Large-Scale Slope Erosion Testing (ASTM D 6459) East Coast Erosion Blanket ECC-2B, Double Net Coconut Fiber Blanket over Sandy Loam

Size: px
Start display at page:

Download "Large-Scale Slope Erosion Testing (ASTM D 6459) East Coast Erosion Blanket ECC-2B, Double Net Coconut Fiber Blanket over Sandy Loam"

Transcription

1 Large-Scale Slope Erosion Testing (ASTM D 6459) of East Coast Erosion Blanket ECC-2B, Double Net Coconut Fiber Blanket over Sandy Loam February 2010 Submitted to: AASHTO/NTPEP 444 North Capitol Street, NW, Suite 249 Washington, D.C Attn: Keith Platte, NTPEP kplatte@aashto.org Submitted by: TRI/Environmental, Inc Bee Caves Road Austin, TX C. Joel Sprague Project Manager

2 February 18, 2010 Mr. Keith Platte AASHTO/NTPEP 444 North Capitol Street, NW, Suite 249 Washington, D.C Subject: Large-scale Slope Testing of ECC-2B, Double Net Coconut Blanket, over Sandy Loam Dear Mr. Platte: This letter report presents the results for large-scale slope erosion tests performed on ECC-2B, Double Net Coconut Blanket, rolled erosion control product (RECP), over sandy loam. Included are data developed for target rainfall intensities from 2 to 6 in/hr (5 to 15 cm/hr). All testing work was performed in general accordance with the ASTM D 6459, Standard Test Method for Determination of Rolled Erosion Control Product (RECP) Performance in Protecting Hillslopes from Rainfall- Induced Erosion. Generated results were used to develop the following general cover factor (C- Factor) for the tested material: C-Factor ECC-2B & 1.75 pins/sy = for cumulative R-Factor < 231; Eqn: C = R TRI is pleased to present this final report. Please feel free to call if we can answer any questions or provide any additional information. Sincerely, C. Joel Sprague, P.E. Senior Engineer Geosynthetics Services Division Cc: Sam Allen, Jarrett Nelson - TRI

3 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, SLOPE TESTING REPORT ECC-2B, Double Net Coconut Blanket, over Sandy Loam TESTING EQUIPMENT AND PROCEDURES Overview of Test and Apparatus TRI/Environmental, Inc.'s (TRI's) large-scale slope erosion testing facility is located at the Denver Downs Research Farm in Anderson, SC. Testing oversight is provided by C. Joel Sprague, P.E. The large-scale testing reported herein was performed in accordance with ASTM D 6459, on 3:1 slopes using loamy soil test plots measuring 40 ft long x 8 ft wide. The simulated rainfall was produced by ten rain trees arranged around the perimeter of each test slope. Each rain tree has four sprinkler heads atop a 15 ft riser pipe. The rainfall system has been calibrated prior to testing to determine the number of sprinkler heads and associated pressure settings necessary to achieve target rainfall intensities and drop sizes. The calibrated drop size distribution in this test had a 5 percent higher distribution of drops smaller than 1mm than is defined in the standard. This variation as shown in Appendix C is believed to have a negligible effect on the test result. The target rainfall intensities are 2, 4, and 6 in/hr and are applied in sequence for 20 minutes each. Three replicate test slopes covered by the same rolled erosion control product (RECP) submitted were tested. The erosion resistance provided by the product tested is obtained by comparing the protected slope results to control (bare soil) results. Tables and graphs of rainfall versus soil loss are generated from the accumulated data. Rolled Erosion Control Product (RECP) The following information and index properties were determined from the supplied products. Table 1. Tested Product Information & Index Properties Product Information and Index Property / Test Units Sampled Product Product Identification - ECC-2B Manufacturing Plant Location - Bernville, PA Lot number of sample B Fiber - Coconut Netting Openings in 0.5 x 1.0 (approx) Stitching Spacing in 1.5 (approx) Tensile Strength MD x XD (ASTM D 6818) lb/in 19.2 x 12.3 Tensile Elongation MD x XD (ASTM D 6818) % 11.6 x 14.5 Thickness (ASTM D 6525) mils 326 Light Penetration (ASTM D 6567) % cover 88.3 Water Absorption (ASTM D 1117 & ECTC-TASC 00197) % Wt Change 232 Mass / Unit Area (ASTM D 6475) oz/sy 11.02

4 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, Test Soil The test soil used in the test plots had the following characteristics. Table 2. TRI-Loam Characteristics Soil Characteristic Test Method Value % Gravel 0 % Sand 45 ASTM D 422 % Silt 35 % Clay 20 Liquid Limit, % 41 ASTM D 4318 Plasticity Index, % 8 Soil Classification USDA Sandy Loam Soil Classification USCS Sandy silty clay (ML-CL) Preparation of the Test Slopes The test slopes undergo a standard preparation procedure prior to each slope test. First, any rills or depressions resulting from previous testing are filled in with test soil and subject to heavy compaction. The entire test plot is then tilled to a depth not less than four inches. The test slope is then raked to create a slope that is smooth both side-to-side and top-to-bottom. Finally, a steel drum roller is rolled down-and-up the slope 3 times proceeding from one side of the plot to the other. The submitted erosion control product is then installed as directed by the client. Installation of Erosion Control Product on Test Slopes As noted, the submitted erosion control product was installed as directed by the client. For the tests reported herein, the RECP was anchored with 1.75 pins per square yard. Specific Test Procedure Immediately prior to testing, rain gauges are placed at the quarter points (i.e. 10, 20, 30 ft) on the slope. The slope is then exposed to sequential 20-minute rainfalls having target intensities of 2, 4, and 6 inches per hour. All runoff is collected during the testing. Additionally, periodic sediment concentration grab samples are taken and runoff rate measurements are made. Between rainfall intensities, the rainfall is stopped and rainfall depth is read in the three rain gauges, valves are adjusted to facilitate the subsequent rainfall intensity, and empty collection vessels are positioned to collect subsequent runoff. After allowing for sediments to settle, water is decanted from the collected runoff. The remaining solids are used to determine bulk soil loss. Bulk soil loss is measured by drying all collected sediments.

5 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, Figure 2. Typical Sampling Figure 1. Rainfall Testing Facility (set up for a control run) Figure 3. Typical Control Result Pictures of slopes prepared for testing are shown in Figure 4. Figure 4. Typical Prepared Soil Slope & RECP Installation Pictures of the eroded slopes are shown in Figures 5 thru 7.

6 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, Figure 5a. Test Slope #1 6 minutes into the 2 in/hr Event Figure 5b. Test Slope #1 At end of 4 in/hr Event Figure 5c. Test Slope #1 Nearing End of 6 in/hr Event Figure 5d. Test Slope #1 After 6 in/hr Event - RECP Removed Figure 6a. Test Slope #2 Nearing End of 2 in/hr Event Figure 6b. Test Slope #2 11 minutes into the 4 in/hr Event

7 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, Figure 6c. Test Slope #2 During 6 in/hr Event Figure 6d. Test Slope #2 After 6 in/hr Event - RECP Removed Figure 7a. Test Slope #3 Early in the 2 in/hr Event Figure 7b. Test Slope #3 11 minutes into the 4 in/hr Event

8 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, Figure 7c. Test Slope #3 After 6 in/hr Event Figure 7d. Test Slope #3 After 6 in/hr Event RECP Removed TEST RESULTS Total soil loss and the associated actual rainfall depth measured during the testing are the principle data used to determine the performance of the product tested. This data is entered into a spreadsheet that transforms the rainfall depth into an R-Factor and the total soil loss into soil loss per acre as typically used in the Revised Universal Soil Loss Equation. In accordance with the test procedure, a test is stopped in the event of catastrophic soil loss, as determined by the lab. In such a case, an assumed end-of-test worst-case soil loss based on the control runs is used in lieu of the soil loss just prior to failure. The tests reported herein experienced no catastrophic slope failure. In all cases, the soil loss and associated rainfall data for both protected and control conditions are used to develop a normalized cumulative graph of R-Factor versus C-Factor (R factor = total kinetic energy of the storm (E) times its maximum 30-minute Intensity (I)). The normalized cumulative R-Factor calculated for the target test events: 2 in/hr for 20 minutes + 4 in/hr for 20 minutes + 6 in/hr for 20 minutes, is R = 231. This normalized result facilitates product-to-product comparison of test results at a common point of the storm event. Graphs of R-Factor versus C-Factor for the protected condition and Soil Loss versus C-Factor for the control condition are shown in Figures 8 and 9, respectively. Figure 8 includes the best regression line fit to the test data to facilitate the determination of the C-factor. Linear (R 2 =0.77), power (R 2 =0.93), and exponential (R 2 =0.73) fits were evaluated. Slope # & Product Test # (run # - target intensity) Table 3. Summary Data Table Protected Slopes Cumm. Soil Runoff Cumm. Soil Loss Loss (gallons) R-Factor (lbs/plot/event) (Tons/Acre) Control Soil Loss Cumm. Intensity at Cumm. R-Factor C- (in/hr) (Tons/Acre) Factor ECC B ECC B ECC B

9 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, Using the test procedure and data evaluation technique described herein, the C-Factor shown in Table 4 was determined using the following equation: C = m C / 2.78 K where m C = slope of the protected soil loss regression line; and K = the soil erosivity determined from bare soil testing = m K / LSCP Where m K = slope of the bare soil loss regression line; LS = topographic factor = 2.78 for 8 x 40 ft slope; C = cover factor = 1.0 for bare soil; P = management practice factor = 1.0 for bare soil. Table 4. Overall C-Factor Product C-Factor Calculation ECC-2B & 1.75 pins / sy C = x C-Factor vs. R-Factor (ECC-2B on TRI-Loam; 3:1 Slope; Anchorage: 1.75 pins / sy) in/hr: R = 231 Using all 2, 4, and 6 in/hr C-Factors from all slopes. C = 4E-06x y = 4E-06x R 2 = C-Factor R-Factor Figure 8. R-Factor vs. C-Factor Tested Product

10 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, Soil Loss vs R-Factor (TRI-Loam; 3:1 Slope) C= m / (2.78*K) K = m / (C*2.78) K = / (2.78*1.0) = y = x R 2 = Soil Loss (T/A) The cummulative R- Factor calculated for the following events: 2 in/hr for 20 min + 4 in/hr for 20 min + 6 in/hr for 20 min, is R = 231and the associated soil loss is 57.9 tons/acre R - Factor Figure 8. R-Factor vs. Soil Loss Control Tests

11 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, 2010 Appendix APPENDIX A RECORDED DATA Test Record Sheets Sediment Concentration Data Runoff Data Soil Moisture Content Soil Loss Tables

12 Slope #: 1 DDRF Rainfall Testing SLOPE #1 Target Rain: 2 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: 10:00 AM End Rain: 10:20 AM 1 10:03 Sampling interval: 0:03 End Runoff: 10:20 AM 2 10:06 Rain Time (min): Test Time (min): :09 Product: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netti 4 10:12 Lot #: Anchors: 6-inch Anchorage: 1.75 / sy 5 10:15 TOP OF SLOPE 6 10:18 w c1 = 20.8% (circle "x" for open valves) Set valves to 9 psi. 7 d = 20 mm x X x x 8 i = 2.36 in/hr P = 9 psi 9 A 10 x 11 B P = 9 psi X 12 x x 13 X P = 9 psi C x 14 x x 15 x D P = 9 psi X 12 x x 13 X P = 9 psi E x 14 x x 15 x F P = 9 psi X x x Runoff Rate Measurements Time to Collect 1 gal, x P = 9 psi G x # Time sec X x x H P = 9 psi x 2 x X 3 x P = 9 psi I x 4 X x 5 x J P = 9 psi x 6 X 7 X 8 d = 19 mm 9 i = 2.24 in/hr Temp. 60 deg 10 w c3 = 17.4% Hum. 83 % 11 d = 17 mm 12 i = 2.01 in/hr Average Depth: mm 13 w c2 = 17.2% Avg Rainfall Intensity: 2.20 in/hr 14 Notes: 0 mph breeze. Approx 1.5 gal collected

13 Slope #: 1 DDRF Rainfall Testing SLOPE #1 Target Rain: 4 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: 10:25 AM End Rain: 10:45 AM 1 10:27 Sampling interval: 0:02 End Runoff: 10:47 AM 2 10:29 Rain Time (min): Test Time (min): :31 Product: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netti 4 10:33 Lot #: Anchors: 6-inch Anchorage: 1.75 / sy 5 10:35 TOP OF SLOPE Set valves to 9 psi. 6 10:37 w c1 = 20.8% (circle "x" for open valves) 7 10:39 d = 37 mm X X x x 8 10:41 i = 4 in/hr P = 9 psi 9 10:43 A 10 10:45 X 11 B P = 9 psi X 12 X x 13 X P = 9 psi C x 14 x X 15 x D P = 9 psi X 12 X x 13 X P = 9 psi E x 14 x X 15 x F P = 9 psi X x x Runoff Rate Measurements Time to Collect 1 x P = 9 psi G x # Time gal, sec X x X H P = 9 psi x x X x P = 9 psi I X X x X J P = 9 psi X X X d = 33 mm i = 3.90 in/hr Temp. 56 deg w c3 = 17.4% Hum. 87 % 11 d = in 12 i = 4.02 in/hr Average Depth: mm 13 w c2 = 17.2% Avg Rainfall Intensity: 4.09 in/hr 14 Notes: 0 mph breeze. Approx 130 gal collected

14 Slope #: 1 DDRF Rainfall Testing SLOPE #1 Target Rain: 6 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: 10:55 AM End Rain: 11:15 AM 1 10:57 Sampling interval: 0:02 End Runoff: 11:20 AM 2 10:59 Rain Time (min): Test Time (min): :01 Product: Lot #: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netti 4 11:03 Anchors: 6-inch Anchorage: 1.75 / sy 5 11:05 TOP OF SLOPE 6 11:07 w c1 = 20.8% (circle "x" for open valves) 7 11:09 d = 54 mm X X X x Set valves to 9 psi. 8 11:11 i = 6.38 in/hr P = 9 psi 9 11:13 A 10 11:15 X 11 B P = 9 psi X 12 X X 13 X P = 9 psi C x 14 X X 15 x D P = 9 psi X 12 X X 13 X P = 9 psi E x 14 X X 15 x F P = 9 psi X x X Runoff Rate Measurements Time to Collect 1 X P = 9 psi G x # Time Gallon, sec X x X H P = 9 psi X x X X P = 9 psi I X X X X J P = 9 psi X X X d = 54 mm i = 6.38 in/hr Temp. 56 deg w c3 = 17.4% Hum. 89 % 11 d = mm 12 i = 5.79 in/hr Average Depth: mm 13 w c2 = 17.2% Avg Rainfall Intensity: 6.18 in/hr 14 Notes: 0 mph breeze. Approx 295gal collected

15 Slope #: 2 DDRF Rainfall Testing SLOPE #2 Target Rain: 2 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: 11:30 AM End Rain: 11:50 AM 1 11:33 Sampling interval: 0:03 End Runoff: 11:50 AM 2 11:36 Rain Time (min): Test Time (min): :39 Product: Lot #: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netting 4 11:42 Anchors: 6-inch Anchorage: 1.75 / sy 5 11:45 TOP OF SLOPE 6 11:48 w c1 = 16.3% (circle "x" for open valves) Set valves to 9 psi. 7 d = 18 mm x x X x 8 i = 2.13 in/hr P = 9 psi 9 A 10 x 11 X P = 9 psi B 12 x x 13 x C P = 9 psi X 14 x x 15 X P = 9 psi D x 12 x x 13 x E P = 9 psi X 14 x x 15 X P = 9 psi F x x x Runoff Rate Measurements Time to Collect 1 x G P = 9 psi x # Time Gallon, sec x X x P = 9 psi H x 2 X x 3 x I P = 9 psi x 4 x X 5 x P = 9 psi J x 6 X 7 X 8 d = 19 mm 9 i = 2.24 in/hr Temp. 58 deg 10 w c2 = 15.8% Hum. 91 % 11 d = mm 12 i = 2.13 in/hr Average Depth: mm 13 w c3 = 17.0% Avg Rainfall Intensity: 2.17 in/hr 14 Notes: 0 mph breeze from the. Approx 1.5 gal collected

16 Slope #: 2 DDRF Rainfall Testing SLOPE #2 Target Rain: 4 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: 11:55 AM End Rain: 12:15 PM 1 11:57 Sampling interval: 0:02 End Runoff: 12:18 PM 2 11:59 Rain Time (min): Test Time (min): :01 Product: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netting 4 12:03 Lot #: Anchors: 6-inch Anchorage: 1.75 / sy 5 12:05 TOP OF SLOPE Set valves to 9 psi. 6 12:07 w c1 = 16.3% X X x x 7 12:09 d = 37 mm P = 9 psi 8 12:11 i = 4.37 in/hr A 9 12:13 X 10 12:15 X P = 9 psi B 11 x X 12 x C P = 9 psi X 13 X x 14 X P = 9 psi D x 15 x X 12 x E P = 9 psi X 13 x x 14 X P = 9 psi F x 15 X x x G P = 9 psi X Runoff Rate Measurements Time to Collect 1 x X # Time Gallon, sec x P = 9 psi H x X x X I P = 9 psi x x X X P = 9 psi J X X X 7 d = mm 8 i = 4.49 in/hr 9 w c2 = 15.8% Temp. 58 deg 10 d = mm Hum. 90 % 11 i = 4.25 in/hr 12 w c3 = 17.0% Average Depth: mm 13 Avg Rainfall Intensity: 4.37 in/hr 14 Notes: 0 mph breeze. Approx. 18 gal collected

17 Slope #: 2 DDRF Rainfall Testing SLOPE #2 Target Rain: 6 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: 12:25 PM End Rain: 12:45 PM 1 12:27 Sampling interval: 0:02 End Runoff: 12:52 PM 2 12:29 Rain Time (min): Test Time (min): :31 Product: Lot #: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netting 4 12:33 Anchors: 6-inch Anchorage: 1.75 / sy 5 12:35 TOP OF SLOPE 6 12:37 w c1 = 16.3% (circle "x" for open valves) Set valves to 9 psi. 7 12:39 d = 56 mm X X X x 8 12:41 i = 6.61 in/hr P = 9 psi 9 12:43 A 10 12:45 X 11 X P = 9 psi B 12 X X 13 x C P = 9 psi X 14 X X 15 X P = 9 psi D x 12 X X 13 x E P = 9 psi X 14 X X 15 X P = 9 psi F x X x Runoff Rate Measurements Time to Collect 1 x G P = 9 psi X # Time Gallon, sec x X X P = 9 psi H X X x X I P = 9 psi X X X X P = 9 psi J X X X d = mm i = 6.02 in/hr Temp. 56 deg w c2 = 15.8% Hum. 90 % 11 d = mm 12 i = 6.26 in/hr Average Depth: mm 13 w c3 = 17.0% Avg Rainfall Intensity: 6.30 in/hr 14 Notes: 0 mph breeze. Approx 270 gal collected

18 Slope #: 3 DDRF Rainfall Testing SLOPE #3 Target Rain: 2 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: 1:00 PM End Rain: 1:20 PM 1 13:03 Sampling interval: 0:03 End Runoff: 1:20 PM 2 13:06 Rain Time (min): Test Time (min): :09 Product: Lot #: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netting 4 13:12 Anchors: 6-inch Anchorage: 1.75 / sy 5 13:15 TOP OF SLOPE 6 13:18 w c1 = 18.3% (circle "x" for open valves) Set valves to 9 psi. 7 d = 17 mm x X x x 8 i = 2.01 in/hr P = 9 psi 9 A 10 x 11 B P = 9 psi X 12 x x 13 X P = 9 psi C x 14 x x 15 x D P = 9 psi X 12 x x 13 X P = 9 psi E x 14 x x 15 x F P = 9 psi X x x Runoff Rate Measurements Time to Collect 1 x P = 9 psi G x # Time Gallon, sec X x x H P = 9 psi x 2 x X 3 x P = 9 psi I x 4 X x 5 x J P = 9 psi x 6 X 7 X 8 d = 21 mm 9 i = 2.48 in/hr Temp. 56 deg 10 w c3 = 15.0% Hum. 87 % 11 d = 17 mm 12 i = 2.01 in/hr Average Depth: in. 13 w c2 = 21.7% Avg Rainfall Intensity: 2.17 in/hr 14 Notes: 0 mph breeze from the. Approx 2 gal collected. 15

19 Slope #: 3 DDRF Rainfall Testing SLOPE #3 Target Rain: 4 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: Sampling 1:25 PM End Rain: 1:45 PM 1 13:27 interval: 0:02 End Runoff: 1:50 PM 2 13:29 Rain Time (min): Test Time (min): :31 Product: Lot #: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netting 4 13:33 Anchors: 6-inch Anchorage: 1.75 / sy 5 13:35 TOP OF SLOPE Set valves to 9 psi. 6 13:37 w c1 = 18.3% (circle "x" for open valves) 7 13:39 d = mm X X x x 8 13:41 i = 3.66 in/hr P = 9 psi 9 13:43 A 10 13:45 X 11 B P = 9 psi X 12 X x 13 X P = 9 psi C x 14 x X 15 x D P = 9 psi X 12 X x 13 X P = 9 psi E x 14 x X 15 x F P = 9 psi X x x Runoff Rate Measurements Time to Collect 1 x P = 9 psi G x # Time Gallon, sec X x X H P = 9 psi x x X x P = 9 psi I X X x X J P = 9 psi X X X d = mm i = 4.49 in/hr Temp. 54 deg w c3 = 15.0% Hum. 90 % 11 d = mm 12 i = 4.02 in/hr Average Depth: mm 13 w c2 = 21.7% Avg Rainfall Intensity: 4.06 in/hr 14 Notes: 0 mph breeze. Approx 100 gal collected. 15

20 Slope #: 3 DDRF Rainfall Testing SLOPE #3 Target Rain: 6 in/hr Sediment Concentration Grab Samples Followed by Runoff Rate Measurements # Time Date: 25-Jan-10 Start Rain: Sampling 2:00 PM End Rain: 2:20 PM 1 14:02 interval: 0:02 End Runoff: 2:25 PM 2 14:04 Rain Time (min): Test Time (min): :06 Product: Lot #: ECC-2B Descr:. Double net coconut blanket w/ Biodegradable Netting 4 14:08 Anchors: 6-inch Anchorage: 1.75 / sy 5 14:10 TOP OF SLOPE 6 14:12 w c1 = 18.3% (circle "x" for open valves) 7 14:14 d = mm X X X x Set valves to 9 psi. 8 14:16 i = 6.26 in/hr P = 9 psi 9 14:18 A 10 14:20 X 11 B P = 9 psi X 12 X X 13 X P = 9 psi C x 14 X X 15 x D P = 9 psi X 12 X X 13 X P = 9 psi E x 14 X X 15 x F P = 9 psi X x X Runoff Rate Measurements Time to Collect 1 X P = 9 psi G x # Time Gallon, sec X x X H P = 9 psi X x X X P = 9 psi I X X X X J P = 9 psi X X X d = mm i = 6.38 in/hr Temp. 54 deg w c3 = 15.0% Hum. 90 % 11 d = mm 12 i = 6.26 in/hr Average Depth: mm 13 w c2 = 21.7% Avg Rainfall Intensity: 6.30 in/hr 14 Notes: 0 mph breeze. Approx 265 gal collected

21 Slope #1 - Sediment Concentration Dry Total Test Sample Total Decanted Dry Bottle Sediment Collected Time, Number Weight, g Weight, g Weight, g Weight, g Weight, Water minutes mg Wt., g in/hr avg Total Collected Volume of Water, l Sediment Concentration, mg/l Runoff Time to Associated Associated Associated Sampling Collect 1 Sediment Solids Loss, Runoff, gal Time gal Conc, mg/l lbs 25-Jan AVG = in/hr avg 0.00 Total Solids Lost: Jan AVG = in/hr avg Total Solids Lost: Jan AVG = Total Solids Lost: 5.70 Solids Loss Prior to Failure, lbs

22 Slope #2 - Sediment Concentration Dry Total Test Sample Total Decanted Dry Bottle Sediment Collected Time, Number Weight, g Weight, g Weight, g Weight, g Weight, Water minutes mg Wt., g in/hr avg Total Collected Volume of Water, l Sediment Concentration, mg/l Runoff Time to Associated Associated Associated Sampling Collect 1 Sediment Solids Loss, Runoff, gal Time gal Conc, mg/l lbs 25-Jan AVG = in/hr avg Total Solids Lost: Jan AVG = in/hr avg Total Solids Lost: Jan AVG = Total Solids Lost: 5.81 Solids Loss Prior to Failure, lbs

23 Slope #3 - Sediment Concentration Dry Total Test Sample Total Decanted Dry Bottle Sediment Collected Time, Number Weight, g Weight, g Weight, g Weight, g Weight, Water minutes mg Wt., g in/hr avg Total Collected Volume of Water, l Sediment Concentration, mg/l Runoff Time to Associated Sediment Associated Solids Loss, Sampling Collect 1 Associated Conc, mg/l lbs Time gal Runoff, gal 25-Jan AVG = in/hr avg Total Solids Lost: Jan AVG = in/hr avg Total Solids Lost: Jan AVG = Total Solids Lost: 3.10 Solids Loss Prior to Failure, lbs

24 25-Jan-10 Slope #1 Sample Number Test Time, minutes Time per Gallon, sec Interval Time, min Total Time, min Collection Mid-Time, min Runoff Rate, gal/min Associated Runoff, gal Cumulative Runoff, gal in/hr end Total Collected Runoff (approx) 4.09 in/hr end Total Collected Runoff (approx) 6.18 in/hr end Total Collected Runoff (approx)

25 25-Jan-10 Slope #2 Sample Number Test Time, minutes Time per Gallon, sec Interval Time, min Total Time, min Collection Mid-Time, min Runoff Rate, gal/min Associated Runoff, gal Cumulative Runoff, gal in/hr end Total Collected Runoff (approx) 4.37 in/hr end Total Collected Runoff (approx) 6.30 in/hr end Total Collected Runoff (approx)

26 25-Jan-10 Slope #3 Sample Number Test Time, minutes Time per Gallon, sec Interval Time, min Total Time, min Collection Mid-Time, min Runoff Rate, gal/min Associated Runoff, gal Cumulative Runoff, gal in/hr end Total Collected Runoff (approx) 4.06 in/hr end Total Collected Runoff (approx) 6.30 in/hr end Total Collected Runoff (approx)

27 WATER CONTENT DETERMINATION Run #: Slope No. SLOPE #1 SLOPE #2 SLOPE #3 Test Date: 25-Jan Jan Jan-10 Avg Moisture Content: 18.46% 16.37% 18.37% Location T-1 T-2 T-3 Wt. Of cup + wet soil, g Wt. Of cup + dry soil, g Wt. Of cup, g Wt. Of dry soil, g Wt. Of water, g Water Content, w% 20.8% 16.3% 18.3% Location M-1 M-2 M-3 Wt. Of cup + wet soil, g Wt. Of cup + dry soil, g Wt. Of cup, g Wt. Of dry soil, g Wt. Of water, g Water Content, w% 17.4% 15.8% 15.0% Location B-1 B-2 B-3 Wt. Of cup + wet soil, g Wt. Of cup + dry soil, g Wt. Of cup, g Wt. Of dry soil, g Wt. Of water, g Water Content, w% 17.2% 17.0% 21.7%

28 SLOPE #1 - Sediment Weights Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - Collected Sediments, gal % dry solids Dry Collected Sediments, lbs Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - Collected Sediments, gal % dry solids Dry Collected Sediments, lbs Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g 334 Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - % dry solids Dry Collected Sediments, lbs Add'l Soil Collected after Major Slumping at Collected Sediments, gal Not Applicable

29 SLOPE #2 - Sediment Weights Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - Collected Sediments, gal % dry solids Dry Collected Sediments, lbs Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - Collected Sediments, gal % dry solids Dry Collected Sediments, lbs Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - % dry solids Dry Collected Sediments, lbs Add'l Soil Collected after Major Slumping at Collected Sediments, gal Not Applicable

30 SLOPE #3 - Sediment Weights Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - Collected Sediments, gal % dry solids Dry Collected Sediments, lbs Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - Collected Sediments, gal % dry solids Dry Collected Sediments, lbs Total Dry Sediments: in/hr Collected Typ. TSS in Wt. Of pan + wet soil, g Decanted Wt. Of pan + dry soil, g Collected Runoff, lb/gal Wt. Of pan, g Wt. Of dry soil, lb Wt. Of water, lb Water Content, w% 0.0 Total Wet Sediments, lb - % dry solids Dry Collected Sediments, lbs Add'l Soil Collected after Major Slumping at Collected Sediments, gal Not Applicable

31 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, 2010 Appendix APPENDIX B TEST SOIL Test Soil Grain Size Distribution Curve Compaction Curves Field Compaction Verification

32 November ASTM D 6459 Target Loam Plasticity (ASTM D 4318) Liquid Limit: 41 Plastic Limit: 33 Plastic Index: 8 Soil classifies as a sandy silty clay (ML-CL) in accordance with ASTM D 2487 Percent Finer DDRF ASTM D 6459 Blended Test Soil Particle Size (mm)

33 November 2009 Proctor Compaction Test 130 Sample No.: DDRF Blended Test Soil 125 Test Method: ASTM D Method A Maximum Dry Density (pcf): Dry Density (pcf) Optimum Moisture Content (%): Moisture Content (%)

34 Compaction Worksheet ASTM D 1556 Calibration Date: 8/16/2009 Sand Used: Pool Filter Sand Volume Measure: Liquid Volume, V m (cm 3 ): 425 Wt. of Sand to Fill Known Volume: Total Wt (g) Pan Wt (g) Net Wt (g) Trial #1 (g) Trial #2 (g) Trial #3 (g) W a (g) Density of Sand, ɣ sand (g/cm 3 ) = W a / V m = 1.53 Wt. of Sand to Fill Cone: Total Wt (g) Cone Wt (g) Net Wt (g) Trial #1 (g) Trial #2 (g) Trial #3 (g) Wt. of Sand in Cone (g): Field Data Date: 11/4/2009 Soil Data: Wt. of Wet Soil + Pan (g) Wt. of Dry Soil + Pan (g) Wt. of Pan (g) 14.5 Wt. of Wet Soil, W' (g) Wt. of Dry Soil (g) Wt. of Water (g) Water Content, w (%) Volume Data: Sand Used: Pool Filter Sand Unit Wt. of Sand, ɣ sand (g/cm 3 ) = 1.53 Wt. of Jug & Cone Before (g) = Wt. of Jug & Cone After (g) = Wt. of Sand Used (g) = Wt. of Sand in Cone (g) = Wt. of Sand in Hole, W (g) = Volume of hole, V h (cm 3 ) = W / ɣ sand = Density Calculation: Wet density, ɣ wet = W' / V h (kn/m 3 ) = 1.83 Wet density, ɣ wet = W' / V h (lb/ft 3 ) = Dry density, ɣ dry = ɣ wet / [1 + w] (kn/m 3 ) = 1.54 Wet density, ɣ wet = W' / V h (lb/ft 3 ) = Max Std. Proctor Dry density (kn/m 3 ) = Opt. Moisture via Std. Proctor density (%) = Compaction as % of Std. Proctor = 92.3%

35 ECC-2B, Double Net Coconut Blanket, over Sandy Loam - Slope Erosion Testing for NTPEP February 18, 2010 Appendix APPENDIX C RAINFALL DATA Raindrop Size Distribution Rainfall Calibration

36 50.00 Raindrop Size Distribution July % of Raindrops by Mass mm mm mm mm mm Rainfall Intensity, in/hr

37 TRI/Environmental, Inc. A Texas Research International Comp DDRF Rainfall Calibration Slope 1: 2 in/hr Rainfall (target) Date: 22-Jul-09 Start Time: 3:00 PM End Time: 3:15 PM Test Time: min. (circle "x" for open valves) TOP OF SLOPE x x X x P = 10 psi A x d = 0.25 in 1 2 d = in X P = 10 psi i = 1.00 in/hr B i = 1.50 in/hr x d = 0.5 in 3 4 d = 0.5 in x x i = 2.00 in/hr C i = 2.00 in/hr P = 10 psi X x d = 0.5 in 5 6 d = 0.5 in x X P = 10 psi i = 2.00 in/hr D i = 2.00 in/hr x x d = 0.45 in 7 8 d = 0.55 in x x i = 1.80 in/hr E i = 2.20 in/hr P = 10 psi x x d = 0.5 in 9 10 d = 0.5 in X X P = 10 psi i = 2.00 in/hr F i = 2.00 in/hr x x d = 0.5 in d = 0.5 in x x i = 2.00 in/hr G i = 2.00 in/hr P = 10 psi x x d = 0.55 in d = 0.5 in X xp = 10 psi i = 2.20 in/hr H i = 2.00 in/hr x X d = 0.5 in d = 0.5 in x x i = 2.00 in/hr I i = 2.00 in/hr P = 10 psi x x d = in d = 0.5 in X xp = 10 psi i = 2.50 in/hr J i = 2.00 in/hr X X d = 0.25 in d = 0.5 in X i = 1.00 in/hr i = 2.00 in/hr Approx. Bottom Catch: 95 gal Average Wind: 0 mph Average Depth: 0.48 in. Average Rainfall Intensity: 1.91 in/hr Christiansen Uniformity Coefficient: 88

38 TRI/Environmental, Inc. A Texas Research International Com DDRF Rainfall Calibration Slope 1: 4 in/hr Rainfall (target) Date: 22-Jul-09 Start Time: 4:00 PM End Time: 4:15 PM Test Time: min. (circle "x" for open valves) TOP OF SLOPE x x X X P = 10 psi A X d = in 1 2 d = 1.00 in X P = 10 psi i = 3.50 in/hr B i = 4.00 in/hr x d = 1.00 in 3 4 d = 1.00 in X x i = 4.00 in/hr C i = 4.00 in/hr P = 10 psi X X d = 1.00 in 5 6 d = 1.00 in x X P = 10 psi i = 4.00 in/hr D i = 4.00 in/hr x x d = 1.25 in 7 8 d = 1.00 in X x i = 5.00 in/hr E i = 4.00 in/hr P = 10 psi X x d = 1.25 in 9 10 d = 1.00 in x x P = 10 psi i = 5.00 in/hr F i = 4.00 in/hr x X d = 1.25 in d = in x X i = 5.00 in/hr G i = 3.50 in/hr P = 10 psi x x d = in d = 1.00 in X x P = 10 psi i = 4.50 in/hr H i = 4.00 in/hr X X d = 0.75 in d = 1.00 in x X i = 3.00 in/hr I i = 4.00 in/hr P = 10 psi X x d = 0.75 in d = in X X P = 10 psi i = 3.00 in/hr J i = 3.50 in/hr X X d = 0.5 in d = in X i = 2.00 in/hr i = 3.50 in/hr Approx. Bottom Catch: 190 gal Average Wind: 0 mph Average Depth: 0.97 in. Average Rainfall Intensity: 3.88 in/hr Christiansen Uniformity Coefficient: 87

39 TRI/Environmental, Inc. A Texas Research International Com DDRF Rainfall Calibration Slope 1: 6 in/hr Rainfall (target) Date: 22-Jul-09 Start Time: 5:00 PM End Time: 5:15 PM Test Time: min. (circle "x" for open valves) TOP OF SLOPE x X X X P = 10 psi A X d = 1.25 in 1 2 d = 1.4 in X P = 10 psi i = 5.00 in/hr B i = 5.60 in/hr X d = 1.5 in 3 4 d = in X x i = 6.00 in/hr C i = 5.50 in/hr P = 10 psi X X d = 1.75 in 5 6 d = 1.4 in X X P = 10 psi i = 7.00 in/hr D i = 5.60 in/hr x X d = 1.65 in 7 8 d = 1.45 in X x i = 6.60 in/hr E i = 5.80 in/hr P = 10 psi X X d = in 9 10 d = 1.55 in X X P = 10 psi i = 7.50 in/hr F i = 6.20 in/hr x X d = 1.75 in d = in x x i = 7.00 in/hr G i = 4.50 in/hr P = 10 psi X x d = 1.65 in d = 2.00 in X X P = 10 psi i = 6.60 in/hr H i = 8.00 in/hr X X d = 1.45 in d = 1.5 in X X i = 5.80 in/hr I i = 6.00 in/hr P = 10 psi X X d = 1.35 in d = 1.5 in X X P = 10 psi i = 5.40 in/hr J i = 6.00 in/hr X X d = in d = 1.25 in X i = 3.50 in/hr i = 5.00 in/hr Approx. Bottom Catch: 290 gal Average Wind: 0 mph Average Depth: 1.48 in. Average Rainfall Intensity: 5.93 in/hr Christiansen Uniformity Coefficient: 87

40 TRI/Environmental, Inc. A Texas Research International Com DDRF Rainfall Calibration Slope 2: 2 in/hr Rainfall (target) Date: 22-Jul-09 Start Time: 6:00 PM End Time: 6:15 PM Test Time: min. (circle "x" for open valves) TOP OF SLOPE x x X x P = 10 psi A d = 0.5 in 1 2 d = 0.5 in x i = 2.00 in/hr B i = 2.00 in/hr P = 10 psi X x d = 0.55 in 3 4 d = 0.75 in x X P = 10 psi i = 2.20 in/hr C i = 3.00 in/hr x x d = 0.55 in 5 6 d = 0.65 in x x i = 2.20 in/hr D i = 2.60 in/hr P = 10 psi X x d = 0.5 in 7 8 d = 0.55 in x X P = 10 psi i = 2.00 in/hr E i = 2.20 in/hr x x d = 0.5 in 9 10 d = 0.5 in x x i = 2.00 in/hr F i = 2.00 in/hr P = 10 psi x x d = 0.5 in d = 0.5 in X x P = 10 psi i = 2.00 in/hr G i = 2.00 in/hr x X d = 0.5 in d = 0.5 in x x i = 2.00 in/hr H i = 2.00 in/hr P = 10 psi x x d = 0.5 in d = 0.5 in X x P = 10 psi i = 2.00 in/hr I i = 2.00 in/hr x X d = 0.45 in d = 0.5 in x X i = 1.80 in/hr J i = 2.00 in/hr P = 10 psi x d = 0.5 in d = 0.5 in X i = 2.00 in/hr i = 2.00 in/hr X Approx. Bottom Catch: 105 gal Average Wind: 0 mph Average Depth: in. Average Rainfall Intensity: 2.1 in/hr Christiansen Uniformity Coefficient: 92

41 TRI/Environmental, Inc. A Texas Research International Com DDRF Rainfall Calibration Slope 2: 4 in/hr Rainfall (target) Date: 22-Jul-09 Start Time: 6:30 PM End Time: 6:45 PM Test Time: min. (circle "x" for open valves) TOP OF SLOPE x x X X P = 10 psi A d = 0.95 in 1 2 d = 0.95 in X i = 3.80 in/hr B i = 3.80 in/hr P = 10 psi X X d = 1 in 3 4 d = 1.5 in x X P = 10 psi i = 4.00 in/hr C i = 6.00 in/hr x x d = 1 in 5 6 d = 1.25 in X x i = 4.00 in/hr D i = 5.00 in/hr P = 10 psi X X d = 1 in 7 8 d = 1 in x X P = 10 psi i = 4.00 in/hr E i = 4.00 in/hr x x d = in 9 10 d = 1 in x x i = 4.50 in/hr F i = 4.00 in/hr P = 10 psi x x d = in d = 1 in X x P = 10 psi i = 4.50 in/hr G i = 4.00 in/hr X X d = 1 in d = in x X i = 4.00 in/hr H i = 4.50 in/hr P = 10 psi x x d = 1 in d = 1 in X X P = 10 psi i = 4.00 in/hr I i = 4.00 in/hr X X d = 0.95 in d = 1 in x X i = 3.80 in/hr J i = 4.00 in/hr P = 10 psi X d = 0.95 in d = 0.75 in X i = 3.80 in/hr i = 3.00 in/hr X Approx. Bottom Catch: 205 gal Average Wind: 0 mph Average Depth: in. Average Rainfall Intensity: in/hr Christiansen Uniformity Coefficient: 91

42 TRI/Environmental, Inc. A Texas Research International Com DDRF Rainfall Calibration Slope 2: 6 in/hr Rainfall (target) Date: 22-Jul-09 Start Time: 7:00 PM End Time: 7:15 PM Test Time: min. (circle "x" for open valves) TOP OF SLOPE x X X X P = 10 psi A d = 1.5 in 1 2 d = in X i = 6.00 in/hr B i = 5.50 in/hr P = 10 psi X X d = 1.55 in 3 4 d = in X X P = 10 psi i = 6.20 in/hr C i = 8.50 in/hr x X d = 1.75 in 5 6 d = 2 in X x i = 7.00 in/hr D i = 8.00 in/hr P = 10 psi X X d = in 7 8 d = in X X P = 10 psi i = 7.50 in/hr E i = 5.50 in/hr x X d = 1.5 in 9 10 d = 1.5 in x x i = 6.00 in/hr F i = 6.00 in/hr P = 10 psi X x d = 1.55 in d = 1.5 in X X P = 10 psi i = 6.20 in/hr G i = 6.00 in/hr X X d = 1.5 in d = 1.5 in x X i = 6.00 in/hr H i = 6.00 in/hr P = 10 psi X X d = 1.5 in d = 1.5 in X X P = 10 psi i = 6.00 in/hr I i = 6.00 in/hr X X d = 1.45 in d = 1.5 in X X i = 5.80 in/hr J i = 6.00 in/hr P = 10 psi X d = 1.25 in d = 1.00 in X i = 5.00 in/hr i = 4.00 in/hr X Approx. Bottom Catch: 305 gal Average Wind: 0 mph Average Depth: 1.54 in. Average Rainfall Intensity: 6.16 in/hr Christiansen Uniformity Coefficient: 90

Large-Scale Slope Erosion Testing (ASTM D 6459 modified) Flexterra Ultra over Sandy Loam

Large-Scale Slope Erosion Testing (ASTM D 6459 modified) Flexterra Ultra over Sandy Loam Large-Scale Slope Erosion Testing (ASTM D 6459 modified) of Flexterra Ultra over Sandy Loam December 2009 Submitted to: AASHTO/NTPEP 444 North Capitol Street, NW, Suite 249 Washington, D.C. 20001 Attn:

More information

Large-Scale Slope Erosion Testing (ASTM D 6459 modified) Hydromulch 2000 over Sandy Loam

Large-Scale Slope Erosion Testing (ASTM D 6459 modified) Hydromulch 2000 over Sandy Loam Large-Scale Slope Erosion Testing (ASTM D 6459 modified) of Hydromulch 2000 over Sandy Loam December 2009 Submitted to: AASHTO/NTPEP 444 North Capitol Street, NW, Suite 249 Washington, D.C. 20001 Attn:

More information

Large-Scale Slope Erosion Testing (ASTM D 6459) East Coast Erosion Control s ECS-2, Double Net Straw Blanket over Loam

Large-Scale Slope Erosion Testing (ASTM D 6459) East Coast Erosion Control s ECS-2, Double Net Straw Blanket over Loam Large-Scale Slope Erosion Testing (ASTM D 6459) of East Coast Erosion Control s ECS-2, Double Net Straw Blanket over Loam January 2014 Submitted to: AASHTO/NTPEP 444 North Capitol Street, NW, Suite 249

More information

Large-Scale Slope Erosion Testing (ASTM D 6459) US Erosion Control Products US-2S, Double Net Straw Blanket over Loam

Large-Scale Slope Erosion Testing (ASTM D 6459) US Erosion Control Products US-2S, Double Net Straw Blanket over Loam Large-Scale Slope Erosion Testing (ASTM D 6459) of US Erosion Control Products US-2S, Double Net Straw Blanket over Loam June 2012 Submitted to: AASHTO/NTPEP 444 North Capitol Street, NW, Suite 249 Washington,

More information

Large-Scale Slope Erosion Testing (ASTM D 6459) Winters Excelsior s Straw Bio, Double Biodegradable Net Straw Blanket over Loam

Large-Scale Slope Erosion Testing (ASTM D 6459) Winters Excelsior s Straw Bio, Double Biodegradable Net Straw Blanket over Loam Large-Scale Slope Erosion Testing (ASTM D 6459) of Winters Excelsior s Straw Bio, Double Biodegradable Net Straw Blanket over Loam June 2014 Submitted to: AASHTO/NTPEP 444 North Capitol Street, NW, Suite

More information

Large-Scale Slope Erosion Testing (ASTM D 6459 modified) Central Fiber s Second Nature Wood Fiber PLUS HECP and Enviro-Gold PLUS HECP over Sandy Loam

Large-Scale Slope Erosion Testing (ASTM D 6459 modified) Central Fiber s Second Nature Wood Fiber PLUS HECP and Enviro-Gold PLUS HECP over Sandy Loam Large-Scale Slope Erosion Testing (ASTM D 6459 modified) of Central Fiber s Second Nature Wood Fiber PLUS HECP and Enviro-Gold PLUS HECP over Sandy Loam May 2015 Submitted to: AASHTO/NTPEP 444 North Capitol

More information

Large-Scale Slope Erosion Testing (ASTM D 6459) American Excelsior s AEC Premier Straw Double Net FibreNet, Erosion Control Blanket (ECB) over Loam

Large-Scale Slope Erosion Testing (ASTM D 6459) American Excelsior s AEC Premier Straw Double Net FibreNet, Erosion Control Blanket (ECB) over Loam Large-Scale Slope Erosion Testing (ASTM D 6459) of American Excelsior s AEC Premier Straw Double Net FibreNet, Erosion Control Blanket (ECB) over Loam November 2016 Submitted to: AASHTO/NTPEP 444 North

More information

Large-Scale Sediment Retention Device Testing (ASTM D 7351) SedCatch Sediment Basket Inlet Filter Exposed to 6% Sediment Load

Large-Scale Sediment Retention Device Testing (ASTM D 7351) SedCatch Sediment Basket Inlet Filter Exposed to 6% Sediment Load Large-Scale Sediment Retention Device Testing (ASTM D 7351) of SedCatch Sediment Basket Inlet Filter Exposed to 6% Sediment Load February 2010 Submitted to: SedCatch Environmental Products 8380 Point O

More information

Large-Scale Sediment Retention Device Testing (ASTM D 7351) SedCatch Sediment Basket Inlet Filter Exposed to 1.5% Sediment Load

Large-Scale Sediment Retention Device Testing (ASTM D 7351) SedCatch Sediment Basket Inlet Filter Exposed to 1.5% Sediment Load Large-Scale Sediment Retention Device Testing (ASTM D 7351) of SedCatch Sediment Basket Inlet Filter Exposed to 1.5% Sediment Load February 2010 Submitted to: SedCatch Environmental Products 8380 Point

More information

EVALUATING SEDIMENT BARRIERS

EVALUATING SEDIMENT BARRIERS EVALUATING SEDIMENT BARRIERS Presented at IECA 2014, Nashville, TN C. Joel Sprague, P.E. TRI/Environmental, Inc. PO Box 9192, Greenville, SC 29604 Phone: 864/242-2220; Fax: 864/242-3107; jsprague@tri-env.com

More information

What Is Water Erosion? Aren t they the same thing? What Is Sediment? What Is Sedimentation? How can Sediment Yields be Minimized?

What Is Water Erosion? Aren t they the same thing? What Is Sediment? What Is Sedimentation? How can Sediment Yields be Minimized? Jerald S. Fifield, Ph.D. CISEC HydroDynamics Incorporated Parker, CO 303-841-0377 Aren t they the same thing? What Is Sediment? Soil particles deposited or suspended in water or air The process of depositing

More information

Sediment Capture in Pervious Concrete Pavement tsystems: Effects on Hydrological Performance and Suspended Solids

Sediment Capture in Pervious Concrete Pavement tsystems: Effects on Hydrological Performance and Suspended Solids Concrete Sustainability Conference April 14 th 2010, Tempe, AZ Sediment Capture in Pervious Concrete Pavement tsystems: Effects on Hydrological l Performance and Suspended Solids Discharge Luis A. Mata,

More information

Stone Outlet Sediment Trap

Stone Outlet Sediment Trap 3.12 Sediment Control Description: A stone outlet sediment trap is a small detention area formed by placing a stone embankment with an integral stone filter outlet across a drainage swale for the purpose

More information

TPDES: Soil, Erosion and Sedimentation Methods

TPDES: Soil, Erosion and Sedimentation Methods SAWS TPDES: Soil, Erosion and Sedimentation Methods Philip Handley Supervisor-Resource Protection & Compliance August 25, 2014 TPDES: Soil, Erosion and Sedimentation Methods Soil Common term: Dirt Common

More information

Laboratory #5 ABE 325 Erosion Processes Laboratory

Laboratory #5 ABE 325 Erosion Processes Laboratory Laboratory #5 ABE 325 Erosion Processes Laboratory Objective: To better understand the process of rill erosion and to understand the interaction between flow rate, sediment yield, slope, and a soil additive.

More information

Project: ITHACA-TOMPKINS REGIONAL AIRPORT EXPANSION Project Location: ITHACA, NY Project Number: 218-34 Key to Soil Symbols and Terms TERMS DESCRIBING CONSISTENCY OR CONDITION COARSE-GRAINED SOILS (major

More information

Drivable Grass Report for Hydraulic Performance Testing

Drivable Grass Report for Hydraulic Performance Testing Drivable Grass Report for Hydraulic Performance Testing Prepared for Soil Retention Products, Inc. Prepared by Michael D. Turner Amanda L. Cox Christopher I. Thornton March 2011 Colorado State University

More information

Mr. Michael Malone CPS Energy 145 Navarro Street San Antonio, Texas Project No

Mr. Michael Malone CPS Energy 145 Navarro Street San Antonio, Texas Project No January 17, 2018 Mr. Michael Malone 145 Navarro Street San Antonio, Texas 78205 Project No. 0337367 Environmental Resources Management CityCentre Four 840 West Sam Houston Pkwy N. Suite 600 Houston, Texas

More information

Erosion. changing landforms. Purpose. Process Skills. Background. Time 1 1 ½ hours Grouping Pairs, small groups, or class.

Erosion. changing landforms. Purpose. Process Skills. Background. Time 1 1 ½ hours Grouping Pairs, small groups, or class. Purpose To demonstrate how several factors affect the rate of erosion. Process Skills Observe, Measure, Collect data, Interpret data, Form a hypothesis, Make a model, Identify and control variables, Draw

More information

Clay Robinson, PhD, CPSS, PG copyright 2009

Clay Robinson, PhD, CPSS, PG   copyright 2009 Engineering: What's soil got to do with it? Clay Robinson, PhD, CPSS, PG crobinson@wtamu.edu, http://www.wtamu.edu/~crobinson, copyright 2009 Merriam-Webster Online Dictionary soil, noun 1 : firm land

More information

Erosion and Sedimentation Basics

Erosion and Sedimentation Basics Erosion and Sedimentation Basics Coastal San Luis Resource Conservation District G.W. Bates, PE, CPESC Outline: 1. Terms & Concepts 2. Causes of Erosion 3. The Erosion/Sedimentation Process 4. Erosion

More information

2012 Rainfall, Runoff, Water Level & Temperature Beebe Lake Wright County, MN (# )

2012 Rainfall, Runoff, Water Level & Temperature Beebe Lake Wright County, MN (# ) www.fixmylake.com 18029 83 rd Avenue North Maple Grove, MN 55311 mail@freshwatersci.com (651) 336-8696 2012 Rainfall, Runoff, Water Level & Temperature Beebe Lake Wright County, MN (#86-0023) Prepared

More information

Sprinkler Irrigation

Sprinkler Irrigation Sprinkler Irrigation Definition Pressurized irrigation through devices called sprinklers Sprinklers are usually located on pipes called laterals Water is discharged into the air and hopefully infiltrates

More information

Field Exploration. March 31, J-U-B ENGINEERS, Inc. 115 Northstar Avenue Twin Falls, Idaho Attn: Mr. Tracy Ahrens, P. E. E:

Field Exploration. March 31, J-U-B ENGINEERS, Inc. 115 Northstar Avenue Twin Falls, Idaho Attn: Mr. Tracy Ahrens, P. E. E: March 31, 201 11 Northstar Avenue 83301 Attn: Mr. Tracy Ahrens, P. E. E: taa@jub.com Re: Geotechnical Data Report Preliminary Phase 1 Field Exploration Revision No. 1 Proposed Rapid Infiltration Basin

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 MODULE NO: CIE4009 Date: Saturday 14 January

More information

Dr. L. I. N. de Silva. Student Name Registration Number: Assessed By: Lecturers Remarks

Dr. L. I. N. de Silva. Student Name Registration Number: Assessed By: Lecturers Remarks Module - CE 2042 Soil Mechanics and Geology-1 Assignment Tests for Particle Size Distribution Analysis Marks 10% Learning Ability to conduct particle size distribution analysis of soils Outcome Ability

More information

Procedure for Determining Near-Surface Pollution Sensitivity

Procedure for Determining Near-Surface Pollution Sensitivity Procedure for Determining Near-Surface Pollution Sensitivity Minnesota Department of Natural Resources Division of Ecological and Water Resources County Geologic Atlas Program March 2014 Version 2.1 I.

More information

6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why?

6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why? NAME date ROY G BIV Water Cycle and Water Movement in the Ground Test 5. 6. Circle the correct answer: SINK A drains faster or SINK B drains faster Why? 7. Circle the correct answer: SINK A retains more

More information

SILT FENCE EFFECTIVENESS

SILT FENCE EFFECTIVENESS SILT FENCE EFFECTIVENESS Michelle G. Holloway, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. E-mail: MLG@jaguar1.usouthal.edu. Sediment is the number one pollutant in Dog

More information

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS 1 2 C. Vipulanandan 1, Ph.D., M. ASCE and Omer F. Usluogullari 2 Chairman, Professor, Director of Center for Innovative Grouting Materials

More information

Materials. Use materials meeting the following.

Materials. Use materials meeting the following. 208.01 Section 208. SOIL EROSION AND SEDIMENTATION CONTROL 208.01 Description. Install and maintain erosion and sedimentation controls to minimize soil erosion and to control sedimentation from affecting

More information

Civil Engineering, Surveying and Environmental Consulting WASP0059.ltr.JLS.Mich Ave Bridge Geotech.docx

Civil Engineering, Surveying and Environmental Consulting WASP0059.ltr.JLS.Mich Ave Bridge Geotech.docx 2365 Haggerty Road South * Canton, Michigan 48188 P: 734-397-3100 * F: 734-397-3131 * www.manniksmithgroup.com August 29, 2012 Mr. Richard Kent Washtenaw County Parks and Recreation Commission 2330 Platt

More information

CONSTRUCTION MATERIALS

CONSTRUCTION MATERIALS CONSTRUCTION MATERIALS T E C H N O L O G I E S PERFORMANCE TEST REPORT FOR Southern Manufacturing Division of Accord Industries IN ACCORDANCE WITH FLORIDA BUILDING CODE (HIGH VELOCITY HURRICANE ZONES)

More information

International Journal of Agriculture and Environmental Research

International Journal of Agriculture and Environmental Research EVALUATION OF THE QUANTITY AND QUALITY OF RUNOFF WATER FROM A STRAWBERRY RANCH SLOPING GROUND DURING WINTER STORM EVENTS IN THE CALIFORNIA CENTRAL COAST Gerardo Spinelli 1*, Sacha Lozano 1, Ben Burgoa

More information

B-1 BORE LOCATION PLAN. EXHIBIT Drawn By: 115G BROOKS VETERINARY CLINIC CITY BASE LANDING AND GOLIAD ROAD SAN ANTONIO, TEXAS.

B-1 BORE LOCATION PLAN. EXHIBIT Drawn By: 115G BROOKS VETERINARY CLINIC CITY BASE LANDING AND GOLIAD ROAD SAN ANTONIO, TEXAS. N B-1 SYMBOLS: Exploratory Boring Location Project Mngr: BORE LOCATION PLAN Project No. GK EXHIBIT Drawn By: 115G1063.02 GK Scale: Checked By: 1045 Central Parkway North, Suite 103 San Antonio, Texas 78232

More information

Land and Water Summative Assessment. Name Date

Land and Water Summative Assessment. Name Date Land and Water Summative Assessment Name Date Read each question carefully and select the best answer. 1. Abby built a model to study how rain changes the land. She shaped the land into single, smooth

More information

Use of Launched Soil Nails to Stabilize Landslides in Summit County, Ohio

Use of Launched Soil Nails to Stabilize Landslides in Summit County, Ohio Use of Launched Soil Nails to Stabilize Landslides in Summit County, Ohio Mitchell W. Weber, P.G. Gannett Fleming Engineers & Architects, P.C. Greg Bachman, P.E., P.S. County of Summit Engineer Robert

More information

CE330L Student Lab Manual Mineral Aggregate Properties

CE330L Student Lab Manual Mineral Aggregate Properties Mineral Aggregate Properties Introduction In this lab module several characteristics of aggregates are determined. Tests will be conducted on both coarse and fine aggregates. The results of some of these

More information

**Temporary Erosion Control**

**Temporary Erosion Control** Construction operations And methods **Temporary Erosion Control** The test will more than likely just have a basic word problem dealing with Erosion control, if it has anything on the test. So just review,

More information

Sediment and Erosion Design Guide

Sediment and Erosion Design Guide Sediment and Erosion Design Guide Sediment Transport & Bulking Factors Goals of this Session Review key principals Review basic relationships and available tools Review bulking factor relationships Purposes

More information

IN SITU SPECIFIC GRAVITY VS GRAIN SIZE: A BETTER METHOD TO ESTIMATE NEW WORK DREDGING PRODUCTION

IN SITU SPECIFIC GRAVITY VS GRAIN SIZE: A BETTER METHOD TO ESTIMATE NEW WORK DREDGING PRODUCTION IN SITU SPECIFIC GRAVITY VS GRAIN SIZE: A BETTER METHOD TO ESTIMATE NEW WORK DREDGING PRODUCTION Nancy Case O Bourke, PE 1, Gregory L. Hartman, PE 2 and Paul Fuglevand, PE 3 ABSTRACT In-situ specific gravity

More information

Sediment Trap. A temporary runoff containment area, which promotes sedimentation prior to discharge of the runoff through a stabilized spillway.

Sediment Trap. A temporary runoff containment area, which promotes sedimentation prior to discharge of the runoff through a stabilized spillway. Sediment Trap SC-15 Source: Caltrans Construction Site Best Management Practices Manual, 2003. Description A temporary runoff containment area, which promotes sedimentation prior to discharge of the runoff

More information

ENGINEERING ASSOCIATES

ENGINEERING ASSOCIATES July 16, 211 Vista Design, Inc. 11634 Worcester Highway Showell, Maryland 21862 Attention: Reference: Dear Mr. Polk: Mr. Richard F. Polk, P.E. Geotechnical Engineering Report Charles County RFP No. 11-9

More information

DATA REPORT GEOTECHNICAL INVESTIGATION GALVESTON CRUISE TERMINAL 2 GALVESTON, TEXAS

DATA REPORT GEOTECHNICAL INVESTIGATION GALVESTON CRUISE TERMINAL 2 GALVESTON, TEXAS DATA REPORT GEOTECHNICAL INVESTIGATION GALVESTON CRUISE TERMINAL 2 GALVESTON, TEXAS SUBMITTED TO PORT OF GALVESTON 123 ROSENBERG AVENUE, 8TH FLOOR GALVESTON, TEXAS 77553 BY HVJ ASSOCIATES, INC. HOUSTON,

More information

@Copyright 2016 SKAPS Industries.

@Copyright 2016 SKAPS Industries. SKAPS INDUSTRIES 571 Industrial Pkwy, Commerce, GA 30529 Phone: (706) 336 7000 Fax: (706) 336 7007 E Mail: contact@skaps.com SKAPS GEOCOMPOSITE DROP IN SPECIFICATIONS @Copyright 2016 SKAPS Industries www.skaps.com

More information

TESTING of AGGREGATES for CONCRETE

TESTING of AGGREGATES for CONCRETE TESTING of AGGREGATES for CONCRETE The properties of the aggregates affect both the fresh and hardened properties of concrete. It is crucial to know the properties of the aggregates to be used in the making

More information

DRAFT. PRELIMINARY LANDSLIDE MODELING for KRAMER AVENUE LANDSLIDE SITKA, ALASKA. Prepared for: Andrew Friske 210 Kramer Ave. Sitka, Alaska 99835

DRAFT. PRELIMINARY LANDSLIDE MODELING for KRAMER AVENUE LANDSLIDE SITKA, ALASKA. Prepared for: Andrew Friske 210 Kramer Ave. Sitka, Alaska 99835 PRELIMINARY LANDSLIDE MODELING for KRAMER AVENUE LANDSLIDE SITKA, ALASKA Prepared for: Andrew Friske 210 Kramer Ave. Sitka, Alaska 99835 Prepared by: Northern Geotechnical Engineering, Inc. d.b.a. Terra

More information

Selected Site BMPs: Why s the Water Muddy? John C. Hayes, Ph.D., P. E. Biosystems Engineering Clemson University

Selected Site BMPs: Why s the Water Muddy? John C. Hayes, Ph.D., P. E. Biosystems Engineering Clemson University Selected Site BMPs: Why s the Water Muddy? John C. Hayes, Ph.D., P. E. Biosystems Engineering Clemson University The BMP worked fine until last week when it rained! Turbidity Best Management Practices

More information

The Climate of Murray County

The Climate of Murray County The Climate of Murray County Murray County is part of the Crosstimbers. This region is a transition between prairies and the mountains of southeastern Oklahoma. Average annual precipitation ranges from

More information

Dashed line indicates the approximate upper limit boundary for natural soils. C L o r O L C H o r O H

Dashed line indicates the approximate upper limit boundary for natural soils. C L o r O L C H o r O H SYMBOL SOURCE 8 9 1 SOIL DATA NATURAL SAMPLE DEPTH WATER PLASTIC LIQUID PLASTICITY NO. CONTENT LIMIT LIMIT INDEX (%) (%) (%) (%) Client: County of Berthoud Project: Project No.: Boring B-2 S-1-5' 6.2 8

More information

FDE 211 MATERIAL & ENERGY BALANCES. Instructor: Dr. Ilgin Paker Yikici Fall 2015

FDE 211 MATERIAL & ENERGY BALANCES. Instructor: Dr. Ilgin Paker Yikici Fall 2015 FDE 211 MATERIAL & ENERGY BALANCES Instructor: Dr. Ilgin Paker Yikici Fall 2015 Meet & Greet Hello! My name is I am from 2 Class Overview Units & Conversions Process & Process Variables Process Units &

More information

4. Soil Consistency (Plasticity) (Das, chapter 4)

4. Soil Consistency (Plasticity) (Das, chapter 4) 4. Soil Consistency (Plasticity) (Das, chapter 4) 1 What is Consistency? Consistency is a term used to describe the degree of firmness of fine-grained soils (silt and clay). The consistency of fine grained

More information

The Climate of Bryan County

The Climate of Bryan County The Climate of Bryan County Bryan County is part of the Crosstimbers throughout most of the county. The extreme eastern portions of Bryan County are part of the Cypress Swamp and Forest. Average annual

More information

The Climate of Texas County

The Climate of Texas County The Climate of Texas County Texas County is part of the Western High Plains in the north and west and the Southwestern Tablelands in the east. The Western High Plains are characterized by abundant cropland

More information

Basic Math Concepts for Water and Wastewater Operators. Daniel B. Stephens & Associates, Inc.

Basic Math Concepts for Water and Wastewater Operators. Daniel B. Stephens & Associates, Inc. Basic Math Concepts for Water and Wastewater Operators Topics Hierarchy of operations Manipulating equations Unit/dimensional analysis and conversion factors Electricity Temperature Geometry Flow hydraulics

More information

PERFORMANCE TEST REPORT. Rendered to: VELUX AMERICA, INC. PRODUCT: SUN TUNNEL Domes TYPES: Acrylic and Polycarbonate

PERFORMANCE TEST REPORT. Rendered to: VELUX AMERICA, INC. PRODUCT: SUN TUNNEL Domes TYPES: Acrylic and Polycarbonate PERFORMANCE TEST REPORT Rendered to: VELUX AMERICA, INC. PRODUCT: SUN TUNNEL Domes TYPES: Acrylic and Polycarbonate Report No.: E3490.01-106-31 Report Date: 07/13/15 Test Record Retention Date: 06/18/19

More information

Stormwater Guidelines and Case Studies. CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610)

Stormwater Guidelines and Case Studies. CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610) Stormwater Guidelines and Case Studies CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610) 696-4150 www.thcahill.com Goals and Challenges for Manual State Stormwater Policy More Widespread

More information

Format of CLIGEN weather station statistics input files. for CLIGEN versions as of 6/2001 (D.C. Flanagan).

Format of CLIGEN weather station statistics input files. for CLIGEN versions as of 6/2001 (D.C. Flanagan). Format of CLIGEN weather station statistics input files for CLIGEN versions 4.1-5.1 as of 6/2001 (D.C. Flanagan). updated 12/11/2008 - Jim Frankenberger These files are also known as CLIGEN state files

More information

NATIONAL INSTITUTE OF JUSTICE COMPLIANCE TEST REPORT

NATIONAL INSTITUTE OF JUSTICE COMPLIANCE TEST REPORT COMPLIANCE TESTING INFORMATION FACILITY DESCRIPTION: TESTING CERTIFICATION: Test Laboratory: United States Test Laboratory, LLC Report Number: 06N074 Laboratory Representative: Richard W. Mouser Witnessed

More information

Geology Chapter Teacher Sheet. Activity #3: Determining the Percolation Rate of Soil

Geology Chapter Teacher Sheet. Activity #3: Determining the Percolation Rate of Soil Geology Chapter Teacher Sheet Activity #3: Determining the Percolation Rate of Soil Adapted from The Percolation Rate of a Soil, CurriculumResources for Earth Science Teachers, Maine Department of Conservation.

More information

STORMWATER MANAGEMENT COMPUTATIONS. Mount Prospect

STORMWATER MANAGEMENT COMPUTATIONS. Mount Prospect STORMWATER MANAGEMENT COMPUTATIONS Mount Prospect MHG PROJECT No. 2011.173.11 November 6, 2014 Prepared for: Piney Meetinghouse Investments c/o Mr. Dennis Fling 14801 Clopper Road Boyds, MD 20841 (301)

More information

The Climate of Marshall County

The Climate of Marshall County The Climate of Marshall County Marshall County is part of the Crosstimbers. This region is a transition region from the Central Great Plains to the more irregular terrain of southeastern Oklahoma. Average

More information

HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR (c)(1)(i) (xii)

HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR (c)(1)(i) (xii) HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR 257.73(c)(1)(i) (xii) (i) Site Name and Ownership Information: Site Name: E.C. Gaston Steam Plant Site Location:

More information

Agry 465 Exam October 18, 2006 (100 points) (9 pages)

Agry 465 Exam October 18, 2006 (100 points) (9 pages) Agry 465 Exam October 18, 2006 (100 points) (9 pages) Name (4) 1. In each of the following pairs of soils, indicate which one would have the greatest volumetric heat capacity, and which would have the

More information

Subsurface Erosion in Response to Land Management Changes and Soil Hydropedology. G.V. Wilson, J. R. Rigby, S.M. Dabney

Subsurface Erosion in Response to Land Management Changes and Soil Hydropedology. G.V. Wilson, J. R. Rigby, S.M. Dabney Subsurface Erosion in Response to Land Management Changes and Soil Hydropedology G.V. Wilson, J. R. Rigby, S.M. Dabney USDA-ARS National Sedimentation Laboratory Soil Pipeflow & Internal Erosion Impacts

More information

APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations

APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations A ampere AASHTO American Association of State Highway & Transportation Officials ABS (%) Percent of Absorbed Moisture Abs. Vol. Absolute

More information

ATTACHMENT A PRELIMINARY GEOTECHNICAL SUMMARY

ATTACHMENT A PRELIMINARY GEOTECHNICAL SUMMARY ATTACHMENT A PRELIMINARY GEOTECHNICAL SUMMARY Kevin M. Martin, P.E. KMM Geotechnical Consultants, LLC 7 Marshall Road Hampstead, NH 0384 603-489-6 (p)/ 603-489-8 (f)/78-78-4084(m) kevinmartinpe@aol.com

More information

Fluid Flow Analysis Penn State Chemical Engineering

Fluid Flow Analysis Penn State Chemical Engineering Fluid Flow Analysis Penn State Chemical Engineering Revised Spring 2015 Table of Contents LEARNING OBJECTIVES... 1 EXPERIMENTAL OBJECTIVES AND OVERVIEW... 1 PRE-LAB STUDY... 2 EXPERIMENTS IN THE LAB...

More information

Soil Toil. Student McStudent Mrs. Teacher November 26, 2017 Grade 6

Soil Toil. Student McStudent Mrs. Teacher November 26, 2017 Grade 6 Soil Toil Student McStudent Mrs. Teacher November 26, 2017 Grade 6 Table of Contents Abstract Page 1 Question Page 2 Variables Page 2 Hypothesis Page 2 Background Research Pages 4-5 Materials Page 5 Experimental

More information

Module 5: Channel and Slope Protection Example Assignments

Module 5: Channel and Slope Protection Example Assignments Module 5: Channel and Slope Protection Example Assignments A) Example Project Assignment on Slope and Swale Design North America Green Software Example (Erosion Control Materials Design Software) The following

More information

CONQUEST ENGINEERING LTD.

CONQUEST ENGINEERING LTD. CONQUEST ENGINEERING LTD. Geotechnical and Materials Engineers Concrete Technology, Blasting Consultants Construction Quality Assurance / Quality Control 8 Bluewater Road, Bedford, NS BB J6 Phone (9)85-7

More information

Experimental Investigation of Soil-Pipe Friction Coefficients for Thermoplastic Pipes Installed in Selected Geological Materials

Experimental Investigation of Soil-Pipe Friction Coefficients for Thermoplastic Pipes Installed in Selected Geological Materials North American Society for Trenchless Technology (NASTT) NASTT s 2014 No-Dig Show Orlando, Florida April 13-17, 2014 MM-T6-03 Experimental Investigation of Soil-Pipe Friction Coefficients for Thermoplastic

More information

Objectives: After completing this assignment, you should be able to:

Objectives: After completing this assignment, you should be able to: Data Analysis Assignment #1 Evaluating the effects of watershed land use on storm runoff Assignment due: 21 February 2013, 5 pm Objectives: After completing this assignment, you should be able to: 1) Calculate

More information

TESTING PROTOCAL. Via & US Mail. April 30, 2010

TESTING PROTOCAL. Via  & US Mail. April 30, 2010 Wiss, Janney, Elstner Associates, Inc. 330 Pfingsten Road Northbrook, Illinois 60062 847.272.7400 tel 847.291.5189 fax www.wje.com Via Email & US Mail General Manager 318 West Washington Street Valders

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

APPENDIX H CONVERSION FACTORS

APPENDIX H CONVERSION FACTORS APPENDIX H CONVERSION FACTORS A ampere American Association of State AASHTO Highway & Transportation Officials ABS (%) Percent of Absorbed Moisture Abs. Vol. Absolute Volume ACI American Concrete Institute

More information

Break Time. Cornell Short Course

Break Time. Cornell Short Course Break Time Poor Plant Health Root Depth & Soil Type Active Root Zone The depth of soil containing the majority of feeder roots } Soil type Basic infiltration rate (mm/hour) } Sand > 30 (1.2-4 in./hr.)

More information

1' U. S. Forest Products Laboratory. Weathering and decay. U.S. Forest Serv. Forest Prod. Lab. Tech. Note 221 (rev,), 2 pp. 1956, (Processed.

1' U. S. Forest Products Laboratory. Weathering and decay. U.S. Forest Serv. Forest Prod. Lab. Tech. Note 221 (rev,), 2 pp. 1956, (Processed. Number 171 Portland, Oregon August 1959 EFFECT OF WEATHERING ON ACCURACY OF FUEL-MOISTURE-INDICATOR STICKS IN THE PACIFIC NORTHWEST by William Go Morris How much does weathering affect accuracy of fuel-moistureindicator

More information

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Lecture 04 Soil Erosion - Mechanics Hello friends

More information

The Climate of Kiowa County

The Climate of Kiowa County The Climate of Kiowa County Kiowa County is part of the Central Great Plains, encompassing some of the best agricultural land in Oklahoma. Average annual precipitation ranges from about 24 inches in northwestern

More information

RESEARCH AND DEVELOPMENT DEPARTMENT

RESEARCH AND DEVELOPMENT DEPARTMENT RESEARCH AND DEVELOPMENT DEPARTMENT REPORT NO. 06-61 MONTHLY REPORT OF THE FULTON COUNTY ENVIRONMENTAL PROTECTION SYSTEM JULY 2006 SEPTEMBER 2006 September 27, 2006 Mr. S. Alan Keller, P.E. Manager, Permit

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 4

More information

The Use of Expanded Shale, Clay and Slate Lightweight Aggregates in Granular Geotechnical Fills

The Use of Expanded Shale, Clay and Slate Lightweight Aggregates in Granular Geotechnical Fills Information Sheet 6660.0 January 2017 The Use of Expanded Shale, Clay and Slate Lightweight Aggregates in Granular Geotechnical Fills For over 50 years Rotary Kiln produced Expanded Shale, Clay & Slate

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

NAPLES MUNICIPAL AIRPORT

NAPLES MUNICIPAL AIRPORT NAPLES MUNICIPAL AIRPORT NAPLES MUNICIPAL AIRPORT (APF) TAXIWAY D REALIGNMENT AND DRAINAGE IMPROVEMENTS NORTH QUADRANT ADDENDUM NUMBER TWO March, The following Addendum is hereby made a part of the Plans

More information

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility Zhong Wu, Ph.D., P.E. Zhongjie Zhang, Bill King Louay Mohammad Outline Background Objectives

More information

Site Investigation and Landfill Construction I

Site Investigation and Landfill Construction I Site Investigation and Landfill Construction I Gernot Döberl Vienna University of Technology Institute for Water Quality, Resources and Waste Management Contents Site Investigation Base Liners Base Drainage

More information

MARTIN COUNTY BOARD OF COUNTY COMMISSIONERS

MARTIN COUNTY BOARD OF COUNTY COMMISSIONERS MARTIN COUNTY BOARD OF COUNTY COMMISSIONERS 4 S.E. MONTEREY ROAD STUART, FL 34996 DOUG SMITH Commissioner, District ED FIELDING Commissioner, District ANNE SCOTT Commissioner, District 3 SARAH HEARD Commissioner,

More information

Appendix E. Phase 2A Geotechnical Data

Appendix E. Phase 2A Geotechnical Data Appendix E Phase 2A Geotechnical Data Appendix E1 Geotechnical Testing of Sediment ApPENDIX El. GEOTECHNICAL TESTING OF SEDIMENT (Modified from Exponent, 20Q1c) E.I Introduction This appendix presents

More information

Correlation of unified and AASHTO soil classification systems for soils classification

Correlation of unified and AASHTO soil classification systems for soils classification Journal of Earth Sciences and Geotechnical Engineering, vol. 8, no. 1, 2018, 39-50 ISSN: 1792-9040 (print version), 1792-9660 (online) Scienpress Ltd, 2018 Correlation of unified and AASHTO classification

More information

Solution:Example 1. Example 2. Solution: Example 2. clay. Textural Soil Classification System (USDA) CE353 Soil Mechanics Dr.

Solution:Example 1. Example 2. Solution: Example 2. clay. Textural Soil Classification System (USDA) CE353 Soil Mechanics Dr. CE353 Soil Mechanics CE353 Lecture 5 Geotechnical Engineering Laboratory SOIL CLASSIFICATION Lecture 5 SOIL CLASSIFICATION Dr. Talat A Bader Dr. Talat Bader 2 Requirements of a soil Systems Why do we need

More information

Mechanical Engineering Division June 1, 2010

Mechanical Engineering Division June 1, 2010 Mechanical Engineering Division June 1, 2010 Mr. Jimmy H. Allen Leading Edge Group, Inc. 33 Lynn Batts Lane, Suite #4204 San Antonio, TX 78218 Subject: SwRI Final Report Project 18122.07.003.50cal and

More information

Sediment Control Practices. John Mathews Ohio Dept. of Natural Resources, Division of Soil and Water Resources

Sediment Control Practices. John Mathews Ohio Dept. of Natural Resources, Division of Soil and Water Resources Sediment Control Practices John Mathews Ohio Dept. of Natural Resources, Division of Soil and Water Resources Practices Treat the Largest Soil Particles Sand Sand Silt Clay Treated Untreated Settleable

More information

Goundwater Seepage Mechanisms of Streambank Erosion and Failure

Goundwater Seepage Mechanisms of Streambank Erosion and Failure Goundwater Seepage Mechanisms of Streambank Erosion and Failure Taber L. Midgley M.S. Student Garey A. Fox Associate Professor Abdulsahib Al-Madhhachi Ph.D. Student Rachel Carson M.S. Student Biosystems

More information

ACT Science Homework Science 2, Set 1 35 Minutes 38 Questions

ACT Science Homework Science 2, Set 1 35 Minutes 38 Questions ACT Science Homework Science 2, Set 1 35 Minutes 38 Questions Passage I DIRECTIONS: There are seven passages in this test. Each passage is followed by several questions. After reading a passage, choose

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Geotechnical Investigation

Geotechnical Investigation Geotechnical Investigation Slope Stability Analysis for the Existing Slope Southwest of the Proposed Condo Developments 50 Ann Street, Bolton, Ontario Prepared For: Brookfield Homes (Ontario) Limited GeoPro

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information