Mechanical Engineering Division June 1, 2010

Size: px
Start display at page:

Download "Mechanical Engineering Division June 1, 2010"

Transcription

1 Mechanical Engineering Division June 1, 2010 Mr. Jimmy H. Allen Leading Edge Group, Inc. 33 Lynn Batts Lane, Suite #4204 San Antonio, TX Subject: SwRI Final Report Project cal and 20mm FSP Testing of Compressed Soil Block Wall Dear Mr. Allen, Please find the attached report for the ballistics testing conducted on May 28, This report contains detailed results from the ballistic testing of your compressed soil block wall. Please feel free to contact me at or via at if you have any technical questions. SwRI looks forward to assisting Leading Edge Group, Inc. with their future development and testing programs. Regards, James A. Dodson Engineer Ballistics and Explosives Range APPROVED: cc: Record Copy A Record Copy B Donald Grosch Manager Ballistics and Explosives Range

2 20mm and.50cal FSP Testing of Compressed Soil Block Wall Final Report SwRI Project No Prepared for: M r. Jimmy H. Allen Leading Edge G roup, Inc. 33 Lynn Batts Lane, Suite #4204 San Antonio, T X Prepared by: J. Austin Dodson Southwest Research Institute 6220 Culebra Road San Antonio, Texas May 2010 SOUTHWEST RESEARCH INSTITUTE

3 Background Southwest Research Institute (SwRI ) was contracted by Leading Edge Group, Inc. (LEGI) to conduct the ballistic testing of a small-scale compressed soil block wall. The purpose of this effort was to subject the wall, built with compressed soil blocks, to large caliber ballistic threats and observe the resulting damage. This study provided preliminary data on target performance versus the 20mm and.50cal fragment simulating projectiles ( ) at relatively high velocities. The tests were conducted May 28, 2010 in the Medium Caliber Range at SwRI and witnessed by Jimmy Allen of LEGI. This report encompasses the testing performed on the soil block wall sample. Target The test article was brought to the SwRI campus by LEGI personnel on the day of testing. One small scale soil block wall was provided. The 100% soil-only blocks used to construct the test article were produced by the LEGI S480 Compressed Soil Block Machine distributed by Leading Edge Group, Inc. According to LEGI, the blocks were not modified or altered in any manner, nor were they reinforced with additives, binders, or polymers, and no stabilizing agents such as lime or cement were incorporated into the test blocks. The as-delivered sample was 14-inches deep by 24-inches wide by 22-inches tall, and was constructed out of 18 compressed soil blocks of three different sizes: 4-inch x 3.5-inch, 7-inch x 3.5-inch, and 10-inch x 3.5-inch. The soil blocks were surrounded by a wood frame constructed out of 1.5-inch x 12-inch wooden planks. A lifting eye was attached to the top of the frame for ease of maneuverability. Since the wooden frame was smaller than the depth of the block wall, there was an overhang of approximately 1.25-inches on the front and back. Figure 1 displays the test article. Strike Face 2 Side View (1.25-inch overhang on each side) Figure 1 Small Scale Compressed Soil Block Wall.

4 Threat Rounds The.50cal and 20mm FSP was used as the threat round during this effort. All projectiles were manufactured according to MIL-P-46593A. These hardened steel projectiles are machined out of 4340 steel and have a blunt nose. FSPs are commonly used to simulate fragments formed during the detonation of cased munitions. Tolerances for the.50cal and 20mm FSP can be found in MIL-P-46593A. Typical.50cal and 20mm FSPs are shown below in Figure 2. Technical drawings for both threat rounds can be found in Appendix A. Table 1 FSP Information Round Weight Material / Body Diam. Body Length (grains) Hardness (inches) (inches).50 cal FSP / RC mm FSP / RC Figure 2 20mm,.50cal,.30cal F ragment Simulating Projectiles (units in mm). Test Methodology All testing was conducted at the Medium Caliber Range located at SwRI. The FSPs were fired from rifled barrels without the use of sabots. Impact location was confirmed using a bore mounted laser for the 20mm test, and by bore sighting for the.50cal test. Testing was done in an indoor facility where the muzzle of the gun was approximately 22 feet from the target. 3

5 Figure 3 Medium Caliber Gun System. Projectile impact velocities were measured using two sets of Oehler Model 57 photoelectric chronographs located between the gun and the target (Figure 4). The spacing between each set of chronographs was 48 inches. Calibrated Hewlett Packard HP 53131A universal counters, triggered by the chronographs, record the projectile travel time between screens. Projectile velocity was then calculated using the recorded travel times and the known travel distance. An average of the two calculated values was recorded as the screen velocity. The distance from the center of the screens to the impact location is approximately 4.75 ft. Unlike bullets, FSPs tend to slow down relatively quickly due to their non ideal shape. SwRI accounts for this deceleration by determining the deceleration between the two sets of chronographs for each of the shots. This deceleration is then plotted with respect to the average recorded velocities at the screens. A curve fit on this data is then performed to determine the deceleration to be used for each of the shot values to find the estimated strike velocity. Estimated strike velocity is calculated as follows, based on the exponential decay law with constant drag coefficient. where X is the distance from the measurement point to the target is the air density (1.225 kg/m 3 at sea level), D is the projectile caliber, m is the projectile mass, and Cd is the average drag coefficient for the effective velocity range. 4

6 Figure 4 Chronographs used for Velocity Measurements. Target Holder ed the targets on all four sides as is shown in Figure 5. The target holder was constructed out of 2 inch x 3 inch x 1/4 inch structural tubing forming a window frame with two long horizontal supports which were clamped to a large, massive frame. The target was centered on the opening in the target holder which was 20- inches x 20-inches. This supported the soil by 2-inches on each side and 1-inch on the top and bottom. The article was secured to the test frame using 2-inch ratchet straps on the top and bottom. In order to prevent the target from falling if the straps became loose during testing, a hoist was used to support the article on top during the tests. Pass/Fail for this program was based on the ability of the soil block wall to stop the threat round and protect an aluminum witness plate located behind the target. MIL-STD-662F requires the use of aluminum witness panels to determine the success or failure of a target sample against a given threat. If the witness panel was damaged such that light can pass through it, a complete penetration (or fail) of the target was recorded. Damage to the witness panel can be caused either by the projectile or by spall from the target. A partial penetration (or pass) was recorded if the witness plate was not perforated during the test. The witness panels used during the tests were 12 inch x 16 inch 2024-T3 aluminum panels and measured inches thick. Witness panels were held approximately six inches behind the rear face of the target. 5

7 Test Results Front Isometric View Rear View (Red Target Holder) Figure 5 Test Setup for Soil Block Wall Sample. The following section is divided by threat type..50cal FSP One shot was taken using the.50 cal FSP threat. The shot location was towards the bottom of the soil block wall sample on a middle 10-inch x 3.5-inch block (See Figure 6). Strike velocity was 3,358 ft/s for this test, taking into account the adjustment for projectile drag. Post-test, material spalled from the strike face leaving a 4-inch x 5-inch x 1-inch surface crater along with. The FSP penetrated the target to a depth of 4.75-inches, and remained fully contained within the compressed soil block wall. The back face of the test article directly behind the impact location was unscathed. The witness plate was not impacted. Figure 7 details the damage to the soil block wall. The back face damage above the tested block seen in the figure was due to a previous test on the wall which will not be discussed in this report. 6

8 Figure 6.50 cal FSP Shot Location. (Note: Actual target was pre-damaged by first test) 20mm FSP Strike Face Post-.50 cal FSP Test 7 Back Face Post-.50 cal FSP Test Figure 7.50cal FSP Post-Test Images of Soil Block Wall Sample. One shot was taken using the 20mm FSP threat. The shot location was towards the top of the soil block wall sample, 6-inches from the left edge, on a 10-inch x 3.5-inch block (See Figure 8). Strike velocity was 4,509 ft/sec for this test, taking into account the adjustment for projectile drag. Post-test, material spalled from the strike face leaving an approximately 1.5-inch deep crater. The FSP was still fully embedded in the target and could be seen on the back face at a depth of 2.75-inches. Depth of penetration of the FSP was inches based on the 14-inch depth of the wall and the location of the FSP in the target. Spalled material from the back face impacted the witness plate, but no perforation occurred. Figure 9 details the damage to the soil block wall.

9 Figure 8 20mm FSP Shot Location. (Note: Actual target was pre-damaged by first two tests) Strike Face Post-20mm FSP Test Back Face Post-20mm FSP Test (FSP Circled) Figure 9 20mm FSP Post-Test Images of Soil Block Wall Sample. 8

10 Summary A small scale compressed soil block wall was tested against fragment simulating projectiles (FSPs). Single shots were fired using the.50 cal and 20mm FSPs. Neither test resulted in perforation of the witness plate, though the 20mm test generated some back face spall. Both rounds remained entirely encapsulated within the test article post-test. Table 2 gives a summary of the shots taken on the soil block wall. Appendix B displays additional post-test photos from the FSP shots. Threat Screen Velocity (ft/s) Estimated Strike V elocity (ft/s) Table 2 Summary of Tests Pass/ F ail Comments.50cal FSP 3,401 3,358 Pass 4.75-inch depth of pen., witness clean 20mm FSP 4,544 4,509 Pass inch depth of pen., witness hit by spall, no perfs 9

11 Appendix A Detailed Drawing of F ragment Simulating Projectiles A-1

12 .50cal FSP Detailed Drawing 20mm FSP Detailed Drawing A-2

13 Appendix B Photos of Overall Target Condition, Post-Test B-1

14 Soil Block Wall Strike Face Soil Block Wall Back Face B-2

15 20mm FSP Strike Face C rater (FSP Removed F rom Target).50 cal FSP Strike Face Damage B-3

16 Left Side of Back Face, 20mm Hole on Top Right B-4

PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García

PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRIL 2007 PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García Laboratorio Químico Central

More information

Figure 6. Partom diagram for two layer target.

Figure 6. Partom diagram for two layer target. Lecture 11 Penetration Mechanics II Figure 6. Partom diagram for two layer target. 3. Layered Targets For relatively long projectiles, it is often very helpful to analyze impacts in terms of a P-L diagram

More information

10. Ballistic Pendulum*

10. Ballistic Pendulum* 10. Ballistic Pendulum* Use is made of a ballistic pendulum to determine projectile velocity. Learning Objectives: 1. Explore the ideas of energy and momentum conservation, particularly the conditions

More information

4-14X44 FRONT FOCAL PLANE SCOPE WITH ARC-2 MOA RETICLE

4-14X44 FRONT FOCAL PLANE SCOPE WITH ARC-2 MOA RETICLE 4-14X44 FRONT FOCAL PLANE SCOPE WITH ARC-2 MOA RETICLE MPN: PA4-14XFFP-ARC2-MOA UPC: 8 18500 01279 5 INTRODUCING THE 4-14X44 FFP ARC-2 MOA The 4-14x44 Front Focal Plane scope is a proven tough rifle optic

More information

PENETRATION LIMITS OF CONVENTIONAL LARGE CALIBER ANTI TANK GUNS/KINETIC ENERGY PROJECTILES

PENETRATION LIMITS OF CONVENTIONAL LARGE CALIBER ANTI TANK GUNS/KINETIC ENERGY PROJECTILES - TB-33/1 - PENETRATION IMITS OF CONVENTIONA ARGE CAIBER ANTI TANK GUNS/KINETIC ENERGY PROJECTIES W. anz (1), W. Odermatt () (1) Swiss Federal Armament Works, CH-360 Thun, Switzerland () efence Technology

More information

Those data on the time required for the pitch to traverse various distances were measured in

Those data on the time required for the pitch to traverse various distances were measured in APPENDIX A: Ball Timing Measurements Those data on the time required for the pitch to traverse various distances were measured in the following way. To measure the time at which the ball was released from

More information

NATIONAL INSTITUTE OF JUSTICE COMPLIANCE TEST REPORT

NATIONAL INSTITUTE OF JUSTICE COMPLIANCE TEST REPORT COMPLIANCE TESTING INFORMATION FACILITY DESCRIPTION: TESTING CERTIFICATION: Test Laboratory: United States Test Laboratory, LLC Report Number: 06N074 Laboratory Representative: Richard W. Mouser Witnessed

More information

Instructions for using the Point Mass Ballistics Solver 2.0 Computer Program

Instructions for using the Point Mass Ballistics Solver 2.0 Computer Program Instructions for using the Point Mass Ballistics Solver 2.0 Computer Program Overview This ballistics program was designed to be an educational tool, as well as a functional and accurate program for generating

More information

Acoustic methods for measuring bullet velocity

Acoustic methods for measuring bullet velocity Acoustic methods for measuring bullet velocity Michael Courtney Ballistics Testing Group, P.O. Box 24, West Point, NY 0996 Michael_Courtney@alum.mit.edu Abstract: This article describes two acoustic methods

More information

PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK

PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK Submitted by Bob W. Bielenberg, M.S.M.E., E.I.T. Research Associate Engineer Ronald K. Faller, Ph.D., P.E. Research Assistant Professor

More information

BALLISTIC PERFORMANCE OF MONOLITHIC CERAMIC BACKED BY S2-GLASS/ VINYL ESTER COMPOSITES

BALLISTIC PERFORMANCE OF MONOLITHIC CERAMIC BACKED BY S2-GLASS/ VINYL ESTER COMPOSITES BALLISTIC PERFORMANCE OF MONOLITHIC CERAMIC BACKED BY S2-GLASS/ VINYL ESTER COMPOSITES A. Haque, A. Abutalib, K. Rahul, U. K. Vaidya, H. Mahfuz and S. Jeelani Center for Advanced Materials Tuskegee University

More information

Instruction Manual. Made in Japan

Instruction Manual.   Made in Japan Instruction Manual www.ultimax6.eu Made in Japan Congratulation on the purchase of your new UltimaX scope! Introduction These instructions are provided to guide you in the correct use of the riflescope.

More information

User Manual for Blackhawk Riflescope

User Manual for Blackhawk Riflescope User Manual for Blackhawk Riflescope Scope with Adjustable Objective page 3 Scope with Sniper Edge page 7 WARNING BE CERTAIN THAT YOUR FIREARM IS NOT LOADED AND POINTED AWAY FROM YOU IN A SAFE DIRECTION.

More information

Platinum Series. 6-30x56 Front Focal Plane Scope. with Patented ACSS.308/.223 HUD DMR Reticle. Advanced Combined Sighting System

Platinum Series. 6-30x56 Front Focal Plane Scope. with Patented ACSS.308/.223 HUD DMR Reticle. Advanced Combined Sighting System 6-30x56 Front Focal Plane Scope with Patented ACSS.308/.223 HUD DMR Reticle Advanced Combined Sighting System combining Bullet Drop Compensation, Range Estimation, Wind and Leads in one easy-to-use system

More information

Hit 24 5-inch Mount No. 5

Hit 24 5-inch Mount No. 5 Hit 24 5-inch Mount No. 5 From the BuShips damage report: 34. Five-inch mount No. 5 was hit a glancing blow by an estimated 6-inch projectile. The 2- inch STS was sprung but not penetrated and minor structural

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

FIRST MIDTERM - REVIEW PROBLEMS

FIRST MIDTERM - REVIEW PROBLEMS Physics 10 Spring 009 George Williams FIRST MIDTERM - REVIEW PROBLEMS A data sheet is provided at the end. Problems labeled [Ch. 4] are relevant to the second midterm. 1. Convert 747 m to feet. Convert

More information

Machine Gun Sight (MGS)

Machine Gun Sight (MGS) Machine Gun Sight (MGS) Crew Served Weapon Sight (Model: MGS-XXX) 2016 Company Proprietary The Machine Gun Sight (MGS) Tested with 20,000+ rounds Background IT&T successfully introduced red-dot sights

More information

THE BALLISTIC COEFFICIENT. William T. McDonald Ted C. Almgren December, 2008

THE BALLISTIC COEFFICIENT. William T. McDonald Ted C. Almgren December, 2008 THE BALLISTIC COEFFICIENT William T. McDonald Ted C. Almgren December, 2008 The term ballistic coefficient is familiar to most shooters today. They know that the ballistic coefficient of a bullet is a

More information

A New Aerial Shell Ballistic Model Experimentally Verified

A New Aerial Shell Ballistic Model Experimentally Verified An earlier version appeared in: 11 th International Symposium on Fireworks (29). A New Aerial Shell Ballistic Model Experimentally Verified L. Weinman Schneier/Weinman Consultants Austin, TX, USA Lawrence@Weinman.Net

More information

DRIFTER PLOW-IN-A-BOX

DRIFTER PLOW-IN-A-BOX DRIFTER PLOW-IN-A-BOX ASSEMBLY / OWNER S MANUAL Part No: 10-0550 OPERATING INSTRUCTIONS Congratulations! You ve just purchased one of the industry s top plow systems. The DRIFTER Plow System works great

More information

AFRL-RW-EG-TM

AFRL-RW-EG-TM STINFO COPY AFRL-RW-EG-TM-2010-092 Techniques for Capturing Radiographic Images of High Speed Penetration Events though Sand Bradley A. Breaux, Joshua M. Debes, William L. Cooper Air Force Research Laboratory,

More information

Designation: NWI DIF Horizontal Hail impact Standard

Designation: NWI DIF Horizontal Hail impact Standard Designation: NWI DIF Horizontal Hail impact Standard 2.1.2015 Standard Test Method for Materials attached to Vertical or Near Vertical Surfaces and Their Resistance to Horizontally Propelled Freezer Ice

More information

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade Phy11: General Physics I Lab page 1 of 5 Experiment: The Ballistic Pendulum Objectives: Apply the Law of Conservation of Momentum to an inelastic collision Apply the Law of Conservation of Mechanical Energy

More information

Stochastic study of 60-mm gun-projectile responses

Stochastic study of 60-mm gun-projectile responses Computational Ballistics III 77 Stochastic study of 60-mm gun-projectile responses M. Chen Army Research Laboratory, USA Abstract Gun propulsion modeling has been under development for many decades. Starting

More information

UIC Physics 105. Midterm 1 Practice Exam. Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE

UIC Physics 105. Midterm 1 Practice Exam. Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE UIC Physics 5 Midterm 1 Practice Exam Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE Multiple Choice Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 40 Total 0 Page 1 of 11 MULTIPLE

More information

Simulation of unsteady muzzle flow of a small-caliber gun

Simulation of unsteady muzzle flow of a small-caliber gun Advances in Fluid Mechanics VI 165 Simulation of unsteady muzzle flow of a small-caliber gun Y. Dayan & D. Touati Department of Computational Mechanics & Ballistics, IMI, Ammunition Group, Israel Abstract

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 11, 2009 Time: 3 hours NAME: STUDENT NO.: (Last) Please Print

More information

Physics 11 Comprehensive Exam Preparation

Physics 11 Comprehensive Exam Preparation Physics 11 Comprehensive Exam Preparation Kinematics 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

PRIMARY ARMS 4-14X44 FFP SCOPE WITH PATENTED ACSS.308/.223 HUD DMR RETICLE.

PRIMARY ARMS 4-14X44 FFP SCOPE WITH PATENTED ACSS.308/.223 HUD DMR RETICLE. PRIMARY ARMS -1X FFP SCOPE WITH PATENTED ACSS.3/.223 HUD DMR RETICLE. ESTABLISHING () OR DIALING IN YOUR SCOPE Depending on type of ammunition, barrel length and weather conditions the point of impact

More information

CRATER ANALYSIS AND REPORTING

CRATER ANALYSIS AND REPORTING APPENDIX B CRATER ANALYSIS AND REPORTING Although greater reliance should be placed on reports from trained teams, all personnel should know how to analyze craters and make the proper report. Since crater

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

PRIMARY ARMS 3X COMPACT SCOPE WITH PATENTED.223/5.56, 5.45X39,.308 ACSS RETICLE

PRIMARY ARMS 3X COMPACT SCOPE WITH PATENTED.223/5.56, 5.45X39,.308 ACSS RETICLE PRIMARY ARMS 3X COMPACT SCOPE WITH PATENTED.223/5.56, 5.45X39,.308 ACSS RETICLE READ THIS FIRST! The top Picatinny rail is NOT removable. Removing the rail could cause nitrogen to leak and void the warranty.

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

Please read each question carefully. Each question worth s 1 point. For the following questions, please circle the correct answer.

Please read each question carefully. Each question worth s 1 point. For the following questions, please circle the correct answer. Please read each question carefully. Each question worth s 1 point. For the following questions, please circle the correct answer. Part 1. 1. An object maintains its state of motion because it has A) mass

More information

DRIFTER PLOW-IN-A-BOX ASSEMBLY / OWNER S MANUAL

DRIFTER PLOW-IN-A-BOX ASSEMBLY / OWNER S MANUAL DRIFTER PLOW-IN-A-BOX ASSEMBLY / OWNER S MANUAL Part No: 10-0550 OPERATING INSTRUCTIONS Congratulations! You ve just purchased one of the industry s top plow systems. The DRIFTER Plow System works great

More information

CBRD30CP3 & BOWRD30CP INSTRUCTION MANUAL

CBRD30CP3 & BOWRD30CP INSTRUCTION MANUAL CBRD30CP3 & BOWRD30CP INSTRUCTION MANUAL PROLOGUE Your BSA Illuminated sight is for use on both compound and standard bows. Each version of the BSA illuminated sight has a specific reticle to help maintain

More information

On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam.

On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Physics 201, Final Exam Name (printed) On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Name (signed) The multiple-choice problems carry no

More information

product manual H-3220A Benkelman Beam

product manual H-3220A Benkelman Beam 05.12 product manual H-3220A Benkelman Beam General The H-3220A Benkelman Beam Apparatus is a convenient and accurate device used for measuring the deflection of flexible pavements under moving wheel

More information

Ballistic pendulum Operating Instructions Fig. 1: Ballistic pendulum SAFETY PRECAUTIONS

Ballistic pendulum Operating Instructions Fig. 1: Ballistic pendulum SAFETY PRECAUTIONS R Ballistic pendulum 11229.00 PHYWE Systeme GmbH & Co. KG Robert-Bosch-Breite 10 D-37079 Göttingen 6 3.8 3.7 3.6 3.5 Phone +49 (0) 551 604-0 Fax +49 (0) 551 604-107 E-mail info@phywe.de Internet www.phywe.de

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

Projectile Motion (Photogates)

Projectile Motion (Photogates) Projectile Motion (Photogates) Name Section Theory Projectile motion is the combination of different motions in the x and y direction. In the x direction, which is taken as parallel to the surface of the

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

PRIMARY ARMS 4-14X44 FRONT FOCAL PLANE SCOPE WITH PATENT PENDING ACSS HUD DMR 5.56 RETICLE PA4-14X44FFP-ACSS-HUD-DMR-5.56

PRIMARY ARMS 4-14X44 FRONT FOCAL PLANE SCOPE WITH PATENT PENDING ACSS HUD DMR 5.56 RETICLE PA4-14X44FFP-ACSS-HUD-DMR-5.56 PRIMARY ARMS -1X FRONT FOCAL PLANE SCOPE WITH PATENT PENDING ACSS HUD DMR 5.5 RETICLE PA-1XFFP-ACSS-HUD-DMR-5.5 INTRODUCING THE -1X FFP ACSS HUD DMR 5.5 The ACSS HUD DMR 5.5 is a revolutionary DMR reticle

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2015 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of:

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of: The exam is closed book and closed notes. There are 30 multiple choice questions. Make sure you put your name, section, and ID number on the SCANTRON form. The answers for the multiple choice Questions

More information

Quantity-Distance Determination For Third Generation Aircraft Shelters (TGAS)

Quantity-Distance Determination For Third Generation Aircraft Shelters (TGAS) Quantity-Distance Determination For Third Generation Aircraft Shelters (TGAS) Mr. Joseph Jenus, Jr. Manager, Air Force Explosives Hazard Reduction Program ASC / YOCO (EHR) Eglin AFB, FL 32542 Introduction:

More information

Air Flow through Woven Stainless Steel Mesh

Air Flow through Woven Stainless Steel Mesh Air Flow through Woven Stainless Steel Mesh Abstract It was known that a mesh screen placed across an airflow will have an evening effect, distributing both the velocity and pressure across the screen,

More information

SpecterOS3.0 Optical Sight Operation Manual

SpecterOS3.0 Optical Sight Operation Manual SpecterOS3.0 Optical Sight Operation Manual ARMAMENT TECHNOLOGY INCORPORATED 3045 ROBIE STREET, SUITE 113 HALIFAX NS B3K 4P6 CANADA sales@armament.com www.armament.com Table of Contents 1. Introduction..

More information

1-8X24 SECOND FOCAL PLANE SCOPE WITH PATENTED ACSS.223/5.56, 5.45X39,.308 WIN RETICLE PA1-8X24SFP-ACSS-5.56

1-8X24 SECOND FOCAL PLANE SCOPE WITH PATENTED ACSS.223/5.56, 5.45X39,.308 WIN RETICLE PA1-8X24SFP-ACSS-5.56 1-8X24 SECOND FOCAL PLANE SCOPE WITH PATENTED ACSS.223/5.56, 5.45X39,.308 WIN RETICLE PA1-8X24SFP-ACSS-5.56 ACHIEVING A CLEAR RETICLE PICTURE INTRODUCING THE 1-8X24 SECOND FOCAL PLANE SCOPE The ACSS (Advanced

More information

MINIMUM IMPACT ENERGY FOR KE-PENETRATORS IN RHA-TARGETS

MINIMUM IMPACT ENERGY FOR KE-PENETRATORS IN RHA-TARGETS MINIMUM IMPACT ENERGY FOR KE-PENETRATORS IN RHA-TARGETS LANZ W. (), ODERMATT W. () () Swiss Ordnance Enterprise Corporation, Allmendstrasse 86, CH-360 Thun, Switzerland () Defence Procurement Agency, Feuerwerkerstrasse

More information

Ballistic Pendulum. Equipment. Introduction. Setup

Ballistic Pendulum. Equipment. Introduction. Setup 35 Ballistic Pendulum 35 - Page 1 of 5 Equipment Ballistic Pendulum 1 Rotary Motion Sensor PS-2120A 2 Photogate Head ME-9498A 1 Mounting Bracket ME-6821A 1 Large Table Clamp ME-9472 1 90 cm rod ME-8738

More information

Advances in Military Technology Vol. 7, No. 1, June 2012

Advances in Military Technology Vol. 7, No. 1, June 2012 AiMT Advances in Military Technology Vol. 7, No. 1, June 2012 Ballistic Limit Evaluation for Impact of Pistol Projectile 9 mm Luger on Aircraft Skin Metal Plate J. Hub 1*, J. Komenda 2 and M. Novák 3 1

More information

476th vfighter Group Weapon Fact Sheet 1: GAU-8/A Avenger

476th vfighter Group Weapon Fact Sheet 1: GAU-8/A Avenger Weapon Fact Sheet 1: GAU-8/A Avenger INTRODUCTION The gun subsystem consists of a seven-barrel GAU-8/A 30mm Gatling gun and a doubleended link less feed system with a capacity up to 1,174 rounds of percussion

More information

World s Foremost Outfitter World s Foremost Outfitter

World s Foremost Outfitter World s Foremost Outfitter Important: Always make sure your firearm, including the magazine, is empty of ammunition before doing any work on it. This includes mounting and adjusting your riflescope. USER GUIDE caliber specific scopes

More information

Experiment 4: Projectile Motion

Experiment 4: Projectile Motion Experiment 4: Projectile Motion EQUIPMENT Figure 4.1: Ballistic Pendulum (Spring Gun) Pasco Ballistic Pendulum (Spring Gun) 2-Meter Stick Meter Stick Ruler Plumb Bob Carbon Paper Target Paper Launch Platform

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

[TERMINAL HANDGUN BALLISTICS] Ballistic Firearms Training Center. Douglas O. Brown

[TERMINAL HANDGUN BALLISTICS] Ballistic Firearms Training Center. Douglas O. Brown 2016 Ballistic Firearms Training Center Douglas O. Brown [TERMINAL HANDGUN BALLISTICS] Terminal handgun ballistics illustrating kinetic energy, momentum, recoil, and bullet energy for self-defense cartridges.

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

10 May Rod Walls - Director Facilities New Construction, Sustainability Hays CISD IH 35 Kyle, Texas 78640

10 May Rod Walls - Director Facilities New Construction, Sustainability Hays CISD IH 35 Kyle, Texas 78640 10 May 2017 Rod Walls - Director Facilities New Construction, Sustainability Hays CISD 21003 IH 35 Kyle, Texas 78640 Re: Hays CISD Proposed ES15 Site, Buda Phase II Soil Sampling Dear Rod: Concern has

More information

Textile armor materials are widely used for protection

Textile armor materials are widely used for protection Comparative Evaluation of Ballistic Resistance of Textile Armor Packages Against Steel and Lead Bullets V. A. Grigoryan, I. F. Kobylkin, I. A. Bespalov JSC NII STALI, Moscow, Russia Textile armor materials

More information

Influence of the collision speed and angle of a bullet: experimental reconstruction of bullet configuration and FE-analysis

Influence of the collision speed and angle of a bullet: experimental reconstruction of bullet configuration and FE-analysis Computational Methods and Experimental Measurements XIII 109 Influence of the collision speed and angle of a bullet: experimental reconstruction of bullet configuration and FE-analysis H. Sakamoto 1, T.

More information

USER MANUAL REFLEX SIGHT. Ultra Shot Z Series. English / Francais / Español / Deutsch

USER MANUAL REFLEX SIGHT. Ultra Shot Z Series. English / Francais / Español / Deutsch USER MANUAL REFLEX SIGHT Ultra Shot Z Series English / Francais / Español / Deutsch ABOUT SIGHTMARK Sightmark offers a wide range of products that include red dot scopes, reflex sights, rangefinders, riflescopes,

More information

Physics 11 Fall 2012 Practice Problems 4

Physics 11 Fall 2012 Practice Problems 4 Physics 11 Fall 2012 Practice Problems 4 1. Under what conditions can all the initial kinetic energy of an isolated system consisting of two colliding objects be lost in a collision? Explain how this result

More information

1 of 6 10/21/2009 6:33 PM

1 of 6 10/21/2009 6:33 PM 1 of 6 10/21/2009 6:33 PM Chapter 10 Homework Due: 9:00am on Thursday, October 22, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment

More information

PHYSICS 218. Final Exam SPRING, Do not fill out the information below until instructed to do so! Name: Signature: Student ID:

PHYSICS 218. Final Exam SPRING, Do not fill out the information below until instructed to do so! Name: Signature: Student ID: PHYSICS 218 Final Exam SPRING, 2015 Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: You have the full class period to complete the

More information

Circular Motion and Centripetal Force

Circular Motion and Centripetal Force [For International Campus Lab ONLY] Objective Measure the centripetal force with the radius, mass, and speed of a particle in uniform circular motion. Theory ----------------------------- Reference --------------------------

More information

COMMITMENT. &SOLUTIONS Act like someone s life depends on what we do. UNPARALLELED

COMMITMENT. &SOLUTIONS Act like someone s life depends on what we do. UNPARALLELED Characterization of Machine Gun Barrel Temperature and Stress Conditions Through Correlation of Testing and Numerical Methods Presented at: NDIA Armament Systems Forum Indianapolis, IN May 2018 UNPARALLELED

More information

Conservation of Momentum in Two Dimensions

Conservation of Momentum in Two Dimensions Conservation of Momentum in Two Dimensions Consider the two-dimensional (glancing) collision shown below. Here, mass m 1 travels to the right along the x-axis with velocity v 1o and strikes mass m 2 initially

More information

Estimation of Shot Error due to Rifle Cant

Estimation of Shot Error due to Rifle Cant Estimation of Shot Error due to Rifle Cant Dr. Lyman Haelton EMPYREAL SCIENCES LLC Grapevine, TX, USA 3 October 2017 Abstract This article presents simplified physics for the estimation of horiontal and

More information

SWAROVSKI OPTIK NORTH AMERICA LTD

SWAROVSKI OPTIK NORTH AMERICA LTD BRH(I) / BRX RETICLE General Information: Congratulations on your purchase of a SWAROVSKI OPTIK Rifle Scope with the BRH(I)/BRX Reticle System. These reticles were designed primarily for long range shooting

More information

The effect of concrete target diameter on projectile deceleration and penetration depth

The effect of concrete target diameter on projectile deceleration and penetration depth International Journal of Impact Engineering 32 (2) 1584 1594 www.elsevier.com/locate/ijimpeng The effect of concrete target diameter on projectile deceleration and penetration depth D.J. Frew a,, M.J.

More information

Exam 2--PHYS 101--Fall 2014

Exam 2--PHYS 101--Fall 2014 Class: Date: Exam 2--PHYS 101--Fall 2014 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider these vectors. What is A-B? a. a c. c b. b d. d 2. Consider

More information

Numerical sensitivity studies of a UHMWPE composite for ballistic protection

Numerical sensitivity studies of a UHMWPE composite for ballistic protection Structures Under Shock and Impact XIII 371 Numerical sensitivity studies of a UHMWPE composite for ballistic protection T. Lässig 1, W. Riedel 1, U. Heisserer 2, H. van der Werff 2, M. May 1 & S. Hiermaier

More information

Extended Range Truing, Why and How

Extended Range Truing, Why and How Extended Range Truing, Why and How For a hundred and fifty years, ballisticians have sought to improve their predictions of the path of the bullet after it leaves the gun. The bullet s behavior is primarily

More information

v ox Motion in Two Dimensions (Projectile Motion)

v ox Motion in Two Dimensions (Projectile Motion) Motion in Two Dimensions (Projectile Motion) In this experiment we will study motion in two-dimensions. An object which has motion in both the X and Y direction has a two dimensional motion. We will first

More information

Galileo Telescope Solar Viewer Joseph Hora, Elizabeth Hora 2017/09/18

Galileo Telescope Solar Viewer Joseph Hora, Elizabeth Hora 2017/09/18 Galileo Telescope Solar Viewer Joseph Hora, Elizabeth Hora 2017/09/18 17 7.75 5 2 1.5 3 2 1.5 Materials: (all dimensions in inches) 3x plywood sheet 17 x 7.75 x ½ 3x wood block cut from 2x4: 5 x 2 x 1.5

More information

In Association With. Introduces. TPT Contractor

In Association With. Introduces. TPT Contractor In Association With Introduces TPT Contractor Software for Contractors with TENSIONMETERS Table of Contents Capabilities 4 Setup and Use 7 The Dashboard 12 Tower Setup Form 18 Field Calibration Verification

More information

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System)

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System) Name Class Date Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Momentum P24 Linear Angular.DS P28 Cons

More information

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) 1980M2. A block of mass m slides at velocity v o across a horizontal frictionless surface toward a large curved movable ramp

More information

FORCE AND LAWS OF MOTION

FORCE AND LAWS OF MOTION 9 FORCE AND LAWS OF MOTION TEXTBOOK QUESTIONS AND THEIR ANSWERS Q. 1 Which of the following has more inertia : (a) A rubber ball and a stone of the same size? (b) A bicycle and a train? (c) A five rupees

More information

strong week contain ten

strong week contain ten fine became strong built produce half though week round bring stars fly explain circle minutes building contain check done heat person ten special hot size building inches road dry wheels verb finally

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

The Ballistic Pendulum

The Ballistic Pendulum The Ballistic Pendulum Physics 110 Laboratory Angle indicator Vertical upright θ R cm R b Trigger String cm Projectile Launcher Ballistic Pendulum Base m v cm after h Ramrod Steel ball before In this experiment

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

Statistical Methods for Determining Optimal Rifle Cartridge Dimensions

Statistical Methods for Determining Optimal Rifle Cartridge Dimensions Statistical Methods for Determining Optimal Rifle Cartridge Dimensions Steven Matthew Anderson a, Shahar Boneh, Nels Grevstad Department of Mathematics, Metropolitan State College of Denver, Denver, CO

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

The Ballistic Pendulum

The Ballistic Pendulum The Ballistic Pendulum Experimental Objectives The objective of this experiment is to study the law of conservation of momentum. We will apply the principle of conservation of linear momentum to a case

More information

Rock Scaling Recommendations Logan Creek Drive Cut Slope

Rock Scaling Recommendations Logan Creek Drive Cut Slope Rock Scaling Recommendations Logan Creek Drive Cut Slope US 50, Milepost DO 8.47 to DO 8.61 Douglas County, Nevada January 2008 MATERIALS DIVISION STATE OF NEVADA DEPARTMENT OF TRANSPORTATION MATERIALS

More information

Detonation initiation by hypervelocity projectiles

Detonation initiation by hypervelocity projectiles Detonation initiation 1 Detonation initiation by hypervelocity projectiles J. Bélanger, M.Kaneshige,J.E.Shepherd California Institute of Technology Pasadena, CA 91125 USA Abstract: We report experimental

More information

FLIGHT DYNAMICS OF A PROJECTILE WITH HIGH DRAG RETARDER DEVICES AT SUBSONIC VELOCITIES

FLIGHT DYNAMICS OF A PROJECTILE WITH HIGH DRAG RETARDER DEVICES AT SUBSONIC VELOCITIES EB02 19th International Symposium of Ballistics, 7 11 May 2001, Interlaken, Switzerland FLIGHT DYNAMICS OF A PROJECTILE WITH HIGH DRAG RETARDER DEVICES AT SUBSONIC VELOCITIES A. Dupuis1 and W. Hathaway2

More information

LEAPERS, INC. RED/GREEN DOTS

LEAPERS, INC. RED/GREEN DOTS LEAPERS, INC. 1 RED/GREEN DOTS range estimating scopes UTG reticle intensified scopes TOTAL SOLUTION TO YOUR NEEDS -COMMITMENT TO BEST QUALITY, BEST VALUE AND BEST SERVICEwww.LEAPERS.com 32700 Capitol

More information

(1) (3)

(1) (3) 1. This question is about momentum, energy and power. (a) In his Principia Mathematica Newton expressed his third law of motion as to every action there is always opposed an equal reaction. State what

More information

x Builders Level Service Manual

x Builders Level Service Manual 40-690 22x Builders Level Service Manual Item Description Pages.0 Overall Instrument Assembly 2. Main Assembly 2.2 Telescope Assembly 3.3 Base Assembly 4.4 Frame Assembly 5 2.0 Calibration 6-8 2. Vial

More information

THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY

THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY Objectives 1) To study the laws of conservation of energy, conservation of momentum, and the elements of projectile motion using the ballistic

More information

LAW WOODEN CLOCK 1 GENERAL ASSEMBLY SHT 1 OF 10 SHTS. Designed by: BRLAW

LAW WOODEN CLOCK 1 GENERAL ASSEMBLY SHT 1 OF 10 SHTS. Designed by: BRLAW Woodenclocks Clock1 The drawings on the following pages contain plans to build the wooden clock shown above. For further information and more detailed rendered images visit SHT 1 OF 10 SHTS GENERAL ASSEMBLY

More information

1x6-24mm Combat Rifle Scope (CRS)

1x6-24mm Combat Rifle Scope (CRS) 1x6-24mm Combat Rifle Scope (CRS) Photo by: Oleg Volk Specs for 1-6x24mm CRS Description Specs Tube diameter 30mm Objective diameter 24mm Magnification 1x6 Field of view @ 100yd 1x95 6x15.7 Eye relief

More information

Angle of Impact Determination from Bullet Holes

Angle of Impact Determination from Bullet Holes Technical Note Angle of Impact Determination from Bullet Holes Kenton S. Wong 1 John Jacobson 2 Abstract: This paper discusses using the shape of a bullet hole to determine the angle of impact of the bullet.

More information

Table of Contents. Specifications 1 Adjustments 2 Using the Reticle 8 Maintenance 16 Troubleshooting 18 SS Warranty 19

Table of Contents. Specifications 1 Adjustments 2 Using the Reticle 8 Maintenance 16 Troubleshooting 18 SS Warranty 19 1 2 Table of Contents Specifications 1 Adjustments 2 Using the Reticle 8 Maintenance 16 Troubleshooting 18 SS Warranty 19 3 Specifications Tube Diameter Length Weight Eye Relief Field of View @ 100 Yards

More information

Shelling of the Markale Market in Sarajevo 5th February 1994 Review of Methods Used to Predict the Impact Velocity of the Mortar Bomb

Shelling of the Markale Market in Sarajevo 5th February 1994 Review of Methods Used to Predict the Impact Velocity of the Mortar Bomb Dr DF Allsop Defence Academy of the UK Cranfield University Dept of Engineering and Applied Science Shrivenham Swindon SN6 8LA United Kingdom Shelling of the Markale Market in Sarajevo 5th February 1994

More information