Design and Fabrication of a Micro-size Thermionic Ionization/Flame Ionization Detector for Gas Phase Chemical Analytes

Size: px
Start display at page:

Download "Design and Fabrication of a Micro-size Thermionic Ionization/Flame Ionization Detector for Gas Phase Chemical Analytes"

Transcription

1 Design and Fabrication of a Micro-size Thermionic Ionization/Flame Ionization Detector for Gas Phase Chemical Analytes Polysilicon air-bridge filament heater with integrated electrodes Robert Manley 22 nd Annual Conference on Microelectronic Engineering May 11, 2004

2 Motivation Portable chemical detection becoming more necessary in today s world Need a sensitive device that can detect a large variety of chemical species The detector needs to fast To design a device in a way that can be fabricated and packaged easily Micro-sized TID/FID May 11, 2004 R. Manley 2

3 Ionization Detector and GC analysis Gas Chromatography Method for separating mixtures into individual components Very reliable method Has matured over a half a century Why a Ionization detector? Sensitive to a larger variety of organic and phosphorus and nitrogen containing compounds PPB delectability Have control over the sensitivity Very fast Can be made very small Sample output from a GC with 22 peeks (Ref: [1]) May 11, 2004 R. Manley 3

4 Theory of Ionization Detection Polysilicon Micro-filament heater Make hot Thermionic emission occurs causing ionization Force ions to a collection plate Measure resulting current or voltage Biasing Plate Resistive Heater Ionic current Collection Plate Amplified Current May 11, 2004 R. Manley 4

5 Modes of Operation Thermionic Ionization Detector N 2 N2 Can detect many different species if hot enough Requires more power than other detectors Nitrogen-Phosphorus Detector Flame Ionization Detector H 2 H 2 Alkali salt coating H 2 N H 2 2 Pt base coating H 2 H 2 H 2 H 2 Coat heater with Alkali salt Lowers work function Sensitivity increase for nitrogen and phosphorus containing compounds Coat heater with platinum base compound Add H 2 fuel Catalytic combustion occurs, ionizing species (chemi-ionization) May 11, 2004 R. Manley 5

6 Fabrication Process MEMS surface micromachining techniques utilized Simple, three mask level process 1. Deposit 5000Å silicon nitride 3. Pattern and etch sacrificial oxide in BOE 2. Deposit sacrificial oxide, 3µm PECVD TEOS 4. RCA clean and deposit 2µm of polysilicon May 11, 2004 R. Manley 6

7 Fabrication Process 5. Coat poly with N-type spin-on-glass 8. Pattern and etch Al and polysilicon to isolate structure (RIE) 6. Drive dopant in at 1050 C for 120 minutes, Strip off SOG in BOE 9. Pattern and etch Al (wet) 7. Deposit 7500Å aluminum via Sputtering 10. Remove sacrificial oxide in 49% HF May 11, 2004 R. Manley 7

8 Micro-heater Designs Straight, Serpentine and Mesh heater designs Electrodes places 100 to 500µm from heating elements Designed to be low resistance (100O) Heat to C with 15 to 20V Die dimensions: 4.5 x 6.5mm May 11, 2004 R. Manley 8

9 Polysilicon Silicon Nitride Fabrication Issues Un-etched Sacox Si Slow sacox etch About 4100Å/min (Literature says about 18,000 Å/min in 49% HF) Possible carbon build up on sidewalls during poly etch Clean in O 2 plasma increased etch rate to about 7500Å/min Capillary forces prevent complete structure release Vapor bubbles forming under poly structure when heated Rectified by rinsing after release in DI Water / IPA / DI Wafer / IPA and baking at 200 C for 10 minutes on a hotplate May 11, 2004 R. Manley 9

10 Testing of TID: TCR and Heating Resistance of heater dependant on both on thermal coefficient of expansion and thermal coefficient of resistance At higher temperature, more intrinsic carries form but also the size of the heater resistor gets larger and deflects upwards R 1 R 0 T T = TCR Average TCR / C Estimated Temp: C 46V, 68mA R = 705O o Resistance (O) Resistance of 300µm Structure at Given Temperature Micro-heater 1 Micro-heater 2 Micro-heater Temerature ( C) 3mm x 300µm Heater filament May 11, 2004 R. Manley 10

11 Testing of TID: Chemical Detection Current Setup Nitrogen 1/4in Tubing Testing Probes Swage Union Tee Chuck TID Chip Cotton Swab Soaked in Acetone Test Package Fabrication Modified TO-8 IC can May 11, 2004 R. Manley 11

12 Testing of TID: Chemical Detection Used HP4145A as a glorified picoammeter 100V Bias applied to plate -2.00E E-02 Chip 1 Signal 5/9/2004 8:18AM Analyte: Acetone, 100V Bias, Heater already on 50V, 80mA Current (ma) -2.20E E E E E E-02 Acetone Present Detector Response -2.80E E E Time (sec) May 11, 2004 R. Manley 12

13 Testing of TID: Chemical Detection -1.50E-02 Chip 2 Signal 5/9/2004 9:12AM Analyte: Acetone, 100V Bias -1.70E E-02 Turn on Heater Acetone Present Detector Response Current (ma) -2.10E E E E E Time (sec) Signal not as clean as first run, but present Turning on heater may ionize surface contamination May 11, 2004 R. Manley 13

14 Conclusion Successful fabrication of a micro-heater filament with integrated electrodes, using doped polysilicon was performed using MEMS surface micromachining techniques By measuring the TCR of the micro-heaters, it was was estimated that temperatures above 800 C were attained Successful detection of a gaseous chemical analyte, acetone, was performed May 11, 2004 R. Manley 14

15 Future Work To quantify the lower delectability limit of TID Redesign of the device to operate at low power and higher temperature Test the device in both the NPD mode and FID mode Research lower work function materials, that are fab friendly, for heater designs May 11, 2004 R. Manley 15

16 Acknowledgements Advisors Dr. Lynn Full Dr. Ronald Manginell SMFL Dr. Karl Hirschman Tom Grimsley Scott Blondell Bruce Tolleson John Nash David Yackoff Charles Gruener Assistance and Support Vee Chee Hwang SEM Imaging Dr. Sean Rommel NSF Grant # Test Package Fabrication So Young Park May 11, 2004 R. Manley 16

17 References [1] Raymond P. W. Scott, Chromatographic Detectors. Marcel Dekker, Inc., NY, 1996 [2] S. Flugge, Electron Emission Gas Discharges I. Springer-Verlag, Berlin, Germany, 1956 [3] Robert L. Grob, Modern Practice of Gas Chromatography. John Wiley and Sons, Inc., pp [4] Harold M. McNair James M., Miller, Basic Gas Chromatography. John Wiley and Sons, Inc., pp [5] Edward R. Adlard, Alan J. Handley, Gas Chromatographic Techniques and Applications. Sheffield Academic press, pp [6] David K. Cheng, Fundamentals of Engineering Electromagnetics. Prentice Hall, [7] Brady Holum, Chemistry The Study of Matter and Its Changes. John Wiley and Sons, Inc., [8] Zumdahl, Chemistry. Houghton Mifflin Company, 1997 [9] P.L. Patterson, R.A. Gatten, C. Ontiveros, An Improved Thermionic Ionization Detector for Gas Chromatography. Journal of Chormatographic Science, Vol. 20, March 1982 [10] D.C. Thompson, B. P. Stoicheff, Study of the characteristics of ionization detectors. Rev. Sci. Instrum. 53(6), June 1982 [11] P. L. Patterson, Selective responses of a flameless thermionic detector. Journal of Chromatography, 167 (1978) May 11, 2004 R. Manley 17

18 References [12] P. L. Patterson, A comparison of different methods of Ionization of GC effluents. Journal of Chromatographic Science, Vol , pp [13] Ronald P. Manginell, Polycrystalline-silicon Microbridge Combustible Gas Sensor. UMI Dissertation Services, 1998 [14] S. Wolf, R. N. Tauber, Silicon Processing for the VLSI Era. Lattice Press, 2000 [15] Dennis G. McMinn, Herbert H. Hill, Detectors for Capillary Chromatography. John Wiley and Sons Inc., 1992, pp 7 21 [16] Yaowu Mo, Micro-machined gas sensor array based on metal film micro-heater. Sensor and Actuators B, Elsevier, 2001 [17] P. Furjes, Thermal investigation of micro-filament heaters. Sensor and Actuators A, Elsevier, 2002 [18] Torkil Holm, Aspects of the mechanism of the flame ionization detector. Journal of Chromatography A, Elsevier, 1999 [20] Torkil Holm, Mechanism of the flame ionization detector II. Isotope effects and heteroatom effects. Journal of Chromatography A, Elsevier, 1997 [21] S. Zimmerman, S. Wichhusen, J. Muller, Micro flame ionization detector and micro flame spectrometer. Sensor and Actuators B, Elsevier, 2000 [22] Amit Lal, Investigation of Stiction on Polysilicon Surface. May 11, 2004 R. Manley 18

Design and Fabrication of a Micro-size Thermionic IonizationlFlame Ionization Detector

Design and Fabrication of a Micro-size Thermionic IonizationlFlame Ionization Detector Manley, R. 22 ~ Annual Microelectronic Engineering Conference, May 2004 Design and Fabrication of a Micro-size Thermionic IonizationlFlame Ionization Detector for Gas Phase Chemical Analytes Robert Manley,

More information

Time-of-Flight Flow Microsensor using Free-Standing Microfilaments

Time-of-Flight Flow Microsensor using Free-Standing Microfilaments 07-Rodrigues-V4 N2-AF 19.08.09 19:41 Page 84 Time-of-Flight Flow Microsensor using Free-Standing Microfilaments Roberto Jacobe Rodrigues 1,2, and Rogério Furlan 3 1 Center of Engineering and Social Sciences,

More information

Y. C. Lee. Micro-Scale Engineering I Microelectromechanical Systems (MEMS)

Y. C. Lee. Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Y. C. Lee Department of Mechanical Engineering University of Colorado Boulder, CO 80309-0427 leeyc@colorado.edu January 15, 2014 1 Contents

More information

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS ENRICO COZZANI DEIS DOCTORATE CYCLE XXIII 18/01/2011 Enrico Cozzani

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction q Integrated circuits: many transistors on one chip q Very Large Scale Integration (VLSI): bucketloads! q Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

ETCHING Chapter 10. Mask. Photoresist

ETCHING Chapter 10. Mask. Photoresist ETCHING Chapter 10 Mask Light Deposited Substrate Photoresist Etch mask deposition Photoresist application Exposure Development Etching Resist removal Etching of thin films and sometimes the silicon substrate

More information

Micro Bolometer Dr. Lynn Fuller, Jackson Anderson

Micro Bolometer Dr. Lynn Fuller, Jackson Anderson ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Micro Bolometer Dr. Lynn Fuller, Jackson Anderson Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester, NY

More information

Lecture 150 Basic IC Processes (10/10/01) Page ECE Analog Integrated Circuits and Systems P.E. Allen

Lecture 150 Basic IC Processes (10/10/01) Page ECE Analog Integrated Circuits and Systems P.E. Allen Lecture 150 Basic IC Processes (10/10/01) Page 1501 LECTURE 150 BASIC IC PROCESSES (READING: TextSec. 2.2) INTRODUCTION Objective The objective of this presentation is: 1.) Introduce the fabrication of

More information

Section 3: Etching. Jaeger Chapter 2 Reader

Section 3: Etching. Jaeger Chapter 2 Reader Section 3: Etching Jaeger Chapter 2 Reader Etch rate Etch Process - Figures of Merit Etch rate uniformity Selectivity Anisotropy d m Bias and anisotropy etching mask h f substrate d f d m substrate d f

More information

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by Foundations of MEMS Second Edition Chang Liu McCormick School of Engineering and Applied Science Northwestern University International Edition Contributions by Vaishali B. Mungurwadi B. V. Bhoomaraddi

More information

CHAPTER 6: Etching. Chapter 6 1

CHAPTER 6: Etching. Chapter 6 1 Chapter 6 1 CHAPTER 6: Etching Different etching processes are selected depending upon the particular material to be removed. As shown in Figure 6.1, wet chemical processes result in isotropic etching

More information

2.76/2.760 Multiscale Systems Design & Manufacturing

2.76/2.760 Multiscale Systems Design & Manufacturing 2.76/2.760 Multiscale Systems Design & Manufacturing Fall 2004 MOEMS Devices for Optical communications system Switches and micromirror for Add/drops Diagrams removed for copyright reasons. MOEMS MEMS

More information

Miniaturized Sensor for the Detection of Environmental Pollutants Alexander Graf 1, Ronald Stübner 1, Christian Kunath 1, Sebastian Meyer 1, Harald Schenk 1 1 Fraunhofer Institute for Photonic Microsystems

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 143 Fall 2008 Exam 1 Professor Ali Javey Answer Key Name: SID: 1337 Closed book. One sheet

More information

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 3 By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun 1 Syllabus Lithography: photolithography and pattern transfer, Optical and non optical lithography, electron,

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam Lecture 10 Outline 1. Wet Etching/Vapor Phase Etching 2. Dry Etching DC/RF Plasma Plasma Reactors Materials/Gases Etching Parameters

More information

A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR

A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR Journal of Physical Science, Vol. 17(2), 161 167, 2006 161 A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR A.Y. Hudeish 1,2* and A. Abdul Aziz 1 1 School of Physics, Universiti Sains Malaysia, 11800

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Accelerated Neutral Atom Beam Processing of Ultra-thin Membranes to Enhance EUV Transmittance. February 22, 2015

Accelerated Neutral Atom Beam Processing of Ultra-thin Membranes to Enhance EUV Transmittance. February 22, 2015 Accelerated Neutral Atom Beam Processing of Ultra-thin Membranes to Enhance EUV Transmittance February 22, 2015 1 Participation / Contacts Exogenesis Corporation, ANAB Technology Sean Kirkpatrick, Son

More information

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON Section Micro and Nano Technologies RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON Assoc. Prof. Ersin Kayahan 1,2,3 1 Kocaeli University, Electro-optic and Sys. Eng. Umuttepe, 41380, Kocaeli-Turkey

More information

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications D. Tsoukalas, S. Kolliopoulou, P. Dimitrakis, P. Normand Institute of Microelectronics, NCSR Demokritos, Athens, Greece S. Paul,

More information

Supporting Information for: Electrical probing and tuning of molecular. physisorption on graphene

Supporting Information for: Electrical probing and tuning of molecular. physisorption on graphene Supporting Information for: Electrical probing and tuning of molecular physisorption on graphene Girish S. Kulkarni, Karthik Reddy #, Wenzhe Zang, Kyunghoon Lee, Xudong Fan *, and Zhaohui Zhong * Department

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 4: Film

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 C. NGUYEN PROBLEM SET #4 Issued: Wednesday, March 4, 2016 PROBLEM SET #4 Due: Monday, March 14, 2016, 8:00 a.m. in the EE C247B homework box near 125 Cory. 1. This problem considers bending of a simple cantilever and several methods

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter S. Sadat 1, E. Meyhofer 1 and P. Reddy 1, 1 Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 Department

More information

Today s Presentation

Today s Presentation Today s Presentation MEMS Comb Drive Actuator to Vary Tension & Compression of a Resonating Nano-Doubly Clamped Beam for High-Resolution & High Sensitivity Mass Detection Adam Hurst 1 John Regis 1 Chou

More information

IC Fabrication Technology

IC Fabrication Technology IC Fabrication Technology * History: 1958-59: J. Kilby, Texas Instruments and R. Noyce, Fairchild * Key Idea: batch fabrication of electronic circuits n entire circuit, say 10 7 transistors and 5 levels

More information

Film Deposition Part 1

Film Deposition Part 1 1 Film Deposition Part 1 Chapter 11 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2013 Saroj Kumar Patra Semidonductor Manufacturing Technology, Norwegian University of

More information

Technology for Micro- and Nanostructures Micro- and Nanotechnology

Technology for Micro- and Nanostructures Micro- and Nanotechnology Lecture 10: Deposition Technology for Micro- and Nanostructures Micro- and Nanotechnology Peter Unger mailto: peter.unger @ uni-ulm.de Institute of Optoelectronics University of Ulm http://www.uni-ulm.de/opto

More information

CHARACTERIZATION OF DEEP REACTIVE ION ETCHING (DRIE) PROCESS FOR ELECTRICAL THROUGH-WAFER INTERCONNECTS FOR PIEZORESISTIVE INERTIAL SENSORS

CHARACTERIZATION OF DEEP REACTIVE ION ETCHING (DRIE) PROCESS FOR ELECTRICAL THROUGH-WAFER INTERCONNECTS FOR PIEZORESISTIVE INERTIAL SENSORS CHARACTERIZATION OF DEEP REACTIVE ION ETCHING (DRIE) PROCESS FOR ELECTRICAL THROUGH-WAFER INTERCONNECTS FOR PIEZORESISTIVE INERTIAL SENSORS Maria Suggs, Physics Major, Southern Polytechnic State University

More information

Supplementary materials for: Large scale arrays of single layer graphene resonators

Supplementary materials for: Large scale arrays of single layer graphene resonators Supplementary materials for: Large scale arrays of single layer graphene resonators Arend M. van der Zande* 1, Robert A. Barton 2, Jonathan S. Alden 2, Carlos S. Ruiz-Vargas 2, William S. Whitney 1, Phi

More information

CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES

CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES Tomomi Murakami 1*, Takashi Fukada 1 and Woo Sik Yoo 2 1 WaferMasters Service Factory, 2020-3 Oaza Tabaru, Mashiki, Kamimashiki,

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

Chapter 31 Gas Chromatography. Carrier Gas System

Chapter 31 Gas Chromatography. Carrier Gas System Chapter 31 Gas Chromatography GAS-LIQUID CHROMATOGRAPHY In gas chromatography, the components of a vaporized sample are fractionated as a consequence of being partitioned between a mobile gaseous phase

More information

Gas Chromatography. 1. Experiment Category: 2. Experiment Name: 3. Date and Issue number: 4. Instructor Name: 5. Institution: Ain Shams University

Gas Chromatography. 1. Experiment Category: 2. Experiment Name: 3. Date and Issue number: 4. Instructor Name: 5. Institution: Ain Shams University Project Title: e-laboratories for Gas chromatography 1. Experiment Category: Chemistry >> chromatography 2. Experiment Name: Gas Chromatography 3. Date and Issue number: 4. Instructor Name: 5. Institution:

More information

DESIGN AND FABRICATION OF THE MICROCANTILEVER HEATER FOR RAPID CHEMICAL VAPOR DEPOSITION GRAPHENE SYNTHESIS HOE JOON KIM THESIS

DESIGN AND FABRICATION OF THE MICROCANTILEVER HEATER FOR RAPID CHEMICAL VAPOR DEPOSITION GRAPHENE SYNTHESIS HOE JOON KIM THESIS DESIGN AND FABRICATION OF THE MICROCANTILEVER HEATER FOR RAPID CHEMICAL VAPOR DEPOSITION GRAPHENE SYNTHESIS BY HOE JOON KIM THESIS Submitted in partial fulfillment of the requirements for the degree of

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Simple piezoresistive accelerometer

Simple piezoresistive accelerometer Simple piezoresistive pressure sensor Simple piezoresistive accelerometer Simple capacitive accelerometer Cap wafer C(x)=C(x(a)) Cap wafer may be micromachined silicon, pyrex, Serves as over-range protection,

More information

Etching: Basic Terminology

Etching: Basic Terminology Lecture 7 Etching Etching: Basic Terminology Introduction : Etching of thin films and sometimes the silicon substrate are very common process steps. Usually selectivity, and directionality are the first

More information

Introduction to Photolithography

Introduction to Photolithography http://www.ichaus.de/news/72 Introduction to Photolithography Photolithography The following slides present an outline of the process by which integrated circuits are made, of which photolithography is

More information

4FNJDPOEVDUPS 'BCSJDBUJPO &UDI

4FNJDPOEVDUPS 'BCSJDBUJPO &UDI 2010.5.4 1 Major Fabrication Steps in CMOS Process Flow UV light oxygen Silicon dioxide Silicon substrate Oxidation (Field oxide) photoresist Photoresist Coating Mask exposed photoresist Mask-Wafer Exposed

More information

b. The displacement of the mass due to a constant acceleration a is x=

b. The displacement of the mass due to a constant acceleration a is x= EE147/247A Final, Fall 2013 Page 1 /35 2 /55 NO CALCULATORS, CELL PHONES, or other electronics allowed. Show your work, and put final answers in the boxes provided. Use proper units in all answers. 1.

More information

Développement de micro-préconcentrateurs pour l'analyse de traces de gaz et explosifs.

Développement de micro-préconcentrateurs pour l'analyse de traces de gaz et explosifs. Développement de micro-préconcentrateurs pour l'analyse de traces de gaz et explosifs. JP Viricelle a, P. Breuil a, C. Pijolat a, F James a, M. Camara b, D. Briand b a Ecole Nationale des Mines, SPIN-EMSE,

More information

1. Narrative Overview Questions

1. Narrative Overview Questions Homework 4 Due Nov. 16, 010 Required Reading: Text and Lecture Slides on Downloadable from Course WEB site: http://courses.washington.edu/overney/nme498.html 1. Narrative Overview Questions Question 1

More information

Micro-sensors based on thermal transduction for steady and unsteady flow measurements

Micro-sensors based on thermal transduction for steady and unsteady flow measurements Micro-sensors based on thermal transduction for steady and unsteady flow measurements Abdelkrim Talbi 7/11/2013 Institute of Electronic Microelectronic and Nanotechnologies (IEMN) A.Talbi, J-C. Gerbedoen,

More information

Microfabrication for MEMS: Part I

Microfabrication for MEMS: Part I Microfabrication for MEMS: Part I Carol Livermore Massachusetts Institute of Technology * With thanks to Steve Senturia, from whose lecture notes some of these materials are adapted. CL: 6.777J/2.372J

More information

Lithography and Etching

Lithography and Etching Lithography and Etching Victor Ovchinnikov Chapters 8.1, 8.4, 9, 11 Previous lecture Microdevices Main processes: Thin film deposition Patterning (lithography) Doping Materials: Single crystal (monocrystal)

More information

CAPACITIVE MICRO PRESSURE SENSORS WITH UNDERNEATH READOUT CIRCUIT USING A STANDARD CMOS PROCESS

CAPACITIVE MICRO PRESSURE SENSORS WITH UNDERNEATH READOUT CIRCUIT USING A STANDARD CMOS PROCESS Journal of the Chinese Institute of Engineers, Vol. 26, No. 2, pp. 237-241 (2003) 237 Short Paper CAPACITIVE MICRO PRESSURE SENSORS WITH UNDERNEATH READOUT CIRCUIT USING A STANDARD CMOS PROCESS Ching-Liang

More information

Fundamental Theory and Design of Micro Pressure Sensor

Fundamental Theory and Design of Micro Pressure Sensor Chapter 4 Fundamental Theory and Design of Micro Pressure Sensor Pressure sensor fabricated in this work is based on the piezoresistors. These piezoresistors undergo a change in resistance due to the applied

More information

EE-612: Lecture 22: CMOS Process Steps

EE-612: Lecture 22: CMOS Process Steps EE-612: Lecture 22: CMOS Process Steps Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 NCN www.nanohub.org Lundstrom EE-612 F06 1 outline 1) Unit Process

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Design and Fabrication of Microheaters for Localized Carbon Nanotube Growth

Design and Fabrication of Microheaters for Localized Carbon Nanotube Growth Design and Fabrication of Microheaters for Localized Carbon Nanotube Growth Y. Zhou 1, J. Johnson 1, L. Wu 1, S. Maley 2, A. Ural 1, and H. Xie 1 1 Department of Electrical and Computer Engineering, University

More information

Pattern Transfer- photolithography

Pattern Transfer- photolithography Pattern Transfer- photolithography DUV : EUV : 13 nm 248 (KrF), 193 (ArF), 157 (F 2 )nm H line: 400 nm I line: 365 nm G line: 436 nm Wavelength (nm) High pressure Hg arc lamp emission Ref: Campbell: 7

More information

MEMS Hall Effect Sensor (May 2014)

MEMS Hall Effect Sensor (May 2014) 2014 Annual Conference on Microelectronic Engineering, May 2014 Michell Graciani Melo Espitia- 34 MEMS Hall Effect Sensor (May 2014) Microelectronics Engineering, Rochester Institute of Technology Michell

More information

Device Fabrication: Etch

Device Fabrication: Etch Device Fabrication: Etch 1 Objectives Upon finishing this course, you should able to: Familiar with etch terminology Compare wet and dry etch processes processing and list the main dry etch etchants Become

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

SCME KIT OVERVIEW. Rainbow Wafer Kit

SCME KIT OVERVIEW. Rainbow Wafer Kit SCME KIT OVERVIEW Rainbow Wafer Kit Micro Nano Conference I - 2011 Objectives of Each Kit The SCME kits are designed to work both as a stand-alone activity as well as to support the materials introduced

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf by S. Wolf Chapter 15 ALUMINUM THIN-FILMS and SPUTTER-DEPOSITION 2004 by LATTICE PRESS CHAPTER 15 - CONTENTS Aluminum Thin-Films Sputter-Deposition Process Steps Physics of Sputter-Deposition Magnetron-Sputtering

More information

Evaluation of Pressure Sensor Performance Dr. Lynn Fuller Webpage:

Evaluation of Pressure Sensor Performance Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Evaluation of Pressure Sensor Performance Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objectives Identify at least two

More information

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated

More information

Biochemistry. Biochemical Techniques. 12 Gas Liquid Chromatography

Biochemistry. Biochemical Techniques. 12 Gas Liquid Chromatography Description of Module Subject Name Paper Name 12 Module Name/Title 12 Gas - liquid Chromatography 1. Objectives 1.1 To understand principle of Gas Liquid Chromatography 1.2 To explain the different components

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature09979 I. Graphene material growth and transistor fabrication Top-gated graphene RF transistors were fabricated based on chemical vapor deposition (CVD) grown graphene on copper (Cu). Cu foil

More information

Dry Etching Zheng Yang ERF 3017, MW 5:15-6:00 pm

Dry Etching Zheng Yang ERF 3017,   MW 5:15-6:00 pm Dry Etching Zheng Yang ERF 3017, email: yangzhen@uic.edu, MW 5:15-6:00 pm Page 1 Page 2 Dry Etching Why dry etching? - WE is limited to pattern sizes above 3mm - WE is isotropic causing underetching -

More information

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané Stresa, Italy, 5-7 April 007 MODELING OF T-SHAPED MICROCANTILEVER RESONATORS Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Centro Nacional de Microelectrónica

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition Metal Deposition Filament Evaporation E-beam Evaporation Sputter Deposition 1 Filament evaporation metals are raised to their melting point by resistive heating under vacuum metal pellets are placed on

More information

EECS C245 ME C218 Midterm Exam

EECS C245 ME C218 Midterm Exam University of California at Berkeley College of Engineering EECS C245 ME C218 Midterm Eam Fall 2003 Prof. Roger T. Howe October 15, 2003 Dr. Thara Srinivasan Guidelines Your name: SOLUTIONS Circle your

More information

Reactive Ion Etching (RIE)

Reactive Ion Etching (RIE) Reactive Ion Etching (RIE) RF 13.56 ~ MHz plasma Parallel-Plate Reactor wafers Sputtering Plasma generates (1) Ions (2) Activated neutrals Enhance chemical reaction 1 2 Remote Plasma Reactors Plasma Sources

More information

VACUUM TECHNOLOGIES NEEDED FOR 3D DEVICE PROCESSING

VACUUM TECHNOLOGIES NEEDED FOR 3D DEVICE PROCESSING VACUUM TECHNOLOGIES NEEDED FOR 3D DEVICE PROCESSING Future ICs will use more 3D device structures such as finfets and gate-all-around (GAA) transistors, and so vacuum deposition processes are needed that

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Thermal Sensors and Actuators

Thermal Sensors and Actuators Thermal Sensors and Actuators Part I Fundamentals of heat transfer Heat transfer occurs where there is a temperature gradient until an equilibrium is reached. Four major mechanism Thermal conduction Natural

More information

CVD: General considerations.

CVD: General considerations. CVD: General considerations. PVD: Move material from bulk to thin film form. Limited primarily to metals or simple materials. Limited by thermal stability/vapor pressure considerations. Typically requires

More information

Lecture 15 Etching. Chapters 15 & 16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/76

Lecture 15 Etching. Chapters 15 & 16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/76 Lecture 15 Etching Chapters 15 & 16 Wolf and Tauber 1/76 Announcements Term Paper: You are expected to produce a 4-5 page term paper on a selected topic (from a list). Term paper contributes 25% of course

More information

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012 EE 5211 Analog Integrated Circuit Design Hua Tang Fall 2012 Today s topic: 1. Introduction to Analog IC 2. IC Manufacturing (Chapter 2) Introduction What is Integrated Circuit (IC) vs discrete circuits?

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Hopping in CVD Grown Single-layer MoS 2

Hopping in CVD Grown Single-layer MoS 2 Supporting Information for Large Thermoelectricity via Variable Range Hopping in CVD Grown Single-layer MoS 2 Jing Wu 1,2,3, Hennrik Schmidt 1,2, Kiran Kumar Amara 4, Xiangfan Xu 5, Goki Eda 1,2,4, and

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation Technical Overview Introduction Inert flow path technology Modern GC and GC/MS instrumentation is an important analytical tool

More information

Sensors and Actuators B: Chemical

Sensors and Actuators B: Chemical Sensors and Actuators B 141 (2009) 431 435 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical journal homepage: www.elsevier.com/locate/snb A high resolution MEMS based gas chromatography

More information

Asymmetrical heating behavior of doped Si channels in bulk silicon and in silicon-on-insulator under high current stress

Asymmetrical heating behavior of doped Si channels in bulk silicon and in silicon-on-insulator under high current stress JOURNAL OF APPLIED PHYSICS VOLUME 86, NUMBER 12 15 DECEMBER 1999 Asymmetrical heating behavior of doped Si channels in bulk silicon and in silicon-on-insulator under high current stress C. N. Liao, a)

More information

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas GAS CHROMATOGRAPHY Mobile phase is a gas! Stationary phase could be anything but a gas Gas Chromatography (GC) GC is currently one of the most popular methods for separating and analyzing compounds. This

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

Measurement of thermal expansion coefficient of poly-si using microgauge sensors

Measurement of thermal expansion coefficient of poly-si using microgauge sensors Measurement of thermal expansion coefficient of poly-si using microgauge sensors Jung-Hun Chae, Jae-Youl Lee, Sang-Won Kang Department of Materials Science & Engineering, Korea Advanced Institute of Science

More information

Surface Analysis. Dr. Lynn Fuller Dr. Fuller s Webpage:

Surface Analysis. Dr. Lynn Fuller Dr. Fuller s Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Surface Analysis Dr. Lynn Fuller Dr. Fuller s Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages:

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: Ion Implantation alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: mass separation allows wide varies of dopants dose control: diffusion

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Pirani pressure sensor with distributed temperature measurement

Pirani pressure sensor with distributed temperature measurement Pirani pressure sensor with distributed temperature measurement B.R. de Jong, W.P.Bula, D. Zalewski, J.J. van Baar and R.J. Wiegerink MESA' Research Institute, University of Twente P.O. Box 217, NL-7500

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

M 3 System for Viscous Drag Reduction

M 3 System for Viscous Drag Reduction 122 Chapter 5 M 3 System for Viscous Drag Reduction In aerospace engineering, drag reduction is one of the most challenging problems of aircraft. Drag limits the maximum speed, the maximum range of flight

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

Proposal of A New Structure Thermal Vacuum Sensor with Diode-Thermistors Combined with a Micro-Air-Bridge Heater

Proposal of A New Structure Thermal Vacuum Sensor with Diode-Thermistors Combined with a Micro-Air-Bridge Heater Proposal of A New Structure Thermal Vacuum Sensor with Diode-Thermistors Combined with a Micro-Air-Bridge Heater M. Kimura, F. Sakurai, H. Ohta, T. Terada To cite this version: M. Kimura, F. Sakurai, H.

More information

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures Polarized white light from hybrid organic/iii-nitrides grating structures M. Athanasiou, R. M. Smith, S. Ghataora and T. Wang* Department of Electronic and Electrical Engineering, University of Sheffield,

More information

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes EE 434 Lecture 12 Process Flow (wrap up) Device Modeling in Semiconductor Processes Quiz 6 How have process engineers configured a process to assure that the thickness of the gate oxide for the p-channel

More information

Enhanced performance of microbolometer. using coupled feed horn antenna

Enhanced performance of microbolometer. using coupled feed horn antenna Enhanced performance of microbolometer using coupled feed horn antenna Kuntae Kim*,a, Jong-Yeon Park*, Ho-Kwan Kang*, Jong-oh Park*, Sung Moon*, Jung-ho Park a * Korea Institute of Science and Technology,

More information

Chip-Scale Mass Spectrometers for Portable Gas Analyzers Luis Fernando Velásquez-García. A. I. Akinwande, K. Cheung, and L.-Y Chen.

Chip-Scale Mass Spectrometers for Portable Gas Analyzers Luis Fernando Velásquez-García. A. I. Akinwande, K. Cheung, and L.-Y Chen. Chip-Scale Mass Spectrometers for Portable Gas Analyzers Luis Fernando Velásquez-García. A. I. Akinwande, K. Cheung, and L.-Y Chen. Microsystems Technology Laboratories (MTL) lfvelasq@mit.edu November

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information