Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

Size: px
Start display at page:

Download "Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer"

Transcription

1 Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer SUHAILA SEPEAI, A.W.AZHARI, SALEEM H.ZAIDI, K.SOPIAN Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, MALAYSIA Abstract - Currently, close to 90% of the global photovoltaic (PV) production is based on crystalline silicon (Si). Incomplete light absorption due to the high surface reflection is the key factor that fundamentally limit the Si solar cell performance. Texturing of crystalline silicon (c-si) has been instrumental in the development of high efficiency c-si solar cells. Surface texturing in Si wafer is used to enhance the amount of light absorbed into devices by reducing reflection losses. Surface texturing scatters light inside the semiconductor in order to trap it inside the wafer, and therefore increases the short circuit current as well as the efficiency in the solar cell. In this paper, four types of texturing processes were used to obtain nanostructures in Si wafer. The acid based chemical, acid-based vapor, alkaline-based chemical and metal assisted chemical etching (MACE) technique have been performed to obtain the Si nanostructures. The morphological and optical characterization of the Si nanostructures has been carried out by means of field emission scanning microscopy (FE-SEM) and UV-VIS-NIR spectrometer. The results show that the pyramid size is in a range of nm was obtained from alkaline based chemical method, while the nanopillars was produced by MACE technique. Key-Words : - Lifetime, Si wafer, Nanostructures, Texturing, Photon Absorption 1 Introduction Crystalline silicon, in its single crystalline or multicrystalline (mc) format, dominates the photovoltaic (PV) industry. PV energy generation cost is still higher than energy-conversion costs of carbonbased fossil fuels. Since the price of silicon wafer accounts for almost 50 % of the energy conversion cost, historically, reducing Si wafer thickness has been successful approach. However, incomplete optical absorption in thinner Si wafers results in lower efficiencies. Therefore, there is an urgent need for the complete light absorption in thinner Si wafer, and Si nanostructures promise an elegant solution. Si nanostructure are able to enhance potential of light absorption and higher efficiency. Si nanostructures have the capability to have extremely high absorption. In addition, the Si nanostructures are able to achieve high efficiency without antireflection coatings (ARC) layer by making nanosized texture. Since the nanostructure are actually smaller than the light wavelengths striking the Si, there is no sudden change in the light density and the light doesn t reflect back off the surface of the Si wafer [Nature]. Si nanostructures have many applications including broadband reflection reduction in solar cells [1-5], and templates for heteroepitaxial growth [6-11]. Due to extremely low broadband reflection, Si nanostructures act the same function as ARC layer in Si solar cell. A number of low-cost, large area Si nanostructure synthesis methods have been developed. These include anisotropic, deep reactive ion etching processes to form high aspect ratio, nanoscale columnar structures, metal-assisted, anisotropic etching, and controlled anisotropic acidic etching of silicon [12]. In this paper, four different methods, namely acid based chemical, acid-based vapor, alkaline-based chemical and metal assisted chemical etching (MACE) are demonstrated to obtain nanostructures on low-grade Si wafer. The use of low-grade Si wafer is due to an attempt on producing high efficiency solar cell at low fabrication cost. The Si nanostructures formation also leads to the cheaper manufacturing process by the elimination of ARC deposition Plasma Enhanced Chemical Vapour Deposition (PECVD). 2 Methodology A p-type <100> Si wafer with a sheet resistivity ranging between 1 ohm/cm and 10 ohm/cm was ISBN:

2 used. The Si wafer was initially cleaned by dipping into solution of hydrofluoric acid (HF) and nitric acid (HNO 3 ) in a ratio of 1:100 for 10 minutes. After rinsing with deionized water, it was then dipped into HF and water (H 2 O) in a ratio of 1:50 for 1 minute. The wafers were then subjected to the texturing process. In this research, we used four different methods, namely acid based chemical, acid-based vapor, alkaline-based chemical and metal assisted chemical etching (MACE). acid based chemical, acid-based vapor used the same solution, that is HF:HNO 3. For alkaline-based chemical, the Si wafer was immersed in that solution for 3 hours, while for alkaline-based vapour, the Si wafer was exposed to the vapor of the solution for 24 hours. For a alkaline-based chemical, the solution of KOH:IPA:H 2 O, where IPA is iso-propil alcohol (IPA) in the ratio of 1:5:125 has been used. The texturing temperature was set at C 70 for 30 minutes. For MACE method, Ag assisted chemical etching technique has been employed to grow the nm-scale structures on p-type <100> Si wafers. Two etch process variations have been investigated. In the first approach, a two-step process is used in which Ag is first deposited on the wafers in a mixture of AgNO 3 /HF solution at various solutions concentration and temperature. This followed by etching with Ag as the mask in a solution of HF/H 2 O 2 for various time intervals. In the second approach, deposition and etching are continued in a single step. For the characterization of the Si nanostructured, cross section and top view images by Scanning Electron Microscope (SEM) and reflectance measurement analyzed the outcome from that experiment. Auger process is assigned as lifetime, the relationship obtained empirically by Kendall (quoted in Rohatgi et al. 1984), is frequently used at the moment, accordingly, to which the lifetime in this range is calculated as; τ = τ o 1+ N D 7E15 (Eq.1) In this equation the carrier lifetime τ o in pure, undoped silicon was assumed to be 400 µs. Therefore, from the Hall Effect Measurement of bulk concentration and resistivity value, it can be concluded that the Si wafer used in this experiment was low lifetime Si wafer. Table 1. Hall effect measurement of Si wafer. Parameter Unit 200 µm Bulk concentration cm E+16 Mobility cm 2 /Vs 5.35E+02 Resistivity ohm-cm 9.67E-01 Conductivity 1/ohm-cm 1.03E+00 3 Results and Discussion Table 1 summarizes electrical properties of measured Si wafer using Hall Effect measurement. This measurement is critical since it determines the bulk concentration of the Si wafer, as well as clarifies the grade of Si wafer used either low or high grade Si wafer. From the measurement, it was found that the bulk concentration measured was 1.21E16 cm -3 for 200 µm thickness wafer. According to Goetzberger et al. 1998, for doping less than cm -3, typical for most Si devices, radiative recombination plays virtually no role, and carrier lifetime is determined by the impurity level. While for a doping level greater than cm -3, the Auger recombination become dominant. Since Fig.1. Chemically-etched Si wafer from (a) top and (b) cross sectional view. ISBN:

3 Fig.2.Vapor-textured Si wafer from (a) top and (b) cross sectional view. Alkaline-based wet-chemical texturing was investigated in detail. A solution KOH:IPA:H 2 O solution, where IPA is iso-propyl alcohol and H 2 O is water with a ratio of 1:5:125 was found to be highly effective. The texturing time was varied in a range of minutes while the temperature was varied between C. Fig. 3 shows the SEM images of wet texturing process variation with time. From these images, it is clearly shown that alkaline texturing produces pyramid-like features. Following optimization of process parameters, it was determined that pyramid texture with a 30- minute texturing process leads to uniformly-etched pyramidal surfaces. Longer etching such as at 90 minutes shows that most of the pyramids are etched off. Fig.4 shows that texturing at 70 C exhibited the best pyramid pattern, size and uniformity. Fig.5 shows the SEM image of pyramid textures at a magnification of The pyramid size is in a range of nm. Fig.4. Top surface image of texturing pattern with a variation on texturing temperature. Fig.5. SEM image of pyramid texture at a magnification of 1000x. Fig. 6 shows the AFM images of (a) acid based chemical, (b) acid-based vapor and (c) alkalinebased chemical. It can be seen that roughness value for the chemically-etched surface is nm, nm and nm. This is show that the alkaline based chemical texturing method are the most suitable method for photon absorption enhancement in Si solar cell. Fig.3. Top surface image of texturing pattern with a variation on time at 80 C. Fig.6.AFM images of (a) acid based chemical, (b) acid-based vapor and (c) alkaline-based chemical. In order to determine the best texturing method, the spectral reflectance measurement of chemically- ISBN:

4 etched, vapor-etched and wet texturing was also investigated. The textured Si wafer reflectance was compared to polished Si wafer. The spectral reflectance measurements are plotted in Fig. 7. From the data, it is observed that textured wafers reflect substantially less light than the polished surface in the visible light (range from nm). The polished wafer shows the highest reflectance with an averaged value of This is followed by vapor-etched, chemically-etched and alkalinetextured with averaged value of 0.591, and respectively. Therefore, the alkaline-texturing was determined to be the best technique to absorb more photons in Si wafer through reduced reflection. Fig.7. Optical reflectance measurements on low lifetime Si wafer. Fig. 8 shows the Si nanopillars that produced by MACE technique. The Si nanopillars that subjected to two different concentrations of AgNO 3 shows that structural uniformity deteriorates as the concentration of AgNO3 is reduced as shown in Fig. 8 (a), whereas higher concentration of AgNO 3 induces the formation of uniform nm-scale pillars as shown in Fig. 8 (b) [Ayu]. This method was not optimized yet and will be further investigated in details due to the excellent results on Si nanostructures formation by this technique. Fig. 8. SEM image of cross-section of Si nanopillars for different etchant composition of HF/AgNO3 4 Conclusion Four different methods of acid based chemical, acid-based vapor, alkaline-based chemical and metal assisted chemical etching (MACE) are successfully demonstrated to obtain nanostructures on lowlifetime Si wafer. The best methods for Si nanostructures formation are alkaline-based chemical and MACE. The choice of this method will be used for future advanced Si solar cell fabrication. It is hoped that it may lead to an increase in the photon absorption. Further research on optimization of MACE technique will be reported out in the future. Acknowledgement This work has been carried out with the support of the Malaysia Ministry of Science, Technology and Innovation (MOSTI) under the FRGS grant. References: [1] D. S. Ruby and Saleem H. Zaidi, Metal catalyst techniques for texturing silicon solar cells, 6, 329, 296 B1, issued December, [2] Saleem H. Zaidi and J. M Gee, "Enhanced light absorption of solar cells and photodetectors by diffraction, 6, 858, 462 B2(2005). [3] Saleem H. Zaidi, Enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors, 10/298,694 (2005). [4] Douglas S. Ruby, William K. Schubert, J. M. Gee, and Saleem H. Zaidi, Silicon cells made by self-aligned, selective emitter, plasmaetchback process. [5] Saleem H. Zaidi, D. S. Ruby, and J. M. Gee, IEEE Trans. Elect. Dev. 48, 1200 (2001). ISBN:

5 [6] Saleem Zaidi and S. R. J. Brueck, Nanoscale Fabrication by Interferometric Lithography Proc. SPIE 3740 Optical Engineering for Sensing and Nanotechnology (1999). [7] Saleem H. Zaidi, James M. Gee, Douglas S. Ruby, and S. R. J. Brueck, Characterization of Si Nanostructured Surfaces, Proc. SPIE 3790 Engineered Nanostructural Films and Materials, (1999). [8] Ganesh Vanamu, A. K. Datye and Saleem. H. Zaidi, Epitaxial Growth of High- Quality Ge films on Nanostructured Silicon Substrates, Applied Physics Letters, 88, (2006). [9] Ganesh Vanamu, A. K. Datye, R. L. Dawson and Saleem. H. Zaidi, High quality GaAs films on Ge/SiGe on nanopatterned Si using interferometric lithography, Applied Physics Letters, 88, 1, (2006). [10] Ganesh Vanamu, A. K. Datye and Saleem. H. Zaidi, High quality Ge/SixGe1- x on nano-scale patterned Si structures, Journal of Vacuum Science & Technology B 23, (2005). [11] Saleem H. Zaidi, Nanostructures for Hetero-epitaxial Growth on Silicon Substrates, 6, 835, 246 B2, issued on Dec. 28, [12] A. W. Azhari, B. T. Goh, Suhaila Sepeai, M. Khairunaz, K. Sopian and Saleem H. Zaidi. Synthesis and Characterization of Self-Assembled, High Aspect Ratio nm- Scale Columnar Silicon Structures, 9th IEEE Photovoltaic Specialists Conference, Tampa, Florida. ISBN:

Study of Silver Nanoparticles Electroless Growth and Their Impact on Silicon Properties

Study of Silver Nanoparticles Electroless Growth and Their Impact on Silicon Properties Chemistry Journal Vol. 1, No. 3, 2015, pp. 90-94 http://www.publicscienceframework.org/journal/cj Study of Silver Nanoparticles Electroless Growth and Their Impact on Silicon Properties R. Benabderrahmane

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

Supplementary Information. Room-temperature fabrication of three-dimensional porous silicon

Supplementary Information. Room-temperature fabrication of three-dimensional porous silicon Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supplementary Information Room-temperature fabrication of three-dimensional porous silicon framework

More information

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting Process Hyun-Jin Song, Won-Ki Lee, Chel-Jong Choi* School of Semiconductor

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 143 Fall 2008 Exam 1 Professor Ali Javey Answer Key Name: SID: 1337 Closed book. One sheet

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures

High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures M.Y. Chiu, C.-H. Chang, F.-Y. Chang, and Peichen Yu, Green Photonics Laboratory Department of Photonics National

More information

MSN551 LITHOGRAPHY II

MSN551 LITHOGRAPHY II MSN551 Introduction to Micro and Nano Fabrication LITHOGRAPHY II E-Beam, Focused Ion Beam and Soft Lithography Why need electron beam lithography? Smaller features are required By electronics industry:

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

Nanophotonics: solar and thermal applications

Nanophotonics: solar and thermal applications Nanophotonics: solar and thermal applications Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University http://www.stanford.edu/~shanhui Nanophotonic Structures Photonic

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation Session 5: Solid State Physics Charge Mobility Drift Diffusion Recombination-Generation 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur

More information

Fundamentals of Light Trapping

Fundamentals of Light Trapping Fundamentals of Light Trapping James R. Nagel, PhD November 16, 2017 Salt Lake City, Utah About Me PhD, Electrical Engineering, University of Utah (2011) Research Associate for Dept. of Metallurgical Engineering

More information

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 3 By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun 1 Syllabus Lithography: photolithography and pattern transfer, Optical and non optical lithography, electron,

More information

Graded S i N x /S i O x N y Layers as Antireflective Coatings for Solar Cells Based on GaAs and Silicon Crystalline

Graded S i N x /S i O x N y Layers as Antireflective Coatings for Solar Cells Based on GaAs and Silicon Crystalline Science Research 2016; 4(1): 21-25 Published online February 25, 2016 (http://www.sciencepublishinggroup.com/j/sr) doi: 10.11648/j.sr.20160401.14 ISSN: 2329-0935 (Print); ISSN: 2329-0927 (Online) Graded

More information

Graded SiO x N y layers as antireflection coatings for solar cells application

Graded SiO x N y layers as antireflection coatings for solar cells application Materials Science-Poland, Vol. 24, No. 4, 2006 Graded SiO x N y layers as antireflection coatings for solar cells application M. LIPIŃSKI 1*, S. KLUSKA 2, H. CZTERNASTEK 2, P. ZIĘBA 1 1 Institute of Metallurgy

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

Porous Layers Preparation for Solar Cells by Using Effect Etching Process

Porous Layers Preparation for Solar Cells by Using Effect Etching Process Porous Layers Preparation for Solar Cells by Using Effect Etching Process Mohammed S.Mahmoud Faculty of Engineering, University Of Malaya, Kuala Lumpur, Malaysia Ali L. Abed School of Applied Science,

More information

Immersed diffraction gratings for the Sentinel-5 earth observation mission. Ralf Kohlhaas

Immersed diffraction gratings for the Sentinel-5 earth observation mission. Ralf Kohlhaas Immersed diffraction gratings for the Sentinel-5 earth observation mission Ralf Kohlhaas 10-10-2017 Introduction SRON supports earth observation satellite missions with the delivery of immersed diffraction

More information

Removal of Cu Impurities on a Si Substrate by Using (H 2 O 2 +HF) and (UV/O 3 +HF)

Removal of Cu Impurities on a Si Substrate by Using (H 2 O 2 +HF) and (UV/O 3 +HF) Journal of the Korean Physical Society, Vol. 33, No. 5, November 1998, pp. 579 583 Removal of Cu Impurities on a Si Substrate by Using (H 2 O 2 +HF) and (UV/O 3 +HF) Baikil Choi and Hyeongtag Jeon School

More information

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Supplementary Information Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Tapan Barman, Amreen A. Hussain, Bikash Sharma, Arup R. Pal* Plasma Nanotech Lab, Physical Sciences Division,

More information

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 1 Outlines Photovoltaic Effect Photovoltaic cell structure

More information

High resolution THz scanning for optimization of dielectric layer opening process on doped Si surfaces

High resolution THz scanning for optimization of dielectric layer opening process on doped Si surfaces High resolution THz scanning for optimization of dielectric layer opening process on doped Si surfaces P. Spinelli 1, F.J.K. Danzl 1, D. Deligiannis 1,2, N. Guillevin 1, A.R. Burgers 1, S. Sawallich 3,

More information

Supporting Information. Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative

Supporting Information. Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative Supporting Information Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Non-Damping Alternative Terefe G. Habteyes, Scott Dhuey, Erin Wood, Daniel Gargas, Stefano Cabrini, P. James

More information

A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars

A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars Nanoscale Res Lett (2008) 3: 127 DOI 10.1007/s11671-008-9124-6 NANO EXPRESS A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars Wei Wu Æ Dibyendu

More information

Guidelines for more accurate determination and interpretation of effective lifetime from measured quasi-steady-state photoconductance

Guidelines for more accurate determination and interpretation of effective lifetime from measured quasi-steady-state photoconductance Guidelines for more accurate determination and interpretation of effective lifetime from measured quasi-steady-state photoconductance 1. Introduction J. Brody, A. Rohatgi, and A. Ristow University Center

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM U.S. -KOREA Forums on Nanotechnology 1 CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM February 17 th 2005 Eung-Sug Lee,Jun-Ho Jeong Korea Institute of Machinery & Materials U.S. -KOREA Forums

More information

Spectroscopic Ellipsometry (SE) in Photovoltaic Applications

Spectroscopic Ellipsometry (SE) in Photovoltaic Applications Spectroscopic Ellipsometry (SE) in Photovoltaic Applications Jianing Sun, James Hilfiker, Greg Pribil, and John Woollam c-si PVMC Metrology Workshop July 2012, San Francisco PV key issues Material selection

More information

EV Group. Engineered Substrates for future compound semiconductor devices

EV Group. Engineered Substrates for future compound semiconductor devices EV Group Engineered Substrates for future compound semiconductor devices Engineered Substrates HB-LED: Engineered growth substrates GaN / GaP layer transfer Mobility enhancement solutions: III-Vs to silicon

More information

Introduction. Photoresist : Type: Structure:

Introduction. Photoresist : Type: Structure: Photoresist SEM images of the morphologies of meso structures and nanopatterns on (a) a positively nanopatterned silicon mold, and (b) a negatively nanopatterned silicon mold. Introduction Photoresist

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure

Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure Investigating extremely low resistance ohmic contacts to silicon carbide using a novel test structure Author Pan, Yue, M. Collins, Aaron, Algahtani, Fahid, W. Leech, Patrick, K. Reeves, Geoffrey, Tanner,

More information

Photovoltaic cell and module physics and technology

Photovoltaic cell and module physics and technology Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 6/21/2012 1 Outlines Photovoltaic Effect Photovoltaic cell

More information

International Journal of Science, Environment and Technology, Vol. 6, No 2, 2017,

International Journal of Science, Environment and Technology, Vol. 6, No 2, 2017, International Journal of Science, Environment and Technology, Vol. 6, No 2, 2017, 1476 1480 ISSN 2278-3687 (O) 2277-663X (P) MORPHOLOGICAL STUDY OF CDSE QUANTUM DOTS IN POLY (3-HEXYLTHIOPHENE)(P3HT) PREPARED

More information

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

Nanosphere Lithography

Nanosphere Lithography Nanosphere Lithography Derec Ciafre 1, Lingyun Miao 2, and Keita Oka 1 1 Institute of Optics / 2 ECE Dept. University of Rochester Abstract Nanosphere Lithography is quickly emerging as an efficient, low

More information

Formation of Nanostructured Layers for Passivation of High Power Silicon Devices

Formation of Nanostructured Layers for Passivation of High Power Silicon Devices Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Formation of Nanostructured Layers for Passivation of High Power Silicon Devices

More information

Introduction to Photolithography

Introduction to Photolithography http://www.ichaus.de/news/72 Introduction to Photolithography Photolithography The following slides present an outline of the process by which integrated circuits are made, of which photolithography is

More information

Nanostructures Fabrication Methods

Nanostructures Fabrication Methods Nanostructures Fabrication Methods bottom-up methods ( atom by atom ) In the bottom-up approach, atoms, molecules and even nanoparticles themselves can be used as the building blocks for the creation of

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Fall 2009.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Fall 2009. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE143 Professor Ali Javey Fall 2009 Exam 1 Name: SID: Closed book. One sheet of notes is allowed.

More information

ETCHING Chapter 10. Mask. Photoresist

ETCHING Chapter 10. Mask. Photoresist ETCHING Chapter 10 Mask Light Deposited Substrate Photoresist Etch mask deposition Photoresist application Exposure Development Etching Resist removal Etching of thin films and sometimes the silicon substrate

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

Graphene Fundamentals and Emergent Applications

Graphene Fundamentals and Emergent Applications Graphene Fundamentals and Emergent Applications Jamie H. Warner Department of Materials University of Oxford Oxford, UK Franziska Schaffel Department of Materials University of Oxford Oxford, UK Alicja

More information

Electronic Supplementary Information: Synthesis and Characterization of Photoelectrochemical and Photovoltaic Cu2BaSnS4 Thin Films and Solar Cells

Electronic Supplementary Information: Synthesis and Characterization of Photoelectrochemical and Photovoltaic Cu2BaSnS4 Thin Films and Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information: Synthesis and Characterization of

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV Heather M. Yates Why the interest? Perovskite solar cells have shown considerable promise

More information

Tilted ion implantation as a cost-efficient sublithographic

Tilted ion implantation as a cost-efficient sublithographic Tilted ion implantation as a cost-efficient sublithographic patterning technique Sang Wan Kim 1,a), Peng Zheng 1, Kimihiko Kato 1, Leonard Rubin 2, Tsu-Jae King Liu 1 1 Department of Electrical Engineering

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats SSC06-VI- Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats Theodore G. DR Technologies, Inc. 7740 Kenamar Court, San Diego, CA 92020 (858)677-230 tstern@drtechnologies.com The provision

More information

Self-assembled nanostructures for antireflection optical coatings

Self-assembled nanostructures for antireflection optical coatings Self-assembled nanostructures for antireflection optical coatings Yang Zhao 1, Guangzhao Mao 2, and Jinsong Wang 1 1. Deaprtment of Electrical and Computer Engineering 2. Departmentof Chemical Engineering

More information

Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths

Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths 04 (51)-AF:Modelo-AF 8/20/11 6:37 AM Page 107 Temperature and Silicon Film Thickness Influence on the Operation of Lateral SOI PIN Photodiodes for Detection of Short Wavelengths Michelly de Souza 1, Olivier

More information

Top down and bottom up fabrication

Top down and bottom up fabrication Lecture 24 Top down and bottom up fabrication Lithography ( lithos stone / graphein to write) City of words lithograph h (Vito Acconci, 1999) 1930 s lithography press Photolithography d 2( NA) NA=numerical

More information

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance Best Student Paper Award A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance Wei Wu a, Alireza Bonakdar, Ryan Gelfand, and Hooman Mohseni Bio-inspired Sensors and

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Nanostructured Antireflection Coatings for Optical Detection and Sensing Applications

Nanostructured Antireflection Coatings for Optical Detection and Sensing Applications Mater. Res. Soc. Symp. Proc. Vol. 1805 2015 Materials Research Society DOI: 10.1557/opl.2015.689 Nanostructured Antireflection Coatings for Optical Detection and Sensing Applications Gopal G. Pethuraja

More information

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri Multiple Exciton Generation in Quantum Dots James Rogers Materials 265 Professor Ram Seshadri Exciton Generation Single Exciton Generation in Bulk Semiconductors Multiple Exciton Generation in Bulk Semiconductors

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Nanoscale Issues in Materials & Manufacturing

Nanoscale Issues in Materials & Manufacturing Nanoscale Issues in Materials & Manufacturing ENGR 213 Principles of Materials Engineering Module 2: Introduction to Nanoscale Issues Top-down and Bottom-up Approaches for Fabrication Winfried Teizer,

More information

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by.

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by. PROCEEDINGS OF SPIE Alternative Lithographic Technologies VII Douglas J. Resnick Christopher Bencher Editors 23-26 February 2015 San Jose, California, United States Sponsored by SPIE Cosponsored by DNS

More information

Bulk crystalline silicon (c-si) solar cells dominate the

Bulk crystalline silicon (c-si) solar cells dominate the pubs.acs.org/nanolett Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications Anastassios Mavrokefalos, Sang Eon Han, Selcuk Yerci, Matthew S. Branham,

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Spring 2009.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Spring 2009. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE143 Professor Ali Javey Spring 2009 Exam 1 Name: SID: Closed book. One sheet of notes is allowed.

More information

Research Article Nanostructured Dielectric Layer for Ultrathin Crystalline Silicon Solar Cells

Research Article Nanostructured Dielectric Layer for Ultrathin Crystalline Silicon Solar Cells Hindawi International Photoenergy Volume 217, Article ID 715364, 6 pages https://doi.org/1.1155/217/715364 Research Article Nanostructured Dielectric Layer for Ultrathin Crystalline licon Solar Cells Yusi

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures

Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures Supporting Information Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures Xiaobin Xu, 1,2 Qing Yang, 1,2 Natcha Wattanatorn, 1,2 Chuanzhen

More information

DIELECTRIC nanoparticles (NPs) have recently been proposed

DIELECTRIC nanoparticles (NPs) have recently been proposed IEEE JOURNAL OF PHOTOVOLTAICS 1 Effect of EVA Encapsulation on Antireflection Properties of Mie Nanoscatterers for c-si Solar Cells P. Spinelli, F. Lenzmann, A. Weeber, and A. Polman Abstract Dielectric

More information

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures Polarized white light from hybrid organic/iii-nitrides grating structures M. Athanasiou, R. M. Smith, S. Ghataora and T. Wang* Department of Electronic and Electrical Engineering, University of Sheffield,

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures Supplementary Information Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures Lei Zhou, Qing-Dong Ou, Jing-De Chen, Su Shen, Jian-Xin Tang,* Yan-Qing Li,* and Shuit-Tong

More information

Section 3: Etching. Jaeger Chapter 2 Reader

Section 3: Etching. Jaeger Chapter 2 Reader Section 3: Etching Jaeger Chapter 2 Reader Etch rate Etch Process - Figures of Merit Etch rate uniformity Selectivity Anisotropy d m Bias and anisotropy etching mask h f substrate d f d m substrate d f

More information

A Photonic Crystal Laser from Solution Based. Organo-Lead Iodide Perovskite Thin Films

A Photonic Crystal Laser from Solution Based. Organo-Lead Iodide Perovskite Thin Films SUPPORTING INFORMATION A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films Songtao Chen 1, Kwangdong Roh 2, Joonhee Lee 1, Wee Kiang Chong 3,4, Yao Lu 5, Nripan Mathews

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Quiz #1 Due 9:30am Session #10. Quiz Instructions

Quiz #1 Due 9:30am Session #10. Quiz Instructions 2.626/2.627 Fall 2011 Fundamentals of Photovoltaics Quiz #1 Due 9:30am Session #10 Quiz Instructions The undergraduate version of this quiz (2.627) consists of four (4) multipart questions for a point

More information

PLASMONIC LIGHT TRAPPING FOR THIN FILM A-SI:H SOLAR CELLS

PLASMONIC LIGHT TRAPPING FOR THIN FILM A-SI:H SOLAR CELLS PLASMONIC LIGHT TRAPPING FOR THIN FILM A-SI:H SOLAR CELLS VIVIAN E. FERRY 1,2, MARC A. VERSCHUUREN 3, HONGBO B. T. LI 4, EWOLD VERHAGEN 1, ROBERT J. WALTERS 1, RUUD E. I. SCHROPP 4, HARRY A. ATWATER 2,

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Nanostructured Inorganic Solar Cells

Nanostructured Inorganic Solar Cells Green, Vol. 1 (2011), pp. 7 27 Copyright 2011 De Gruyter. DOI 10.1515/GREEN.2011.007 Review Nanostructured Inorganic Solar Cells Kevin P. Musselman 1; and Lukas Schmidt-Mende 2 1 Department of Physics,

More information

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors M. Grydlik 1, P. Rauter 1, T. Fromherz 1, G. Bauer 1, L. Diehl 2, C. Falub 2, G. Dehlinger 2, H. Sigg 2, D. Grützmacher

More information

Comparison of Ge, InGaAs p-n junction solar cell

Comparison of Ge, InGaAs p-n junction solar cell ournal of Physics: Conference Series PAPER OPEN ACCESS Comparison of Ge, InGaAs p-n junction solar cell To cite this article: M. Korun and T. S. Navruz 16. Phys.: Conf. Ser. 77 135 View the article online

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

LIGHT TRAPPING IN SOLAR CELLS USING RESONANT NANOSTRUCTURES

LIGHT TRAPPING IN SOLAR CELLS USING RESONANT NANOSTRUCTURES LIGHT TRAPPING IN SOLAR CELLS USING RESONANT NANOSTRUCTURES Cover image: Crystalline silicon solar cell with metal-wrap-through front-contact pattern (copyright ECN). A mirror image of the solar cell can

More information

4FNJDPOEVDUPS 'BCSJDBUJPO &UDI

4FNJDPOEVDUPS 'BCSJDBUJPO &UDI 2010.5.4 1 Major Fabrication Steps in CMOS Process Flow UV light oxygen Silicon dioxide Silicon substrate Oxidation (Field oxide) photoresist Photoresist Coating Mask exposed photoresist Mask-Wafer Exposed

More information

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Supporting Information Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Kamran Khajehpour,* a Tim Williams, b,c Laure Bourgeois b,d and Sam Adeloju a

More information

wafer Optical Properties and Band Offsets of CdS/PbS Superlattice. AlAs GaAs AlAs GaAs AlAs GaAs AlAs I.A. Ezenwa *1 and A.J.

wafer Optical Properties and Band Offsets of CdS/PbS Superlattice. AlAs GaAs AlAs GaAs AlAs GaAs AlAs I.A. Ezenwa *1 and A.J. Optical Properties and Band Offsets of Superlattice. I.A. Ezenwa *1 and A.J. Ekpunobi 2 1 Department of Industrial Physics, Anambra State University, Uli, Anambra State, Nigeria. 2 Department of Physics

More information

Toward a 1D Device Model Part 2: Material Fundamentals

Toward a 1D Device Model Part 2: Material Fundamentals Toward a 1D Device Model Part 2: Material Fundamentals Lecture 8 10/4/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627:

More information

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process MEEN 489-500 Nanoscale Issues in Manufacturing Lithography Lecture 1: The Lithographic Process 1 Discuss Reading Assignment 1 1 Introducing Nano 2 2 Size Matters 3 3 Interlude One-The Fundamental Science

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction q Integrated circuits: many transistors on one chip q Very Large Scale Integration (VLSI): bucketloads! q Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

Nanofabrication/Nano-Characterization Calixarene and CNT Control Technology

Nanofabrication/Nano-Characterization Calixarene and CNT Control Technology Nanofabrication/Nano-Characterization Calixarene and CNT Control Technology ISHIDA Masahiko, FUJITA Junichi, NARIHIRO Mitsuru, ICHIHASHI Toshinari, NIHEY Fumiyuki, OCHIAI Yukinori Abstract The world of

More information

Area Effect of Reflectance in Silicon Nanowires Grown by Electroless Etching

Area Effect of Reflectance in Silicon Nanowires Grown by Electroless Etching Int. J. Nanosci. Nanotechnol., Vol. 13, No. 3, Sept. 2017, pp. 283-288 Short Communication Area Effect of Reflectance in Silicon Nanowires Grown by Electroless Etching Victor H. Velez * and Kalpathy B.

More information

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Tuesday, September 23, 2014 Lecture 07 1 Introduction to Solar Cells Topics to be covered: Solar cells and sun light Review on semiconductor

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information