MASTERING VOC DETECTION FOR BETTER INDOOR AIR QUALITY

Size: px
Start display at page:

Download "MASTERING VOC DETECTION FOR BETTER INDOOR AIR QUALITY"

Transcription

1 European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 WGs and MC Meeting at ISTANBUL, 3-5 December 2014 Action Start date: 01/07/ Action End date: 30/06/2016 Year 3: 1 July June 2015 (Ongoing Action) MASTERING VOC DETECTION FOR BETTER INDOOR AIR QUALITY Donatella Puglisi / donpu@ifm.liu.se Participant Linköping University / Sweden COST is supported by the EU Framework Programme ESF provides the COST Office through a European Commission contract

2 Scientific context and objectives in the Action Background / Problem statement: +85 % time spent indoor / costly HVAC systems M. Gemelli Bad air quality causes serious problems on environment, health, society Good air quality is a key-issue! Stringent legislation for NOx and VOCs Adequate control of emissions for more efficient reduction of hazardous air pollutants Brief reminder of MoU objectives: WG1: sensor materials and nanotechnology Research on gas-sensitive materials for detection of specific air pollutants Integration in gas sensor devices for indoor AQC Functionalization and surface modification to enhance gas adsorption and sensitivity; stability, reproducibility, and selectivity Material characterization (e.g. AFM, SEM) WG2: Sensors, devices and sensor systems for AQC Design, fabrication, testing, characterization of cost-effective high-performance gas sensors Innovative sensor technologies: SiC-FET and graphene-based sensors 2

3 Current research activities (SiC-FET) 330 C ppb 1 ppb 10 ppb 0.2 ppb Sensing mechanisms / device operation 100 ppb 10 % 0.90 Response time Recovery time 90 % Dry air 1 ppm pts smooth Time (h) Sensor Signal (mv) C ppb 0.5 ppb ppb 800 Naphthalene (C10H8) 20 % r.h. Selectivity 10 ppb Time (h) 1.5 Sensitivity ppb ppb (air) 5 ppb 10 ppb ppb 40 ppb Addressed challenges VGS = 2.8 V nd discriminant function (1.12 %) Formaldehyde (CH2O) 1.00 counts Sensor Signal (norm. values) Sensor processing / characterization naphthalene 20 % and 40 % r.h. Pt-gate st discriminant function (98.72 %) 3

4 Morphology Current research activities (Graphene) Normalized Resistance Sensor processing / characterization Sensing mechanisms / device operation Addressed challenges Resistance C 50 ppb CH 2 O Annealed at 250 C 20% r.h Time (min) 1,25 1,20 1,15 1,10 1,05 Air NO ppb 50 ppb sensor 1 sensor 3 sensor 2 1, Time (hours) Sensitivity Reproducibility Selectivity 4

5 Ongoing research topics +15 years experience on high-performance, low-cost FE gas sensors for room and high temperature applications, such as car/truck engines and power plants emission monitoring combustion control and exhaust systems indoor air quality applications Why SiC-FET sensors? V DS V GS D S n-type active layer p-type buffer layer n-type 4H-SiC substrate Chemical inertness Wide band gap (3.26 ev 4H-SiC) HARSH ENVIRONMENTS HIGH-TEMPERATURE OPERATION - High, stable, reproducible performance - Flexibility when using temperature cycling mode - Possibility to use high temperature for regeneration of the sensor surface 5

6 No! But SiC is so expensive Yole Développement: transition to 4-inch SiC wafers - a milestone towards reduced cost of SiC technology The ongoing transition to 6-inch wafers will usher in further cost reduction and SiC market growth 4-inch SiC wafer ~ 1800 chips (cost < 1 euro/each) The ongoing wafer cost reduction and market expansion in SiC will spill over also to EG/SiC Further steps towards cost-efficient preparation of EG/SiC through up-scaling of sample size in combination with a novel epitaxy technique allowing growth on inexpensive SiC substrates 6

7 FE sensor platform Absence of gas Presence of gas Cross section of a SiC-FET FET current controlled by V GS Gas molecules decompose and react on the catalytic metal Simple electronics Gate composed by a porous catalytic metal (Ir, Pt) as sensing layer Sensitivity by Number of three phase boundaries gas-metal-oxide Adsorption sites on the insulator Selectivity by Choice of temperature Different catalytic materials Structure of the metal M. Andersson, R. Pearce, A. Lloyd Spetz, Sens. & Act. B 179 (2013) Gas adsorption/reaction at the gate contact I-V shift 7

8 Detection Limit (ppb) 2nd discriminant function (15.77 %) Sensor operation High sensitivity: excellent detection limits High selectivity: discrimination of VOCs Ir-gate SiC-FET 330 C Formaldehyde Benzene Naphthalene % + 40 % r.h. benzene 2.5, 3.5, 4.5 ppb naphthalene 5, 10, 20 ppb < below threshold synth. air formaldehyde 50 ppb napthalene 2.5 ppb benzene 1.5 ppb formaldehyde 75, 100, 200 ppb cv-rate: 89.7 % st discriminant function (80.68 %) Relative Humidity (%) Multi-dimensional data evaluated by pattern recognition techniques Linear discriminant analysis (LDA) + cross-validation to avoid over-fitting data For on demand ventilation, «below threshold» means ventilation not needed Robust discrimination against changing humidity level and varying concentration of VOCs In cooperation with Saarland University 8

9 Suggested R&I Needs for future research Innovation SiC-FET Detection limits under threshold of legal requirements Discrimination and quantification of specific VOCs Stability during long-term operation Morphology Surface potential Gate Insulator Gate Insulator 10 µm Height (nm) 60 nm ΔV pot (mv) 200 mv 3 μm 3 µm Height (nm) 30 nm ΔV pot (mv) 30 mv Ir-gate before and after two weeks operation Iridium - Sensing layer not degraded is extremely important for our target application (indoor AQC) Research directions as R&I NEEDS: Development of new materials as sensing layers using PLD (work in progress in cooperation with Univ. Oulu) 9

10 Ongoing research topics Increased sensitivity and reproducibility Functionalization with metal and metal oxide nanostructures for selectivity tuning Controlling layer uniformity and doping Effect of surface restructuring during graphene growth on SiC Effect of humidity on sensor performance Why gas sensors in graphene? Unique band structure of graphene leads to a low density of states near the Dirac point (E D ) small changes in the number of charge carriers result in large changes in the electronic state Every atom at the surface ultimate surface to volume ratio Low noise, chemically stable (in non-oxidizing environment) enables very low detection limits p p* e <1eV Graphene is highly sensitive to chemical gating due to its linear energy dispersion and vanishing density of states near the Dirac point and therefore has potential as a low noise, ultra-sensitive transducer. 10

11 manufactures and supplies Very high quality, wafer scale, epitaxially grown Graphene on SiC Produced by sublimation of Si from SiC in Ar at 2000 ºC Scalable, wafer-size graphene films compatible with standard semiconductor processing High thickness uniformity (> 90 % 1LG, rest 2LG) Thickness controlled by temperature Spin off from Linköping University, Sweden

12 Graphene sensors issues: sensitivity, reproducibility Normalized Resistance ΔS depends on thickness due to differing band structures for 1LG, 2LG,... MLG Ambient 1 ppm NO 2 Uniform 1LG leads to very reproducible sensor characteristics 1,25 1,20 1,15 NO C sensor 1 sensor 3 sensor 2 1,10 1,05 Air 100 ppb 50 ppb NO 2 withdraws electrons Same change in charge carriers causes larger shift of the Fermi energy for 1LG R. Pearce, J. Eriksson, T. Iakimov, L. Hultman, A. Lloyd Spetz, and R. Yakimova, ACS Nano 7 (5), pp (2013) 1, Time (hours) NO 2 sensing interesting for: Emission control (few ppm) Air quality control (few ppb) Epitaxial graphene on SiC enables highly reproducible sensor fabrication Different sensors fabricated on 100 % 1LG show identical response 1LG is more sensitive to NOx than 2LG or MLG Uniform 1LG required for maximum sensitivity and reproducibility 12

13 Graphene sensors issues: selectivity, response/recovery time Functionalization with metal and metal oxides nanostructures for selectivity tuning Aim: To develop a reproducible method for functionalization with metal nano structures Thin layers of Au and Pt DC sputtered onto EG/SiC at elevated pressure Ideally we want islands or nanoparticles to maximize metal-graphene-gas boundaries Resistance change R/R 0 As grown graphene 1, ,6 100 C 120 1, ,4 80 1,3 60 1,2 40 1,1 20 1, Time (hours) Effect of Au decoration on sensor response NO 2 concentration (ppb) in N 2 Resistance change R/R 0 2,0 1,8 1,6 1,4 1,2 Au on graphene 100 C 1, Time (hours) RT Detection limit < 1 ppb NO NO 2 concentration (ppb) in N 2 Resistance change R/R 0 1,6 1,5 1,4 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5 500 ppb NO 2 40 ppm NH ppb NO 2 50 ppm NH 3 Au, Pt Epitaxial graphene 100 ppb NO 2 SI 4H-SiC on-axis 250 ppm H 2 50 ppb NO Time (hours) 13 RT 100 C 500 ppm CO 30 ppb NO 2 Selectivity: blind to H 2 and CO J. Eriksson, D. Puglisi, Y. H. Kang, R. Yakimova, A. Lloyd Spetz, Physica B 439 (2014)

14 Suggested R&I Needs for future research Innovation - Graphene Reproducible growth Wafer-scale films compatible with standard semiconductor processing High thickness uniformity (> 90 % 1LG, rest 2LG) Decoration changes the surface chemistry but does not alter the graphene band structure Research directions as R&I NEEDS: Designed nanoparticles by pulsed plasma: it is expected that decoration with different metals or metal-oxide nanostructures will allow careful targeting of selectivity to specific molecules 14

15 Designed Nanoparticles by Pulsed Plasma Plasma-based nanoparticle (NP) synthesis process Highly versatile (metals, metal-oxides, core-shells) and reproducible thin film deposition technique Preliminary results show that TiO 2 NPs allow enhanced sensitivity towards formaldehyde and benzene The effect depends on the size of the deposited NPs (< 5 nm, sensitive to benzene; > 50 nm, sensitive to formaldehyde) TiO 2 NPs (Ø < 5 nm and Ø 50 nm) Resistance C 50 ppb CH 2 O Ø < 5 nm 20 nm 100 nm Annealed at 250 C 20% r.h Time (min) 15

16 Research Facilities available for current research Clean room, ISO 6 (magnetron sputtering, lithography, CVD, etc.) Sensor processing and characterization (gas mixing systems, readout electronics, bonding machine, spot welding, scribers, thermal evaporation, shadow masks, optical microscopes, AFM, SEM, etc.) Hardware and software for data acquisition and data analysis Gas bottles: CH 2 O, C 6 H 6, CO, NO, NO 2, NH 3, N 2, O 2, synthetic air Other facilities available at: Saarland University, SenSiC, GraphenSiC 16

17 Acknowledgements Special thanks to (in alphabetic order): Dr. Mike Andersson, associate professor Linköping University and SenSiC Manuel Bastuck, PhD student Saarland University Dr. Robert Bjorklund, senior researcher Linköping University Christian Bur, joint PhD student Saarland University and Linköping University Dr. Jens Eriksson, assistant professor Linköping University Joni Huotari, PhD student University Oulu Prof. Jyrki Lappalainen, University Oulu Prof. Anita Lloyd Spetz, Action Vice-Chair, Director of FunMat, Linköping University Peter Möller, tech. engineer and PhD student Linköping University Dr. Michele Penza, Action Chair, ENEA Prof. Andreas Schuetze, SENSIndoor coordinator, Saarland University Prof. Rositsa Yakimova, Linköping University and GraphenSiC 17

18 Thank you for your attention! (Looking forward to see you in Linköping!) 18

An account of our efforts towards air quality monitoring in epitaxial graphene on SiC

An account of our efforts towards air quality monitoring in epitaxial graphene on SiC European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 2 nd International Workshop EuNetAir on New Sensing Technologies for

More information

Available online at ScienceDirect. Procedia Engineering 168 (2016 ) th Eurosensors Conference, EUROSENSORS 2016

Available online at  ScienceDirect. Procedia Engineering 168 (2016 ) th Eurosensors Conference, EUROSENSORS 2016 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 168 (2016 ) 216 220 30th Eurosensors Conference, EUROSENSORS 2016 SiC-FET sensors for selective and quantitative detection of

More information

Final Meeting at PRAGUE (CZ), 5-7 October The SENSIndoor FP7 Project: Main Results, Lessons Learned and Outlook

Final Meeting at PRAGUE (CZ), 5-7 October The SENSIndoor FP7 Project: Main Results, Lessons Learned and Outlook European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 Final Meeting at PRAGUE (CZ), 5-7 October 2016 New Sensing Technologies

More information

Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics

Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics Christian Bur, Manuel Bastuck, Anita Lloyd Spetz, Mike Andersson and

More information

4 th International Workshop EuNetAir on Innovations and Challenges for Air Quality Control Sensors

4 th International Workshop EuNetAir on Innovations and Challenges for Air Quality Control Sensors European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 4 th International Workshop EuNetAir on Innovations and Challenges

More information

WGs & MC Meeting at SOFIA (BG), December 2015

WGs & MC Meeting at SOFIA (BG), December 2015 European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability EuNetAir COST Action TD115 WGs & MC Meeting at SOFIA (BG), 1618 December 215 New Sensing Technologies

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

GRAPHENE FOR GAS SENSORS

GRAPHENE FOR GAS SENSORS European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 2 nd International Workshop EuNetAir on New Sensing Technologies for

More information

A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR

A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR Journal of Physical Science, Vol. 17(2), 161 167, 2006 161 A HYDROGEN SENSITIVE Pd/GaN SCHOTTKY DIODE SENSOR A.Y. Hudeish 1,2* and A. Abdul Aziz 1 1 School of Physics, Universiti Sains Malaysia, 11800

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Manufacture of Nanostructures for Power Electronics Applications

Manufacture of Nanostructures for Power Electronics Applications Manufacture of Nanostructures for Power Electronics Applications Brian Hunt and Jon Lai Etamota Corporation 2672 E. Walnut St. Pasadena, CA 91107 APEC, Palm Springs Feb. 23rd, 2010 1 Background Outline

More information

Carbon Nanotube Thin-Films & Nanoparticle Assembly

Carbon Nanotube Thin-Films & Nanoparticle Assembly Nanodevices using Nanomaterials : Carbon Nanotube Thin-Films & Nanoparticle Assembly Seung-Beck Lee Division of Electronics and Computer Engineering & Department of Nanotechnology, Hanyang University,

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

AM activities at Linköping University (also including lightweight technologies)

AM activities at Linköping University (also including lightweight technologies) AM activities at Linköping University (also including lightweight technologies) Johan Ölvander, PhD Professor in Machine Design Department of Management and Engineering Linköping University Students 27

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

ESH Benign Processes for he Integration of Quantum Dots (QDs)

ESH Benign Processes for he Integration of Quantum Dots (QDs) ESH Benign Processes for he Integration of Quantum Dots (QDs) PIs: Karen K. Gleason, Department of Chemical Engineering, MIT Graduate Students: Chia-Hua Lee: PhD Candidate, Department of Material Science

More information

SiC Graphene Suitable For Quantum Hall Resistance Metrology.

SiC Graphene Suitable For Quantum Hall Resistance Metrology. SiC Graphene Suitable For Quantum Hall Resistance Metrology. Samuel Lara-Avila 1, Alexei Kalaboukhov 1, Sara Paolillo, Mikael Syväjärvi 3, Rositza Yakimova 3, Vladimir Fal'ko 4, Alexander Tzalenchuk 5,

More information

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications D. Tsoukalas, S. Kolliopoulou, P. Dimitrakis, P. Normand Institute of Microelectronics, NCSR Demokritos, Athens, Greece S. Paul,

More information

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research INVESTIGATION OF NANOSTRUCTURED MATERIALS FOR NOVEL BIOSENSOR FABRICATION METHODOLOGIES Dr. Aoife Morrin National Centre for Sensor Research School of Chemical Sciences Dublin City University Ireland Introduction

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

2D Materials for Gas Sensing

2D Materials for Gas Sensing 2D Materials for Gas Sensing S. Guo, A. Rani, and M.E. Zaghloul Department of Electrical and Computer Engineering The George Washington University, Washington DC 20052 Outline Background Structures of

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

AppliedSensor FE Hydrogen Sensor

AppliedSensor FE Hydrogen Sensor AppliedSensor FE Hydrogen Sensor M. Kosovic, N. Edvardsson This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 5:

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Growth of Graphene Architectures on SiC

Growth of Graphene Architectures on SiC Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2012) Special Session 5 6-2012 Growth of Graphene Architectures on SiC John J. Boeckl Weijie Lu

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

EV Group. Engineered Substrates for future compound semiconductor devices

EV Group. Engineered Substrates for future compound semiconductor devices EV Group Engineered Substrates for future compound semiconductor devices Engineered Substrates HB-LED: Engineered growth substrates GaN / GaP layer transfer Mobility enhancement solutions: III-Vs to silicon

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON Section Micro and Nano Technologies RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON Assoc. Prof. Ersin Kayahan 1,2,3 1 Kocaeli University, Electro-optic and Sys. Eng. Umuttepe, 41380, Kocaeli-Turkey

More information

Innovative Nanosensor for Disease Diagnosis

Innovative Nanosensor for Disease Diagnosis Supporting Information Innovative Nanosensor for Disease Diagnosis Sang Joon Kim,, Seon Jin Choi,,, Ji Soo Jang, Hee Jin Cho, and Il Doo Kim,* Department of Materials Science and Engineering, Korea Advanced

More information

L. Santos, J. P. Neto, A. Crespo, P. Barquinha, L. Pereira, R. Martins, E. Fortunato

L. Santos, J. P. Neto, A. Crespo, P. Barquinha, L. Pereira, R. Martins, E. Fortunato L. Santos, J. P. Neto, A. Crespo, P. Barquinha, L. Pereira, R. Martins, E. Fortunato CENIMAT/I3N, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Motivation

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties

Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Supplementary information Chemical Vapor Deposition Graphene Grown on Peeled- Off Epitaxial Cu(111) Foil: A Simple Approach to Improved Properties Hak Ki Yu 1,2, Kannan Balasubramanian 3, Kisoo Kim 4,

More information

Contents. Welcome Address 2. A Word from the Project Officer 4. SENSIndoor Technology Highlights 5

Contents. Welcome Address 2. A Word from the Project Officer 4. SENSIndoor Technology Highlights 5 NEWSLETTER ISSUE 2 Contents Welcome Address 2 A Word from the Project Officer 4 SENSIndoor Technology Highlights 5 Pulsed Laser Deposition of Advanced Nanostructures for Gas Sensing Applications 5 Operating

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Nanostructures Fabrication Methods

Nanostructures Fabrication Methods Nanostructures Fabrication Methods bottom-up methods ( atom by atom ) In the bottom-up approach, atoms, molecules and even nanoparticles themselves can be used as the building blocks for the creation of

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

Nano Materials and Devices

Nano Materials and Devices Nano Materials and Devices Professor Michael Austin Platform Technologies Research Institute Nano Materials and Devices Program Aim: to develop an integrated capability in nanotechnology Design and modelling

More information

Paolo Bondavalli NANOCARB Unité mixte de Recherche Thales/CNRS

Paolo Bondavalli NANOCARB Unité mixte de Recherche Thales/CNRS Gas Sensor based on CNTFETs fabricated using an Original Dynamic Air-Brush technique for SWCNTs deposition 10/09/2010 Paolo Bondavalli NANOCARB Unité mixte de Recherche Thales/CNRS Thales Research and

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

ALIGNMENT ACCURACY IN A MA/BA8 GEN3 USING SUBSTRATE CONFORMAL IMPRINT LITHOGRAPHY (SCIL)

ALIGNMENT ACCURACY IN A MA/BA8 GEN3 USING SUBSTRATE CONFORMAL IMPRINT LITHOGRAPHY (SCIL) ALIGNMENT ACCURACY IN A MA/BA8 GEN3 USING SUBSTRATE CONFORMAL IMPRINT LITHOGRAPHY (SCIL) Robert Fader Fraunhofer Institute for Integrated Systems and Device Technology (IISB) Germany Ulrike Schömbs SUSS

More information

Graphene and new 2D materials: Opportunities for High Frequencies applications

Graphene and new 2D materials: Opportunities for High Frequencies applications Graphene and new 2D materials: Opportunities for High Frequencies applications April 21th, 2015 H. Happy, E. Pallecchi, B. Plaçais, D. Jiménez, R. Sordan, D. Neumaier Graphene Flagship WP4 HF electronic

More information

Beyond silicon electronics-fets with nanostructured graphene channels with high on-off ratio and highmobility

Beyond silicon electronics-fets with nanostructured graphene channels with high on-off ratio and highmobility Beyond silicon electronics-fets with nanostructured graphene channels with high on-off ratio and highmobility M.Dragoman 1, A.Dinescu 1, and D.Dragoman 2 1 National Institute for Research and Development

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Controllable Atmospheric Pressure Growth of Mono-layer, Bi-layer and Tri-layer

More information

Gas Sensors and Solar Water Splitting. Yang Xu

Gas Sensors and Solar Water Splitting. Yang Xu Gas Sensors and Solar Water Splitting Yang Xu 11/16/14 Seite 1 Gas Sensor 11/16/14 Seite 2 What are sensors? American National Standards Institute (ANSI) Definition: a device which provides a usable output

More information

A comparison study on hydrogen sensing performance of Pt/MoO3 nanoplatelets coated with a thin layer of Ta2O5 or La2O3

A comparison study on hydrogen sensing performance of Pt/MoO3 nanoplatelets coated with a thin layer of Ta2O5 or La2O3 Title Author(s) Citation A comparison study on hydrogen sensing performance of Pt/MoO3 nanoplatelets coated with a thin layer of Ta2O5 or La2O3 Yu, J; Liu, Y; Cai, FX; Shafiei, M; Chen, G; Motta, N; Wlodarski,

More information

Photocatalysis: semiconductor physics

Photocatalysis: semiconductor physics Photocatalysis: semiconductor physics Carlos J. Tavares Center of Physics, University of Minho, Portugal ctavares@fisica.uminho.pt www.fisica.uminho.pt 1 Guimarães Where do I come from? 3 Guimarães 4 Introduction>>

More information

XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3

XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3 XPS Depth Profiling of Epitaxial Graphene Intercalated with FeCl 3 Mahdi Ibrahim Maynard H. Jackson High School Atlanta, GA. Faculty Advisor: Dr. Kristin Shepperd Research Group: Prof. Edward Conrad School

More information

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development

Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Center for High Performance Power Electronics Normally-Off GaN Field Effect Power Transistors: Device Design and Process Technology Development Dr. Wu Lu (614-292-3462, lu.173@osu.edu) Dr. Siddharth Rajan

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer SUHAILA SEPEAI, A.W.AZHARI, SALEEM H.ZAIDI, K.SOPIAN Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Supplementary information

Supplementary information Supplementary information Improving the Working Efficiency of a Triboelectric Nanogenerator by the Semimetallic PEDOT:PSS Hole Transport Layer and its Application in Self- Powered Active Acetylene Gas

More information

Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis*

Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis* Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis* Dr. W. J. Hyun, Prof. C. D. Frisbie, Prof. L. F. Francis Department of Chemical Engineering and Materials Science

More information

High-resolution on-chip supercapacitors with ultra-high scan rate ability

High-resolution on-chip supercapacitors with ultra-high scan rate ability Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Supporting Information High-resolution on-chip supercapacitors with ultra-high

More information

Introduction to Photolithography

Introduction to Photolithography http://www.ichaus.de/news/72 Introduction to Photolithography Photolithography The following slides present an outline of the process by which integrated circuits are made, of which photolithography is

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030

Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Carbon Nanomaterials: Nanotubes and Nanobuds and Graphene towards new products 2030 Prof. Dr. Esko I. Kauppinen Helsinki University of Technology (TKK) Espoo, Finland Forecast Seminar February 13, 2009

More information

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Co- Authors Aixtron Alex Jouvray Simon Buttress Gavin Dodge Ken Teo The work shown here has received partial funding from the European

More information

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M)

Nano-mechatronics. Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Presented by: György BudaváriSzabó (X0LY4M) Nano-mechatronics Nano-mechatronics is currently used in broader spectra, ranging from basic applications in robotics, actuators, sensors,

More information

Hybrid Wafer Level Bonding for 3D IC

Hybrid Wafer Level Bonding for 3D IC Hybrid Wafer Level Bonding for 3D IC An Equipment Perspective Markus Wimplinger, Corporate Technology Development & IP Director History & Roadmap - BSI CIS Devices???? 2013 2 nd Generation 3D BSI CIS with

More information

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System Journal of Physics: Conference Series PAPER OPEN ACCESS High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System To cite this

More information

Ultra-low noise HEMTs for deep cryogenic lowfrequency and high-impedance readout electronics

Ultra-low noise HEMTs for deep cryogenic lowfrequency and high-impedance readout electronics Ultra-low noise HEMTs for deep cryogenic lowfrequency and high-impedance readout electronics Y. Jin, Q. Dong, Y.X. Liang, A. Cavanna, U. Gennser, L Couraud - Why cryoelectronics - Why HEMT - Noise characterization

More information

Available online at ScienceDirect. Procedia Engineering 152 (2016 )

Available online at  ScienceDirect. Procedia Engineering 152 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 152 (2016 ) 706 710 International Conference on Oil and Gas Engineering, OGE-2016 Synthesis of the carbon nanotubes-porous silicon

More information

Analysis of the Formation Conditions for Large Area Epitaxial Graphene on SiC Substrates

Analysis of the Formation Conditions for Large Area Epitaxial Graphene on SiC Substrates Analysis of the Formation Conditions for Large Area Epitaxial Graphene on SiC Substrates Rositsa Yakimova, Chariya Virojanadara, Daniela Gogova, Mikael Syväjärvi, D. Siche, Krister Larsson and Leif Johansson

More information

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor JFETs AND MESFETs Introduction Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor Why would an FET made of a planar capacitor with two metal plates, as

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV Heather M. Yates Why the interest? Perovskite solar cells have shown considerable promise

More information

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating Supplementary Figures Tetramethyl orthosilicate (TMOS) Tetrahydrofuran anhydrous (THF) Trimethyl methoxy silane (TMMS) Trimethyl silil acetate (TMSA) Starting solution Hydrolysis reaction under thermostatic

More information

Institut für Energie und Umwelttechnik e.v.

Institut für Energie und Umwelttechnik e.v. Institut für Energie und Umwelttechnik e.v. Continuous synthesis of highly-specific nanopowder on the pilot-plant scale Tim Hülser Successful R&I 2015, Düsseldorf Duisburg, North-Rhine-Westphalia, Germany

More information

Ph.D. students, postdocs, and young researchers, which need to absorb a lot of new knowledge, not taught at universities, in a rather short time.

Ph.D. students, postdocs, and young researchers, which need to absorb a lot of new knowledge, not taught at universities, in a rather short time. We have started to work in the area of graphene at the end of 2006, discovering that the fascinating Dirac equations could drive to new discoveries in solid-state physics. At that time, although the Dirac

More information

*EP A1* EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

*EP A1* EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. (19) Europäisches Patentamt European Patent Office Office européen des brevets *EP001610121A1* (11) (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication:

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Graphene: Plane and Simple Electrical Metrology?

Graphene: Plane and Simple Electrical Metrology? Graphene: Plane and Simple Electrical Metrology? R. E. Elmquist, F. L. Hernandez-Marquez, M. Real, T. Shen, D. B. Newell, C. J. Jacob, and G. R. Jones, Jr. National Institute of Standards and Technology,

More information

Electrical Characteristics of Multilayer MoS 2 FET s

Electrical Characteristics of Multilayer MoS 2 FET s Electrical Characteristics of Multilayer MoS 2 FET s with MoS 2 /Graphene Hetero-Junction Contacts Joon Young Kwak,* Jeonghyun Hwang, Brian Calderon, Hussain Alsalman, Nini Munoz, Brian Schutter, and Michael

More information

nmos IC Design Report Module: EEE 112

nmos IC Design Report Module: EEE 112 nmos IC Design Report Author: 1302509 Zhao Ruimin Module: EEE 112 Lecturer: Date: Dr.Zhao Ce Zhou June/5/2015 Abstract This lab intended to train the experimental skills of the layout designing of the

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Molecular Antenna Tailored Organic Thin-film Transistor

More information

Graphene-based Electrodes for Electrochemical Energy Conversion

Graphene-based Electrodes for Electrochemical Energy Conversion Graphene-based Electrodes for Electrochemical Energy Conversion September 23, 2014 AVS North California Chapter Prof. Min Hwan Lee School of Engineering Graphene for electrochemical devices Properties

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

Graphene Canada Montreal Oct. 16, 2015 (International Year of Light)

Graphene Canada Montreal Oct. 16, 2015 (International Year of Light) Luminescence Properties of Graphene A. Beltaos 1,2,3, A. Bergren 1, K. Bosnick 1, N. Pekas 1, A. Matković 4, A. Meldrum 2 1 National Institute for Nanotechnology (NINT), 11421 Saskatchewan Drive, Edmonton,

More information

Plastic Electronics. Joaquim Puigdollers.

Plastic Electronics. Joaquim Puigdollers. Plastic Electronics Joaquim Puigdollers Joaquim.puigdollers@upc.edu Nobel Prize Chemistry 2000 Origins Technological Interest First products.. MONOCROMATIC PHILIPS Today Future Technological interest Low

More information

Graphene devices and integration: A primer on challenges

Graphene devices and integration: A primer on challenges Graphene devices and integration: A primer on challenges Archana Venugopal (TI) 8 Nov 2016 Acknowledgments: Luigi Colombo (TI) UT Dallas and UT Austin 1 Outline Where we are Issues o Contact resistance

More information

Superconducting Single-photon Detectors

Superconducting Single-photon Detectors : Quantum Cryptography Superconducting Single-photon Detectors Hiroyuki Shibata Abstract This article describes the fabrication and properties of a single-photon detector made of a superconducting NbN

More information

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS ENRICO COZZANI DEIS DOCTORATE CYCLE XXIII 18/01/2011 Enrico Cozzani

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES

FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES 1 2 ATMOSPHERIC PRESSURE PLASMA PROCESSES AT THE FRAUNHOFER IST Today, atmospheric pressure plasma

More information

Film Deposition Part 1

Film Deposition Part 1 1 Film Deposition Part 1 Chapter 11 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2013 Saroj Kumar Patra Semidonductor Manufacturing Technology, Norwegian University of

More information

Supporting Information

Supporting Information Supporting Information Clustered Ribbed-Nanoneedle Structured Copper Surfaces with High- Efficiency Dropwise Condensation Heat Transfer Performance Jie Zhu, Yuting Luo, Jian Tian, Juan Li and Xuefeng Gao*

More information