SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 doi:.38/nature09979 I. Graphene material growth and transistor fabrication Top-gated graphene RF transistors were fabricated based on chemical vapor deposition (CVD) grown graphene on copper (Cu). Cu foil was placed in a quartz furnace tube at - 6 Torr. After evacuation, the Cu foil was heated to 875 o C in forming gas and kept at this temperature for 30 minutes to reduce native CuO and increase the Cu grain size. After reduction the Cu foil was exposed to ethylene at 975 C for minutes. The sample was cooled down in forming gas (6 sccm, 20 mtorr). PMMA was spin-coated on top of the graphene layer formed on one side of the Cu foil. The Cu foil was then dissolved in M iron chloride. The remaining graphene/pmma layer was washed with deionized (DI) water water, M HCl and DI water and transferred to the desired substrate. ubsequently, the PMMA was dissolved in hot acetone (80 o C) for one hour. The substrate with graphene was rinsed in methanol and dried in a stream of nitrogen. The CVD graphene was characterized with Raman spectroscopy on four different sites across the wafer as shown in Fig.. The ratio of 2D peak to G peak confirms the single layer nature of the CVD-graphene []. Graphene RF transistors were built using a top-down approach on DLC substrate grown on a high resistivity i susbtrate as shown in Fig. 2a. A Leica Vb6

2 E-beam writer was used for patterning with PMMA as the resist. The typical dose and current during the writing are 200 μc/cm 2 and -40 na, respectively. Dual-channel RF graphene devices were designed with different gate lengths from 550 nm, 40nm, nm, 80 nm and 40 nm with a fixed gate width of 30 μm. A EM image of a typical long channel device with 550 nm channel length is shown in Fig. 2b. The contact resistance is estimated to be 600 Ω μm and Hall mobility is around cm 2 /Vs at zero top gate bias (high density region). Top-gate capacitance is about 9-7 nf/μm 2 from a combination of nm oxidized Al layer and 5 nm ALD Al 2 O 3. It is noted here that the CVD-graphene here went through the iron chloride copper etching process which usually introduced ionic doping. Also the top-gate stack with E-beam evaporated and then oxidized Al layer will also introduce impurity doping. The large Dirac point shift of the finished devices as shown in Fig. (e) mostly originates from the above two factors instead of the DLC substrate. As a comparison, another sample with same CVD-graphene transferred to ic substrate, usually considered to be of high quality and with few traps, also shows similar amount of Dirac point shift. D G 2D Counts (a.u.) Raman hift (cm - ) Figure Raman spectroscopy of the CVD-graphene grown on copper from 4 different sites on the same sample. The ratio of G peak to 2D peak reveals the single layer property. 2

3 a b Figure 2 Images of finished graphene RF devices on a DLC substrate. a, The finished chip of graphene RF transistors on DLC substrate. b, A EM image of a typical long channel device with gate length of 550 nm. The scale bar is 400 nm. II. High frequency measurement and analysis on maximum oscillation frequency cattering () parameter measurement was taken using an Agilent network analyzer. The short circuit current gain can calculated from the obtained parameters using the 22 following formula: h2 ( )( ) , 2 can be converted into db by 20 * log. The current is then plotted against the frequency in log scale, following a /f dependence, which is equivalent to -20 db/dec dependence. The cut off frequency f T is the frequency at which the current is equal to. A commonly used de-embedding procedure using open and short structures is adopted to obtain the intrinsic RF performance. The de-embedding mainly follows this equation: Y [( Y Y ) ( Y Y ) ]. The current gain versus frequency transistor DUT open short open before de-embedding for two representative short channel devices with gate length of 40 nm and 40 nm are shown in Fig

4 a b f T =9.3 GHz L g =40 nm@ 300K Before de-embedding f T = 5 GHz L g = K Before de-embedding 0. Figure 3 Plot of short circuit current gain versus frequency before de-embedding at room temperature at V gs =-8V and V ds =.6 V. a, The extrinsic f T is 9.3 GHz for the 40 nm device. b, The extrinsic f T is 5 GHz for the 40 nm device. In real application, there is another important figure-of-merit called maximum oscillation frequency, which can be determined from the power gain. The maximum available power gain (MAG) is calculated from parameters from the following equation [2]. MAG K K 2 2, where K is the stability factor and 2 K D , where the determinant D 22 2 * 2. Another often cited power gain is Mason s unilateral power gain and it is defined as: U k Re( ) 2 2 2, Both MAG and U can be converted into db by * log MAG and they should follow a /f or -20 db/dec dependence for a well-behaved transistor. The maximum oscillation 4

5 frequency f MAX is defined as the frequency at which the power gain equals to and the results from both MAG and U are expected to be similar. As a fundamental characteristic of a transistor, f MAX holds the physical significance to be the maximum oscillation frequency. f MAX can also be obtained without using parameters by the following equation for field-effect transistors [3]. f MAX ft 2 g ( R R R ) 2 f C R D Gate i T GD Gate, where g D is differential source-drain conductance, R s is the source resistance, R i is the channel-sided charging resistance of the gate-source capacitance, C GD is the gate to drain capacitance and R Gate is the gate resistance which mainly depends on the gate metal thickness and area. As shown in Fig. 4, we have obtained a high f MAX value of more than 20 GHz for the 550 nm device without any optimization of gate structure. Despite the lack of clear current saturation, this large f MAX shows the performance potential for graphene transistors. It is expected that f MAX can be further enhanced by optimizing the gate structure and improving the saturation behavior. a Gain L g =550 nm V ds =.6V V gs =-6V MAG /2 U /2 f T =26 GHz b Gain 0 L g =40 nm V ds =.6V V gs =-8V MAG /2 U /2 f T =70 GHz f max =20 GHz f max =3 GHz 0 5

6 Figure 4 Plot of short circuit current gain (black) and power gain (red and blue) versus frequency. a, The f T is 26 GHz and f MAX is 20 GHz for the 550 nm device. b, The f T is 70 GHz and f MAX is 3 GHz for the 40 nm device. Extrinsic f MAX before de-embedding for the 550 nm device is also shown in Fig. 5 also using MAG and U. Compared to the intrinsic 20 GHz, the extrinsic f MAX is about.5 GHz, which is also highest reported value thus far. MAG /2 U /2 Gain f max =.5 GHz L g =550 nm@ 300K Before de-embedding Figure 5 Plot of power gain versus frequency before de-embedding at room temperature for the 550 nm device. An extrinsic f MAX of.5 GHz is achieved at V gs =-6V and V ds =.6V. III. High frequency measurement at low temperatures Thermal variation of the vector network analyzer (VNA) itself and the cables can cause measurement uncertainties when a standard VNA calibration is performed. To obtain the most accurate microwave measurements at a certain temperature, calibrations are often repeated before taking sensitive measurement. Mechanical and electrical changes in the RF measurement system such as cables, probes and open/short structures can lead to large measurement errors with varying temperatures. It is imperative to perform system 6

7 calibration and open-short measurements for each temperature once the components reach a stable thermal equilibrium. a b c K 50 K 4.3 K GHz 2 GHz 2 GHz 3.5 GHz 3 GHz 2 GHz Figure 6 The extrinsic current gain before de-embedding versus frequency for a 550 nm device. a, 300 K; b, 50 K; c, 4.3 K. The gate voltage steps from -8 to 0 V and the drain voltage is.6 V. The /f dependence holds well across all the temperatures and has the similar gate voltage dependence. These are consistent with the intrinsic current gain plots after de-embedding versus frequency as shown in the main text. A system calibration carried out at 300 K will lead to large inaccuracy for a measurement taken at 4.2 K. In our temperature dependent RF measurements, repeated calibrations were carried out as stated above to ensure reliable and accurate test results. imilarly, efforts need to be taken during the de-embedding procedures to ensure the accuracy of intrinsic results. As shown in Fig. 6, the extrinsic f T values of a 550 nm device measurement at each temperature have the similar gate voltage dependence and result in consistent intrinsic f T values after de-embedding (Intrinsic f T figures are shown in Fig. 4 in the main text). 7

8 The weak temperature dependence largely benefits from the better surface properties of the DLC substrate compared to those of an io 2 substrate. To further explore the surface trapping behavior for different substrates, a side-by-side comparison of graphene transistors fabricated on DLC substrate and io 2 substrate is shown in Fig. 7. Note here that these two sets of devices are made in parallel with identical fabrication procedures and graphene materials. The representative output characteristics of the 550 nm device on io 2 substrate are given in Fig. 7 (a). These characteristics show large hysteresis and change in the device behavior after sweeps at high drain bias. The current exhibits abnormal drain dependence (as indicated by the red arrow) when biased at around 2.5 V for the first sweep (left panel). Different output behavior is observed for the second and subsequent sweeps during which the abnormal drain dependence is absent (right panel). This indicates that large numbers of traps were involved in the transport process when the graphene devices on io 2 were first biased at V ds of 2.5 V, which is within the typical operating range for RF graphene devices. This result is consistent with the experimental work of Ref. [4] that shows strong field-effect induced trapping processes in graphene devices on io 2 substrate under high bias. On the contrary, this abnormal output behavior originating from trapping processes is absent in the device on DLC as shown in Fig. 7 (b), which indicates its advantages in terms of trap density and appropriateness for highfield operation. Devices on DLC showed reproducible output characteristics after repeated sweeps under high bias. In addition, the devices on DLC show much larger current modulations than on io 2. This is attributed to a better mobility and carrier velocity on DLC substrate resulting from less impurity and phonon scattering. 8

9 a b Drain current ma/m) Drain voltage (V) Drain voltage (V) Drain current (mam) Figure 7 The comparison of output characteristics of 550 nm graphene devices on DLC and io 2 substrates with gate voltage sweeping 8 V from Dirac point. a, The graphene device on io 2 substrate shows large hysteresis and change of device characteristics after sweeps at high drain bias. The current exhibits abnormal drain dependence (as indicated by the red arrow) when biased at around 2.5 V for the first sweep (left panel). Drastically different output behavior is observed for the second and subsequent sweeps in which the abnormal drain dependence is absent (right panel). This indicates that large number traps participated in the transport when the graphene device on io 2 was first biased at high V ds. b, The device on DLC substrate shows little change in its output characteristics when biased at around 2.5 V for the first sweep (left panel) and second sweep (right panel), indicating minimal trapping/de-trapping processes. * yming@us.ibm.com (Y.-M. L) and avouris@us.ibm.com (P.A.) References 9

10 [] Li, X.. et al. Large-Area ynthesis of High-Quality and Uniform Grapene Films on Copper Foils. cience, 324, (2009). [2] Gupta, M.. Power Gain in Feedback Amplifiers, a Classic Revisited. IEEE Trans. Microwave theory and Techniques, 40, (992). [3] ze,. M. & Ng, K. K. Physics of emiconductor Devices, Third Edition, Wiley- Interscience (2006). [4] Chiu, H. -Y., Perebeinos, V., Lin, Y. -M. & Avouris, P. Controllable p-n Junction Formation in Monolayer Graphene Using Electrostatic ubstrate Engineering. Nano Lett., (20).

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

Hopping in CVD Grown Single-layer MoS 2

Hopping in CVD Grown Single-layer MoS 2 Supporting Information for Large Thermoelectricity via Variable Range Hopping in CVD Grown Single-layer MoS 2 Jing Wu 1,2,3, Hennrik Schmidt 1,2, Kiran Kumar Amara 4, Xiangfan Xu 5, Goki Eda 1,2,4, and

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Controllable Atmospheric Pressure Growth of Mono-layer, Bi-layer and Tri-layer

More information

Wafer Scale Homogeneous Bilayer Graphene Films by. Chemical Vapor Deposition

Wafer Scale Homogeneous Bilayer Graphene Films by. Chemical Vapor Deposition Supporting Information for Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition Seunghyun Lee, Kyunghoon Lee, Zhaohui Zhong Department of Electrical Engineering and Computer Science,

More information

Graphene and new 2D materials: Opportunities for High Frequencies applications

Graphene and new 2D materials: Opportunities for High Frequencies applications Graphene and new 2D materials: Opportunities for High Frequencies applications April 21th, 2015 H. Happy, E. Pallecchi, B. Plaçais, D. Jiménez, R. Sordan, D. Neumaier Graphene Flagship WP4 HF electronic

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

Supplementary materials for: Large scale arrays of single layer graphene resonators

Supplementary materials for: Large scale arrays of single layer graphene resonators Supplementary materials for: Large scale arrays of single layer graphene resonators Arend M. van der Zande* 1, Robert A. Barton 2, Jonathan S. Alden 2, Carlos S. Ruiz-Vargas 2, William S. Whitney 1, Phi

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Transistori ad effetto di campo con canale in grafene (GFET) aventi risposta fotoelettrica

Transistori ad effetto di campo con canale in grafene (GFET) aventi risposta fotoelettrica Transistori ad effetto di campo con canale in grafene (GFET) aventi risposta fotoelettrica M. A. Giambra, E. Calandra, S. Stivala, A. Busacca DEIM Università di Palermo, via delle Scienze, Edifico 9, 90128,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 Raman spectroscopy of CVD graphene on SiO 2 /Si substrate. Integrated Raman intensity maps of D, G, 2D peaks, scanned across the same graphene area. Scale

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Modulation-Doped Growth of Mosaic Graphene with Single Crystalline. p-n Junctions for Efficient Photocurrent Generation

Modulation-Doped Growth of Mosaic Graphene with Single Crystalline. p-n Junctions for Efficient Photocurrent Generation Modulation-Doped Growth of Mosaic Graphene with Single Crystalline p-n Junctions for Efficient Photocurrent Generation Kai Yan 1,, Di Wu 1,, Hailin Peng 1, *, Li Jin 2, Qiang Fu 2, Xinhe Bao 2 and Zhongfan

More information

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were Nano Letters (214) Supplementary Information for High Mobility WSe 2 p- and n-type Field Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts Hsun-Jen Chuang, Xuebin Tan, Nirmal

More information

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes Seoung-Ki Lee, Beom Joon Kim, Houk Jang, Sung Cheol Yoon, Changjin Lee, Byung Hee Hong, John A. Rogers, Jeong Ho Cho, Jong-Hyun

More information

Supporting Information for: Electrical probing and tuning of molecular. physisorption on graphene

Supporting Information for: Electrical probing and tuning of molecular. physisorption on graphene Supporting Information for: Electrical probing and tuning of molecular physisorption on graphene Girish S. Kulkarni, Karthik Reddy #, Wenzhe Zang, Kyunghoon Lee, Xudong Fan *, and Zhaohui Zhong * Department

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Supporting Information for: Sustained sub-60 mv/decade switching via the negative capacitance effect in MoS 2 transistors

Supporting Information for: Sustained sub-60 mv/decade switching via the negative capacitance effect in MoS 2 transistors Supporting Information for: Sustained sub-60 mv/decade switching via the negative capacitance effect in MoS 2 transistors Felicia A. McGuire 1, Yuh-Chen Lin 1, Katherine Price 1, G. Bruce Rayner 2, Sourabh

More information

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Supporting Information A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Tej B. Limbu 1,2, Jean C. Hernández 3, Frank Mendoza

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2018 Supporting Information Direct Integration of Polycrystalline Graphene on

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Highly Stable, Dual-Gated MoS 2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact Resistance and Threshold Voltage Gwan-Hyoung Lee, Xu Cui,

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High-density integration of carbon nanotubes by chemical self-assembly Hongsik Park, Ali Afzali, Shu-Jen Han, George S. Tulevski, Aaron D. Franklin, Jerry Tersoff, James B. Hannon and Wilfried Haensch

More information

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Supporting Information Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution Zhongbo Yan, Ming Xia, Pei Zhang, and Ya-Hong Xie* Department of

More information

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor JFETs AND MESFETs Introduction Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor Why would an FET made of a planar capacitor with two metal plates, as

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Ultrafast hot-carrier-dominated photocurrent in graphene

Ultrafast hot-carrier-dominated photocurrent in graphene SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.243 Ultrafast hot-carrier-dominated photocurrent in graphene Table of Contents: Dong Sun 1, Grant Aivazian 1, Aaron M. Jones 1, Jason S. Ross 2,Wang Yao

More information

Electrical Degradation of InAlAs/InGaAs Metamorphic High-Electron Mobility Transistors

Electrical Degradation of InAlAs/InGaAs Metamorphic High-Electron Mobility Transistors Electrical Degradation of InAlAs/InGaAs Metamorphic High-Electron Mobility Transistors S. D. Mertens and J.A. del Alamo Massachusetts Institute of Technology Sponsor: Agilent Technologies Outline Introduction

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Supporting Information. Effects of Environmental Water Absorption by. Film Transistor Performance and Mobility

Supporting Information. Effects of Environmental Water Absorption by. Film Transistor Performance and Mobility Supporting Information Effects of Environmental Water Absorption by Solution-Deposited Al 2 O 3 Gate Dielectrics on Thin Film Transistor Performance and Mobility Trey B. Daunis, James M. H. Tran, and Julia

More information

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials July 19-23, 29, Harbin, China L-7 Enhancing the Performance of Organic Thin-Film Transistor using

More information

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport Keren M. Freedy 1, Ashutosh Giri 2, Brian M. Foley 2, Matthew R. Barone 1, Patrick

More information

Supplementary Information

Supplementary Information Supplementary Information Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride Kun Ba 1,, Wei Jiang 1,,Jingxin Cheng 2, Jingxian Bao 1, Ningning Xuan 1,Yangye Sun 1, Bing Liu 1, Aozhen

More information

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics 1 Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics Chang-Hua Liu, You-Chia Chang, Seunghyun Lee, Yaozhong Zhang, Yafei Zhang, Theodore B. Norris,*,, and

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is

More information

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research Page 1 of 6 M R S Internet Journal of Nitride Semiconductor Research Volume 9, Article 7 The Ambient Temperature Effect on Current-Voltage Characteristics of Surface-Passivated GaN-Based Field-Effect Transistors

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Supplementary Methods A. Sample fabrication

Supplementary Methods A. Sample fabrication Supplementary Methods A. Sample fabrication Supplementary Figure 1(a) shows the SEM photograph of a typical sample, with three suspended graphene resonators in an array. The cross-section schematic is

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Self-Charged Graphene Battery Harvests Electricity. from Thermal Energy of the Environment

Self-Charged Graphene Battery Harvests Electricity. from Thermal Energy of the Environment Self-Charged Graphene Battery Harvests Electricity from Thermal Energy of the Environment Zihan Xu 1 *, Guoan Tai 1,3, Yungang Zhou 2, Fei Gao 2, Kim Hung Wong 1 1 Department of Applied Physics and Materials

More information

Supplementary Information. Graphene field-effect transistor array with integrated electrolytic gates. scaled to 200 mm

Supplementary Information. Graphene field-effect transistor array with integrated electrolytic gates. scaled to 200 mm Supplementary Information Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm N C S Vieira 1,3, J Borme 1, G Machado Jr. 1, F Cerqueira 2, P P Freitas 1, V Zucolotto

More information

Supporting Information

Supporting Information Supporting Information Assembly and Densification of Nanowire Arrays via Shrinkage Jaehoon Bang, Jonghyun Choi, Fan Xia, Sun Sang Kwon, Ali Ashraf, Won Il Park, and SungWoo Nam*,, Department of Mechanical

More information

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process SUPPORTING INFORMATION Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process Taeshik Yoon 1, Woo Cheol Shin 2, Taek Yong Kim 2,

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa Experiment Atmosphere Temperature #1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1,

More information

Graphene FETs EE439 FINAL PROJECT. Yiwen Meng Su Ai

Graphene FETs EE439 FINAL PROJECT. Yiwen Meng Su Ai Graphene FETs EE439 FINAL PROJECT Yiwen Meng Su Ai Introduction What is Graphene? An atomic-scale honeycomb lattice made of carbon atoms Before 2004, Hypothetical Carbon Structure Until 2004, physicists

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Flexible, high-performance carbon nanotube integrated circuits Dong-ming Sun, Marina Y. Timmermans, Ying Tian, Albert G. Nasibulin, Esko I. Kauppinen, Shigeru Kishimoto, Takashi

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction q Integrated circuits: many transistors on one chip q Very Large Scale Integration (VLSI): bucketloads! q Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Supporting information

Supporting information Supporting information Design, Modeling and Fabrication of CVD Grown MoS 2 Circuits with E-Mode FETs for Large-Area Electronics Lili Yu 1*, Dina El-Damak 1*, Ujwal Radhakrishna 1, Xi Ling 1, Ahmad Zubair

More information

nmos IC Design Report Module: EEE 112

nmos IC Design Report Module: EEE 112 nmos IC Design Report Author: 1302509 Zhao Ruimin Module: EEE 112 Lecturer: Date: Dr.Zhao Ce Zhou June/5/2015 Abstract This lab intended to train the experimental skills of the layout designing of the

More information

RF Performance Projections of Graphene FETs vs. Silicon MOSFETs

RF Performance Projections of Graphene FETs vs. Silicon MOSFETs 1 RF Performance Projections of Graphene FETs vs. Silicon MOSFETs S. Rodriguez *, S. Vaziri *, M. Ostling *, A. Rusu *, E. Alarcon *,#, M.C. Lemme *1 * KTH Royal Institute of Technology, School of ICT,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 215 Supporting Information Enhanced Photovoltaic Performances of Graphene/Si Solar Cells by Insertion

More information

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon Nanotubes Yung-Fu Chen and M. S. Fuhrer Department of Physics and Center for Superconductivity Research, University of Maryland,

More information

on Self-Assembly of Fullerene Molecules

on Self-Assembly of Fullerene Molecules Effect of Surface Preparation of Copper on Self-Assembly of Fullerene Molecules Dongni Ma, Selene Sandoval, Krishna Muralidharan, Srini Raghavan University of Arizona Department of Materials Science and

More information

JUNCTION LEAKAGE OF A SiC-BASED NON-VOLATILE RANDOM ACCESS MEMORY (NVRAM) K. Y. Cheong ABSTRACT INTRODUCTION

JUNCTION LEAKAGE OF A SiC-BASED NON-VOLATILE RANDOM ACCESS MEMORY (NVRAM) K. Y. Cheong ABSTRACT INTRODUCTION JUNCTION LEAKAGE OF A SiC-BASED NON-VOLATILE RANDOM ACCESS MEMORY (NVRAM) K. Y. Cheong Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti

More information

Transient Photocurrent Measurements of Graphene Related Materials

Transient Photocurrent Measurements of Graphene Related Materials Transient Photocurrent Measurements of Graphene Related Materials P. Srinivasa Rao Mentor: Prof. dr. Gvido Bratina Laboratory of Organic Matter Physics University of Nova Gorica 1 Contents: 1. Electrical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Graphene devices and integration: A primer on challenges

Graphene devices and integration: A primer on challenges Graphene devices and integration: A primer on challenges Archana Venugopal (TI) 8 Nov 2016 Acknowledgments: Luigi Colombo (TI) UT Dallas and UT Austin 1 Outline Where we are Issues o Contact resistance

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Supplementary information Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Hak Ki Yu 1,2, Kannan Balasubramanian 3, Kisoo Kim 4,

More information

The Effects of Hydrazine Monohydrate Surface Doping on Graphene

The Effects of Hydrazine Monohydrate Surface Doping on Graphene Macalester Journal of Physics and Astronomy Volume 4 Issue 1 Spring 2016 Article 8 May 2016 The Effects of Hydrazine Monohydrate Surface Doping on Graphene Christian M. Stewart Macalester College, cstewart@macalester.edu

More information

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Molecular Antenna Tailored Organic Thin-film Transistor

More information

Electrical Transport Measurements Show Intrinsic Doping and Hysteresis in Graphene p-n Junction Devices

Electrical Transport Measurements Show Intrinsic Doping and Hysteresis in Graphene p-n Junction Devices Electrical Transport Measurements Show Intrinsic Doping and Hysteresis in Graphene p-n Junction Devices Garrett Plunkett Department of Physics Oregon State University June 6, 017 Advisor: Dr. Matthew Graham

More information

Supporting Information

Supporting Information Supporting Information Real-Time Monitoring of Insulin Using a Graphene Field-Effect Transistor Aptameric Nanosensor Zhuang Hao, a,b Yibo Zhu, a Xuejun Wang, a Pavana G. Rotti, c,d Christopher DiMarco,

More information

Supplementary Information

Supplementary Information Supplementary Information Ambient effects on electrical characteristics of CVD-grown monolayer MoS 2 field-effect transistors Jae-Hyuk Ahn, 1,2 William M. Parkin, 1 Carl H. Naylor, 1 A. T. Charlie Johnson,

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators

Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators Supplementary Information for Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators by Victor W. Brar, Min Seok Jang, Michelle Sherrott, Josue J. Lopez and Harry Atwater 1 Approximating

More information

A Graphene-based Hot Electron Transistor

A Graphene-based Hot Electron Transistor This work has been published in Nano Letters (ACS Publications) Nano Lett., 2013, 13 (4), pp 1435 1439 DOI: 10.1021/nl304305x A Graphene-based Hot Electron Transistor Sam Vaziri 1,#, Grzegorz Lupina 2,#,

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104-113) S R on D CMOS Manufacturing Process (pp. 36-46) S S C GS G G C GD

More information

Magnon-drag thermopile

Magnon-drag thermopile Magnon-drag thermopile I. DEVICE FABRICATION AND CHARACTERIZATION Our devices consist of a large number of pairs of permalloy (NiFe) wires (30 nm wide, 20 nm thick and 5 µm long) connected in a zigzag

More information

GaN based transistors

GaN based transistors GaN based transistors S FP FP dielectric G SiO 2 Al x Ga 1-x N barrier i-gan Buffer i-sic D Transistors "The Transistor was probably the most important invention of the 20th Century The American Institute

More information

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1

More information

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES SHENG F. YEN 1, HAROON LAIS 1, ZHEN YU 1, SHENGDONG LI 1, WILLIAM C. TANG 1,2, AND PETER J. BURKE 1,2 1 Electrical Engineering

More information

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor Low Frequency Noise in MoS Negative Capacitance Field-effect Transistor Sami Alghamdi, Mengwei Si, Lingming Yang, and Peide D. Ye* School of Electrical and Computer Engineering Purdue University West Lafayette,

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions P. R. Nelson 1 ECE418 - VLSI Midterm Exam Solutions 1. (8 points) Draw the cross-section view for A-A. The cross-section view is as shown below.. ( points) Can you tell which of the metal1 regions is the

More information

Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene /

Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene / Supplementary Information: Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene / Monolayer h-bn stacks Victor W. Brar 1,2, Min Seok Jang 3,, Michelle Sherrott 1, Seyoon Kim 1, Josue J. Lopez 1, Laura

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin

Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin Takao Someya 1, Hiroshi Kawaguchi 2, Takayasu Sakurai 3 1 School of Engineering, University of Tokyo, Tokyo, JAPAN 2 Institute

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 10 MOSFET part 1 guntzel@inf.ufsc.br ual-well Trench-Isolated

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions Ralf Brederlow 1, Georg Wenig 2, and Roland Thewes 1 1 Infineon Technologies, Corporate Research, 2 Technical

More information