### Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA What programs are in PROMAL? Master Menu The master menu screen with five separate applications from

### Piezoelectric Bimorph Response with Imperfect Bonding Conditions

Copyright c 28 ICCES ICCES, vol.6, no.3, pp.5-56 Piezoelectric Bimorph Response with Imperfect Bonding Conditions Milazzo A., Alaimo A. and Benedetti I. Summary The effect of the finite stiffness bonding

### FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR THIN PLATES EMBEDDED WITH SHAPE MEMORY ALLOY FIBERS

Journal of Thermal Stresses, 33: 79 96, 2010 Copyright Taylor & Francis Group, LLC ISSN: 0149-5739 print/1521-074x online DOI: 10.1080/01495730903409235 FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR

### Finite element modelling of structural mechanics problems

1 Finite element modelling of structural mechanics problems Kjell Magne Mathisen Department of Structural Engineering Norwegian University of Science and Technology Lecture 10: Geilo Winter School - January,

### Flexure of Thick Cantilever Beam using Third Order Shear Deformation Theory

International Journal of Engineering Research and Development e-issn: 78-67X, p-issn: 78-8X, www.ijerd.com Volume 6, Issue 1 (April 13), PP. 9-14 Fleure of Thick Cantilever Beam using Third Order Shear

### Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

An alternative boundary element formulation for plate bending analysis J.B. Paiva, L.O. Neto Structures Department, Sao Carlos Civil Engineering School, f, BrazzY Abstract This work presents an alternative

### MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

### Flexure: Behavior and Nominal Strength of Beam Sections

4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

### Understand basic stress-strain response of engineering materials.

Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities

OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

### Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

### BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6-13-1, Ohsawa, Mitaka,

### Symmetric Bending of Beams

Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

### . D CR Nomenclature D 1

. D CR Nomenclature D 1 Appendix D: CR NOMENCLATURE D 2 The notation used by different investigators working in CR formulations has not coalesced, since the topic is in flux. This Appendix identifies the

### COROTATIONAL NONLINEAR DYNAMIC ANALYSIS OF LAMINATED COMPOSITE SHELL STRUCTURES

Copyright c 009 by ABCM January 04-08, 010, Foz do Iguaçu, PR, Brazil COROTATIONAL NONLINEAR DYNAMIC ANALYSIS OF LAMINATED COMPOSITE SHELL STRUCTURES Felipe Schaedler de Almeida, schaedleralmeida@gmail.com

### BUTT SPLICE HINGING. KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated

BUTT SPLICE HINGING BY KEVIN COLE, PhD Senior Web Handling Development Engineer Optimation Technology Incorporated Introduction Splicing is a process used to join the tail of an expiring roll to the start

### Shear of Thin Walled Beams. Introduction

Introduction Apart from bending, shear is another potential structural failure mode of beams in aircraft For thin-walled beams subjected to shear, beam theory is based on assumptions applicable only to

### An Evaluation and Comparison of Models for Maximum Deflection of Stiffened Plates Using Finite Element Analysis

Marine Technology, Vol. 44, No. 4, October 2007, pp. 212 225 An Evaluation and Comparison of Models for Maximum Deflection of Stiffened Plates Using Finite Element Analysis Lior Banai 1 and Omri Pedatzur

### NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F. A diagram of a honeycomb plate cross-section is shown in Figure 1.

NATURAL FREQUENCIES OF A HONEYCOMB SANDWICH PLATE Revision F By Tom Irvine Email: tomirvine@aol.com August 5, 008 Bending Stiffness of a Honeycomb Sandwich Plate A diagram of a honeycomb plate cross-section

### Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

### GLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE

GLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE Alessandro Spadoni, Massimo Ruzzene School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332 Fabrizio Scarpa

### Determination of the Shear Buckling Load of a Large Polymer Composite I-Section Using Strain and Displacement Sensors

Sensors 2012, 12, 16024-16036; doi:10.3390/s121216024 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Determination of the Shear Buckling Load of a Large Polymer Composite I-Section

### Geometry-dependent MITC method for a 2-node iso-beam element

Structural Engineering and Mechanics, Vol. 9, No. (8) 3-3 Geometry-dependent MITC method for a -node iso-beam element Phill-Seung Lee Samsung Heavy Industries, Seocho, Seoul 37-857, Korea Hyu-Chun Noh

### CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS

CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS By Edmond P. Saliklis 1 and Robert H. Falk ABSTRACT: The weakness of existing relationships correlating off-axis modulus of elasticity