BEAMS AND PLATES ANALYSIS


 Madeline Harrington
 1 years ago
 Views:
Transcription
1 BEAMS AND PLATES ANALYSIS Automotive body structure can be divided into two types: i. Frameworks constructed of beams ii. Panels
2 Classical beam versus typical modern vehicle beam sections Assumptions: 1. The section is symmetric 2. The applied forces are down the axis of symmetry 3. The section will not change shape upon loading 4. The deformation will be in the plane and in the direction of the loads 5. The stresses vary in direct proportion with the strain 6. Failure is defined as yielding of the outermost fiber
3 STRESS ANALYSIS FOR BEAM: BENDING σ = Mz I Where; σ = Direct stress at point of interest M = Bending moment on the section z = vertical distance measured from the neutral axis I = Moment of inertia I = z 2 da section
4 DEFLECTION OF THE BEAM
5 DEFLECTION OF THE BEAM
6 LOCAL DEFORMATION UNDER POINT LOAD Previously, we have assumed that the applied point loads only generate global deformation. In reality, the point load also distorts the beam in the vicinity of the load. This local distortion leads to a reduced beam stiffness and increased local stiffness Source: Donald E Malen Fundamentals of Automobile Body Structure Design, SAE International
7 Now, we consider the system stiffness containing ideal beam stiffness and local stiffness in the calculation: K system = K idealk local K ideal + K local where, t =section thickness h = section height b= section width E = Young s modulus K ideal = based on the beam types (slide no 4 & 5 ) K local = 8Et3 (h + b) b 2 (4h + b)
8 STRESS ANALYSIS FOR BEAM: TORSION Source: Donald E Malen Fundamentals of Automobile Body Structure Design, SAE International For closed section; θ = τ = T 2At TL GJ effective i) Constant thickness J effective = 4A2 t S ii) Varying thickness J effective = 4A2 * Refer pages 56 & 57 for the derivation s i it i θ = angle of rotation T = applied torque L = beam length τ = shear stress G = shera modulus A = area enclosed by the section t = thickness J effective = thinwall torsion constant S = section parameter
9 STRESS ANALYSIS FOR BEAM: TORSION Source: Donald E Malen Fundamentals of Automobile Body Structure Design, SAE International For open section; θ = τ = Tt J effective TL GJ effective i) Constant thickness J effective = 1 3 t3 S ii) Varying thickness J effective = 1 3 i s it i θ = angle of rotation T = applied torque L = beam length τ = shear stress G = shera modulus A = area enclosed by the section t = thickness J effective = thinwall torsion constant S = section parameter
10 STRESS ANALYSIS FOR PLATE: BUCKLING Most of the failure modes are caused by plate buckling of section elements. Thus, it is essential to estimate critical plate buckling stress and effective load. Eπ 2 σ critical = k 12(1 v 2 )( b t )2 k = plate buckling coefficient E = Young s modulus v = Poisson s ratio b = plate width t =plate thickness Note: ss = simply supported = no deflection & rotation allowed fixed = no deflection & no rotation free = deflection and rotation allowed Source: Donald E Malen Fundamentals of Automobile Body Structure Design, SAE International
11 For the effective plate, P effective = σ s wt w = σ critical b 2 σ s where, P effective = load on plate σ s = maximum stress w = effective width t = thickness of plate b = actual width of plate STRESS ANALYSIS FOR PLATE: BUCKLING load load Buckled plate Buckled beam Ultimate load Critical load Critical load deflection deflection
12 How to inhibit buckling? 1. reducing plate width by adding a bead 2. reducing plate width by chamfering corners 3. reducing plate width by adding corners 4. reducing plate width using beadsshear case 5. changing boundary condition with a flange curl 6. plate with flanged hole 7. plate with curled element Source: Donald E Malen Fundamentals of Automobile Body Structure Design, SAE International
13 LOAD ANALYSIS
14
15 DESIGN FACTORS
16 VERTICAL LOADS
17 VERTICAL LOADS
18 VERTICAL ASYMMETRIC LOADS
19
20
21
22
23
24
25
26 SUSPENSION BODY LOAD INTERACTIONS
27 SUSPENSION BODY LOAD INTERACTIONS Source: Donald E Malen Fundamentals of Automobile Body Structure Design, SAE International
28 B. FLOW DOWN OF REQUIREMENTS FROM VEHICLELEVEL FUNCTIONS There are four steps listed by D E Malen (2011): 1. Identify the vehicle function e.g. minimizing injury during front impact 2. Define function strategy absorb energy (< 20g) without deformation 3. Analyse the role of the body structure to meet the strategy share the loads 4. Flow down the overall body structure requirements to the structural subsystem and element requirements absorb 80kNm of energy (body system) crush load 160 kn at front compartment (subsystem) crush load 80 kn at mid rail beam (element)
29 B. FLOW DOWN OF REQUIREMENTS FROM VEHICLELEVEL FUNCTIONS Source: Donald E Malen Fundamentals of Automobile Body Structure Design, SAE International
PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.
BENDING STRESS The effect of a bending moment applied to a crosssection of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally
More information2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C
CE1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano
More informationExternal Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is
Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the
More informationAdvanced Structural Analysis EGF Section Properties and Bending
Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear
More informationThis procedure covers the determination of the moment of inertia about the neutral axis.
327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the Tbeam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)
More informationCHAPTER 6: Shearing Stresses in Beams
(130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.
More informationPresented By: EAS 6939 Aerospace Structural Composites
A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.
GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 Ns/m. To make the system
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More informationChapter 3. Load and Stress Analysis. Lecture Slides
Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.
More informationTORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)
Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thinwall open sections is not included in most commonly used frame analysis programs. Almost
More information: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE
COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses
More informationUnit 18 Other Issues In Buckling/Structural Instability
Unit 18 Other Issues In Buckling/Structural Instability Readings: Rivello Timoshenko Jones 14.3, 14.5, 14.6, 14.7 (read these at least, others at your leisure ) Ch. 15, Ch. 16 Theory of Elastic Stability
More informationUNITI STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2
UNITI STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm
More informationtwenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete
More informationME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam crosssec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.
ME 323  Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM12:20PM Ghosh 2:303:20PM Gonzalez 12:301:20PM Zhao 4:305:20PM M (x) y 20 kip ft 0.2
More informationDynamic (Vibrational) and Static Structural Analysis of Ladder Frame
Dynamic (Vibrational) and Static Structural Analysis of Ladder Frame Ketan Gajanan Nalawade 1, Ashish Sabu 2, Baskar P 3 School of Mechanical and building science, VIT University, Vellore632014, Tamil
More informationCOURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5
COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses
More informationPES Institute of Technology
PES Institute of Technology Bangalore south campus, Bangalore5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject
More informationSTRUCTURAL SURFACES & FLOOR GRILLAGES
STRUCTURAL SURFACES & FLOOR GRILLAGES INTRODUCTION Integral car bodies are 3D structures largely composed of approximately subassemblies SSS Planar structural subassemblies can be grouped into two categories
More informationPERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR  VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK
PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR  VALLAM  613 403  THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationAccordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation CC3.1.
C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateraltorsional buckling and distortional
More informationDownloaded from Downloaded from / 1
PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their
More informationMechanics of Solids notes
Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any crosssection of a beam may consists of a resultant normal force,
More informationChapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd
Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed
More informationWorkshop 8. Lateral Buckling
Workshop 8 Lateral Buckling cross section A transversely loaded member that is bent about its major axis may buckle sideways if its compression flange is not laterally supported. The reason buckling occurs
More informationUNIT I Thin plate theory, Structural Instability:
UNIT I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and inplane loading Thin plates having
More informationME C85/CE C30 Fall, Introduction to Solid Mechanics ME C85/CE C30. Final Exam. Fall, 2013
Introduction to Solid Mechanics ME C85/CE C30 Fall, 2013 1. Leave an empty seat between you and the person (people) next to you. Unfortunately, there have been reports of cheating on the midterms, so we
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationChapter 6: CrossSectional Properties of Structural Members
Chapter 6: CrossSectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross
More informationQUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A
DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State
More informationChapter Objectives. Design a beam to resist both bendingand shear loads
Chapter Objectives Design a beam to resist both bendingand shear loads A Bridge Deck under Bending Action Castellated Beams Posttensioned Concrete Beam Lateral Distortion of a Beam Due to Lateral Load
More informationImpact. m k. Natural Period of Vibration τ. Static load Gray area Impact load t > 3 τ. Absorbing energy. Carrying loads
Impact also called shock, sudden or impulsive loading driving a nail with a hammer, automobile collisions. dashpot a) Rapidly moving vehicles crossing a bridge To distinguish: b) Suddenly applied c) Direct
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
NSTTUTE OF AERONAUTCAL ENGNEERNG (Autonomous) Dundigal, Hyderabad  00 043 AERONAUTCAL ENGNEERNG TUTORAL QUESTON BANK Course Name : ARCRAFT VEHCLES STRUCTURES Course Code : A2109 Class : B. Tech Semester
More informationMAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.
It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the
More informationME325 EXAM I (Sample)
ME35 EXAM I (Sample) NAME: NOTE: COSED BOOK, COSED NOTES. ONY A SINGE 8.5x" ORMUA SHEET IS AOWED. ADDITIONA INORMATION IS AVAIABE ON THE AST PAGE O THIS EXAM. DO YOUR WORK ON THE EXAM ONY (NO SCRATCH PAPER
More informationCLASSICAL TORSION AND AIST TORSION THEORY
CLASSICAL TORSION AND AIST TORSION THEORY Background The design of a crane runway girder has not been an easy task for most structural engineers. Many difficult issues must be addressed if these members
More informationIntroduction to Structural Member Properties
Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a crosssection (measured in inches 4 or in 4 ) that gives important information
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion
EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Crosssection shape Material Shaft design Noncircular
More informationOptimization of ThinWalled Beams Subjected to Bending in Respect of Local Stability and Strenght
Mechanics and Mechanical Engineering Vol. 11, No 1 (2007) 37 48 c Technical University of Lodz Optimization of ThinWalled Beams Subjected to Bending in Respect of Local Stability and Strenght Tadeusz
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationDesign of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar
5.4 Beams As stated previousl, the effect of local buckling should invariabl be taken into account in thin walled members, using methods described alread. Laterall stable beams are beams, which do not
More informationQUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS
QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1 STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,
More informationUsing the finite element method of structural analysis, determine displacements at nodes 1 and 2.
Question 1 A pinjointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical
More informationUnit 15 Shearing and Torsion (and Bending) of Shell Beams
Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering
More informationA Study on the Tube of Integral Propeller Shaft for the Rearwheel Drive Automobile Using Carbon Composite Fiber
A Study on the Tube of Integral Propeller Shaft for the Rearwheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmuro, Goesangun, South Korea.
More informationSabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in
Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are
More informationInfluence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes
October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:
More informationThe Local Web Buckling Strength of Coped Steel IBeam. ABSTRACT : When a beam flange is coped to allow clearance at the
The Local Web Buckling Strength of Coped Steel IBeam Michael C. H. Yam 1 Member, ASCE Angus C. C. Lam Associate Member, ASCE, V. P. IU and J. J. R. Cheng 3 Members, ASCE ABSTRACT : When a beam flange
More informationMechanical Design in Optical Engineering
Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded
More informationConsider an elastic spring as shown in the Fig.2.4. When the spring is slowly
.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original
More informationD : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.
D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having
More informationStress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 3 ME 276 Spring 20172018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress
More informationNomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam
omenclature a b c f h Length of the panel between the supports Width of the panel between the supports/ width of the beam Sandwich beam/ panel core thickness Thickness of the panel face sheet Sandwich
More information2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft
Code No: 07A62102 R07 Set No. 2 III B.Tech II Semester Regular/Supplementary Examinations,May 2010 Aerospace Vehicle Structures II Aeronautical Engineering Time: 3 hours Max Marks: 80 Answer any FIVE
More informationSoftware Verification
PROGRAM NAME: SAFE 014 EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 161 depicts a plot of the uncracked and cracked conditions, 1 State 1, and, State,
More informationUNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude
More informationReview Lecture. AE1108II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas
Review Lecture AE1108II: Aerospace Mechanics of Materials Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Aerospace Structures & Materials Faculty of Aerospace Engineering Analysis of an Engineering System
More information202 Index. failure, 26 field equation, 122 force, 1
Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic
More informationChapter 3. Inertia. Force. Free Body Diagram. Net Force. Mass. quantity of matter composing a body represented by m. units are kg
Chapter 3 Mass quantity of matter composing a body represented by m Kinetic Concepts for Analyzing Human Motion units are kg Inertia tendency to resist change in state of motion proportional to mass has
More informationDEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).
DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)
More informationFIXED BEAMS IN BENDING
FIXED BEAMS IN BENDING INTRODUCTION Fixed or builtin beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported
More informationFinite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module  01 Lecture  13
Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module  01 Lecture  13 In the last class, we have seen how
More informationHow materials work. Compression Tension Bending Torsion
Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons () B. Neutral charge, i.e., # electrons = #
More informationME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS
ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)
More information7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses
7 TRANSVERSE SHEAR Before we develop a relationship that describes the shearstress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within
More informationMechanics of Materials Primer
Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus
More informationCE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR
CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 20142015 UNIT  1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART A 1. Define tensile stress and tensile strain. The stress induced
More informationAn Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners
GRD Journals Global Research and Development Journal for Engineering Volume 2 Issue 6 May 2017 ISSN: 24555703 An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners
More informationStrength of Materials II (Mechanics of Materials) (SI Units) Dr. Ashraf Alfeehan
Strength of Materials II (Mechanics of Materials) (SI Units) Dr. Ashraf Alfeehan 20172018 Mechanics of Material II Text Books Mechanics of Materials, 10th edition (SI version), by: R. C. Hibbeler, 2017
More informationSTRUCTURAL ANALYSIS OF THE LIFTING DEVICE DETECTOR SUPPORTS FOR THE LHCb VERTEX LOCATOR (VELO)
National Institute for Nuclear Physics and High Energy Physics Kruislaan 409 1098 SJ Amsterdam The Netherlands NIKHEF Reference no.: MTVELO 042 EDMS no: 466608 OF THE LIFTING DEVICE DETECTOR SUPPORTS
More informationUNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded
More informationNATIONAL PROGRAM ON TECHNOLOGY ENHANCED LEARNING (NPTEL) IIT MADRAS Offshore structures under special environmental loads including fireresistance
Week Eight: Advanced structural analyses Tutorial Eight Part A: Objective questions (5 marks) 1. theorem is used to derive deflection of curved beams with small initial curvature (Castigliano's theorem)
More informationBeams III  Shear Stress: 1
Beams III  Shear Stress: 1 Internal Shear Force Shear Stress Formula for Beams The First Area Moment, Q Shear Stresses in Beam Flanges Shear Distribution on an I Beam 1 2 In this stack we will derive
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationHigh Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?
High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the
More informationModule 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur
Module 11 Design of Joints for Special Loading Version ME, IIT Kharagpur Lesson Design of Eccentrically Loaded Welded Joints Version ME, IIT Kharagpur Instructional Objectives: At the end of this lesson,
More information3 Hours/100 Marks Seat No.
*17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full
More informationPhysics 8 Monday, November 23, 2015
Physics 8 Monday, November 23, 2015 Handing out HW11, due Friday, December 4. One or two more beamrelated examples, then we ll move on to oscillations ( periodic motion ). This week s reading is Mazur
More information= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200
Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength
More informationSTRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS
1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The
More informationOutline. Organization. Stresses in Beams
Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of
More information2012 MECHANICS OF SOLIDS
R10 SET  1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~
More information7 Vlasov torsion theory
7 Vlasov torsion theory P.C.J. Hoogenboom, October 006 Restrained Warping The typical torsion stresses according to De Saint Venant only occur if warping can take place freely (Fig. 1). In engineering
More informationShafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3
M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We
More informationSERVICEABILITY OF BEAMS AND ONEWAY SLABS
CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONEWAY SLABS A. J. Clark School of Engineering Department of Civil
More informationAircraft Structures Structural & Loading Discontinuities
Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Structural & Loading Discontinuities Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltascm3.ulg.ac.be/
More informationThe aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for
The Cornu Method Nikki Truss 09369481 Abstract: The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for Perspex using the Cornu Method. A value of was found for Young
More informationVirtual Work & Energy Methods. External EnergyWork Transformation
External EnergyWork Transformation Virtual Work Many structural problems are statically determinate (support reactions & internal forces can be found by simple statics) Other methods are required when
More informationDESIGN OF BEAMS AND SHAFTS
DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1 asis for
More informationMaterials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie
More information2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?
IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at
More informationSoftware Verification
EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 161 depicts a plot of the uncracked and cracked conditions, Ψ 1 State 1, and, Ψ State, for a reinforced
More informationStress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy
Stress Analysis Lecture 4 ME 76 Spring 017018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a
More informationProperties of Sections
ARCH 314 Structures I Test Primer Questions Dr.Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body
More informationExample 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.
162 3. The linear 3D elasticity mathematical model The 3D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides
More informationN = Shear stress / Shear strain
UNIT  I 1. What is meant by factor of safety? [A/M15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M15]
More information