Versatility of Electron Microscopy in Materials Science

Size: px
Start display at page:

Download "Versatility of Electron Microscopy in Materials Science"

Transcription

1 Hilfe2 Versatility of Electron Microscopy in Materials Science Exploring the micro-, nano- and atomic length scales Rolf Erni Electron Microscopy Center, EMPA

2 Electron Microscopy Center - EMPA Mission Launched: July 2009: to centralize the EM activities within EMPA Provide EM support (consulting & hands-on) for EMPA research groups Ceramics Thin films Surfaces & coatings Nanoparticles and nanostructures Wood? Provide (limited) EM services for industrial collaborators Collaborations with other EM centers

3 EMC EMPA Instruments 2 TEMs Philips CM30 Jeol JEM 2200FS (analytical STEM/TEM, 2009) 2 SEMs FEI XL30 ESEM FEI NovaNanoSEM (with EAWAG, 2009) Sample preparation Ion mill, plasma cleaner, polishing

4 Targets User training and guidance during the first steps. Support in the interpretation of data. Exit-plane wave reconstruction Simulations Tomographic reconstructions Towards analytical electron microscopy: spectroscopy, image analysis etc. Establish new techniques within EMPA: Electron energy-loss spectroscopy STEM, Z-contrast imaging Tomography

5 The Role of Electron Microscopy in Materials Science it gives better resolution than an optical microscope Whatever is being analyzed at some point one would like to image it. Almost half of all publications in materials science contain electron microscopy. It s multi-functional and easy-to-use. Atomic-resolution imaging. Atoms form solids. BUT It s in vacuum. Electrons can damage. H. Rose (1994)

6 The Pioneers Electromagnetic fields act as lenses. && r = rf ( z) Hamiltonian analogy. The movement of particles can be described in optical terms Hans Busch 1926 Electrons have a wavelength. λ = h p 1924 Louis de Broglie

7 Aberration-corrected microscopes: 1997/ /32 Max Knoll & Ernst Ruska 1950 Übermikroskop 2010

8 Types of Electron Microscopes Transmission Electron Microscope TEM Scanning Electron Microscope SEM Scanning Transmission Electron Microscope (STEM) Von Ardenne (1938) Low-Energy Electron Microscope LEEM Spin Polarized Low-Energy Electron Microscope SPLEEM

9 (Scanning) Transmission Electron Microscopy Transmission = Thin, electron-transparent specimens are needed: nm.

10 The Chicken Problem Otto Scherzer: Die Strahlenschädigung der Objekte als Grenze für die hochauflösende Elektronen-Mikroskopie. Berichte der Bunsen-Gesellschaft 74 (1970) The Object The Specimen The Image What we expect. What we don t (want to) expect.

11 Typical STEM/TEM Techniques Imaging & Diffraction Conventional TEM: dislocations, grains, particles High-Resolution TEM: atomic structure Z-contrast imaging in STEM Electron diffraction Bright field imaging (Weak-beam) Dark-field imaging

12 Typical STEM/TEM Techniques Imaging & Diffraction Conventional TEM: dislocations, grains, particles High-Resolution TEM: atomic structure Z-contrast imaging in STEM Electron diffraction HRTEM Phase contrast transfer function

13 Typical STEM/TEM Techniques Imaging & Diffraction Conventional TEM: dislocations, grains, particles High-Resolution TEM: atomic structure Z-contrast imaging in STEM Electron diffraction Z-contrast STEM 200 nm

14 Typical STEM/TEM Techniques Imaging & Diffraction Conventional TEM: dislocations, grains, particles High-Resolution TEM: atomic structure Z-contrast imaging in STEM Electron diffraction Electron diffraction

15 Typical STEM/TEM Techniques Analytical techniques Energy-dispersive X-ray spectroscopy: EDS: (quantitative) elemental analysis Electron energy-loss spectroscopy: EELS: elements, bonding, electronic state, valence Energy-filtered TEM: elemental distribution maps EDS

16 Typical STEM/TEM Techniques Analytical techniques Energy-dispersive X-ray spectroscopy: EDS: (quantitative) elemental analysis Electron energy-loss spectroscopy: EELS: elements, bonding, electronic state, valence Energy-filtered TEM: elemental distribution maps EELS Oxygen K-edge

17 Typical STEM/TEM Techniques Analytical techniques Energy-dispersive X-ray spectroscopy: EDS: (quantitative) elemental analysis Electron energy-loss spectroscopy: EELS: elements, bonding, electronic state, valence Energy-filtered TEM: elemental distribution maps Element-specific imaging EFTEM Multi-Layer Sample: Blue: Ti-rich Red: La-rich

18 Beyond Typical STEM/TEM Techniques In-situ TEM Environmental TEM: gas atmosphere (catalysis, synthesis). Mechanical testing or electronic measurements. Lorentz Microscopy Magnetic samples are being imaged in a field-free space: magnetic domains. Holography: off-axis, on-axis Analytics Restoration of the complex electron wave solving the phase problem. Valence electron energy-loss spectroscopy: dielectric and optical information, plasmonics Cathodoluminescence Dynamical TEM Electron pulses: nanosecond resolution (maybe even better ).

19 Resolution in Electron Microscopy Scherzer theorem For stationary rotationally symmetric electromagnetic lenses which are free of space charges, C 3 and C C are always finite positive. Zeitschrift für Physik 101 (1936) 593. Spherical Aberration C 3 Chromatic Aberration C C The resolution in conventional electron microscopy is limited by the spherical aberration. Round lenses also suffer from coma, field astigmatism, field curvature and distortion, but these off-axial aberrations, all vanish for object points on the optical axis and are thus not of highest importance for atomic-resolution microscopy.

20 It s a practical but not a fundamental limitation O. Scherzer, Robert Seeliger, Gottfried Möllenstedt ( ) Archard, Hans Deltrap ( ) Krivanek, Dellby (1997, STEM), Zach, Haider (1995, SEM) Quadrupole-Octupole Correctors Beck, Albert Crewe ( ) Rose, Haider (1998): Hexapole Corrector (TEM)

21 Solving the Resolution Problem: New Possibilities Conventional Electron Microscopy The resolution of conventional microscopes is determined by Spherical aberration Wavelength (2-4 pm) Conventional high resolution microscopes are operated between 200 and 1200 kev. Many (nano-)materials end up like Conventional Aberration corrected Aberration-Corrected Electron Microscopy The wavelength (high tension) is not critical anymore. The electron energy can be adjusted according to the requirements of the specimen: staying in the frying regime. Plus: better contrast, higher sensitivity, less artifacts

22 Where are the limits? Single atoms? Graphene: a single atomic layer of carbon atoms. 80 kv, aberration corrected TEM Simplified transfer function direct image interpretation Single carbon atoms can be observed.

23 Graphene at the Edge: Dynamics Electrons activate atoms at the edge of graphene. Armchair or Zig-zag? 1 frame per second Zig-zag edges are more stable The stability of belts of graphene depends on the direction the hexagons are arranged. New high-resolution imaging techniques can provide information about the dynamics of individual atoms at room temperature.

24 Other Edge configurations Armchair or Zig-zag? Or Zig-zag configuration might be metastable: Reconstructed zig-zag: Rec-zag configuration needs to be considered too. An observation is triggered by an expectation.

25 Dynamics of Lattice Defects in Graphene Appearance and disappearance of a Stone-Wales defect Electron dose: 44.4 A/cm 2 (~28000 electrons/sec Å 2 ) 0 sec 4 sec Disappearance of a vacancy Pentagons and heptagons 0 sec 4 sec Electron irradiation provides activation energy for defect formation. Theoretically predicted lattice defects can be confirmed. Defect formation occurs on a time-scale that can be monitored in a TEM. J. C. Meyer et al., Nano Letters 8 (2008) 3582.

26 Nanoparticles: Building Blocks of Meta-Materials Using electrons to probe dielectric behavior of materials Opal Opal in a SEM Special properties A special material? 2 μm No special material - just silica spheres! It s glass but it doesn t look like! A simple material built of individual building blocks can lead to unique properties. Knowing the behavior of a single building block and how they interact, enables the design of materials with engineered (dielectric) properties. - Negative refraction - Special optical lenses - Cloaking devices - Surface coatings Requires a high energy resolution EELS: preferably an electron monochromator.

27 Surface Plasmons on Gold Nanorods Plasmon modes of a single nano-rod of gold. Low-loss spectroscopy directly reveals the longitudinal and transverse plasmon modes. Monochromated STEM/VEELS measurements: 80 kv, energy resolution 90 mev, raw data. HAADF STEM signal Plasmon-mode mapping Longitudinal mode ΔE= ev Longitudinal Transverse mode Transverse mode ΔE= ev RGB map Blue: HAADF Green: L-mode Red: T-mode

28 Particle Interaction: field enhancement Triangle of Au rods Transversal peak (2.5 ev) is enhanced near left corner. Longitudinal peak (1.7 ev) is enhanced at the two other corners. Center of the triangle behaves like bulk material. Plasmon mode: ev 1 Plasmon mode: ev 2 3 Local field enhancement known from optical measurements can be identified and characterized. Designing metamaterials requires knowledge about the spatial distribution of the dielectric properties of nanoparticles.

29 Optical Spectroscopy with Electrons Combining the spatial resolution of electron microscopy with high resolution electron energy-loss spectroscopy allows for locally probing the band structure of materials. Low-loss or Valence Electron Energy-Loss Spectroscopy An electron monochromator enables highest energy resolution. Band-gap variation in In-rich InGaN quantum wells; In-rich agglomerates can act as quantum dots. GaN matrix: 3.3±0.05 ev InN QW: 2.9±0.32 ev Identification of the 2175 Å absorption feature in Interplanetary Dust Particles

30 The Projection Problem: Tomography A (S)TEM provides a projection of an (3D) object. A single projection can be misleading. From a series of projection, the 3D structure of an object can be reconstructed. Image capture Back projection For a perfect reconstruction, an infinite number of images are required: artifacts are unavoidable! From: Science of microscopy, Part I, p. 540.

31 From 2D to 3D Test-Objects: Agglomerate of nanoparticles. 100 nm Highest resolution feasible in (conventional) electron tomography: ~2-3 nm 3 Where did the resolution go?

32 Summary Electron microscopy is more than imaging and diffraction. Novel imaging techniques allow for observing the motion of individual atoms. Analytical techniques benefit from the resolution feasible in electron microscopes. Electron microscopy can provide a rather comprehensive picture about novel materials and this information can be combined with other techniques.

33 Acknowledgment Graphene Alex Zettl, Nasim Alem, Will Garret, Çağlar Girit (UC Berekeley) Marta Rossell (ETHZ) Plasmons Mouss N gom, Ted Norris (University of Michigan) Tomography Daniel Schreier, Magdalena Parlinska (Empa) Sandra Van Aert, Joost Batenburg (U Antwerp), Marta Rossell (ETHZ) National Center for Electron Microscopy, Lawrence Berkeley Lab.

34 Literature Graphene J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, A. Zettl, Direct imaging of lattice atoms and topological defects in graphene membranes, Nano Letters 8 (2008) Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, A. Zettl, Graphene at the edge: stability and dynamics, Science 323 (2009) Science 323 (2009) Plasmons & VEELS R. Erni and N. D. Browning, Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy, Ultramicroscopy 104 (2005) M. N Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, T. B. Norris, Electron beam mapping of plasmon resonances in electromagnetically interacting gold nanorods, Physical Review B 80 (2009) Transmission Electron Microscopy R. Erni, N. D. Browning, Transmission Electron Microscopy, Encyclopedia of Chemical Processing, R. M. Goodman, J. W. Steed, eds. (Taylor & Francis, Dekker, Inc., New York, 2006), Aberration-Corrected Electron Microscopy R. Erni, Aberration-corrected imaging in transmission electron microscopy: an introduction, Imperial College Press, 340p., ISBN-10: (expected July 2010).

Aberration-corrected TEM studies on interface of multilayered-perovskite systems

Aberration-corrected TEM studies on interface of multilayered-perovskite systems Aberration-corrected TEM studies on interface of multilayered-perovskite systems By Lina Gunawan (0326114) Supervisor: Dr. Gianluigi Botton November 1, 2006 MSE 702(1) Presentation Outline Literature Review

More information

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications In materials science, people are always interested in viewing

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary figure S1: Characterisation of the electron beam intensity profile. (a) A 3D plot of beam intensity (grey value) with position, (b) the beam

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Physical Principles of Electron Microscopy. 2. Electron Optics

Physical Principles of Electron Microscopy. 2. Electron Optics Physical Principles of Electron Microscopy 2. Electron Optics Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca Properties

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays

3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays 3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays David A. Muller Lena Fitting Kourkoutis, Megan Holtz, Robert Hovden, Qingyun Mao, Julia Mundy,

More information

IMAGING DIFFRACTION SPECTROSCOPY

IMAGING DIFFRACTION SPECTROSCOPY TEM Techniques TEM/STEM IMAGING DIFFRACTION SPECTROSCOPY Amplitude contrast (diffracion contrast) Phase contrast (highresolution imaging) Selected area diffraction Energy dispersive X-ray spectroscopy

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Optical Microscope Plan Lenses In an "ideal" single-element lens system all planar wave fronts are focused to a point at distance f from the lens; therefore: Image near the optical axis will be in perfect

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 13:00 Monday, 12/February/2018 (P/T 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Transmission Electron Microscopy. Part #2 High Resolution Imaging XEDS EELS spectroscopies Aberration corrected TEM

Transmission Electron Microscopy. Part #2 High Resolution Imaging XEDS EELS spectroscopies Aberration corrected TEM Transmission Electron Microscopy Part #2 High Resolution Imaging XEDS EELS spectroscopies Aberration corrected TEM Nicolas Menguy Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie Part

More information

Microscopy: Principles

Microscopy: Principles Low Voltage Electron Microscopy: Principles and Applications Edited by David C. Bell Harvard University, USA and Natasha Erdman JEOL USA Inc., USA Published in association with the Royal Microscopical

More information

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5 Chemical Analysis in TEM: XEDS, EELS and EFTEM HRTEM PhD course Lecture 5 1 Part IV Subject Chapter Prio x-ray spectrometry 32 1 Spectra and mapping 33 2 Qualitative XEDS 34 1 Quantitative XEDS 35.1-35.4

More information

PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application. Electron Microscopy. for

PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application. Electron Microscopy. for PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application Electron Microscopy for Introduction to Electron Microscopy Carbon Nanomaterials (nanotubes) Dr. Hua

More information

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin This manuscript was submitted first in a reputed journal on Apri1 16 th 2015 Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin Sumit Saxena 1, Raghvendra Pratap Choudhary, and Shobha Shukla

More information

Transmission Electron Microscopy

Transmission Electron Microscopy Transmission Electron Microscopy Fu-Rong Chen Transmission Electron Microscopy David B. Williams C. Barry Carter Background:Solid State Physics Materials Science 1.1 Why Electron Microscope? 1.1 Why Electron

More information

Transmission Electron Microscopy for metrology and characterization of semiconductor devices

Transmission Electron Microscopy for metrology and characterization of semiconductor devices Transmission Electron Microscopy for metrology and characterization of semiconductor devices Bert Freitag, Laurens Kwakman, Ivan Lazic and Frank de Jong FEI / ThermoFisher Scientific, Achtseweg Noord 5,

More information

The New TEM facility at LCI, KSU. Min Gao Liquid Crystal Institute Kent State University

The New TEM facility at LCI, KSU. Min Gao Liquid Crystal Institute Kent State University The New TEM facility at LCI, KSU Min Gao Liquid Crystal Institute Kent State University 1 Questions to be answered How does TEM work? Why thin specimen? How to prepare one? What is the TEM at LCI like?

More information

Single-shot Ultrafast Electron Microscopy

Single-shot Ultrafast Electron Microscopy Single-shot Ultrafast Electron Microscopy Renkai Li and Pietro Musumeci Department of Physics and Astronomy, UCLA 25 th North American Particle Accelerator Conference Sep 30 - Oct 4, 2013, Pasadena, CA,

More information

Controllable Atomic Scale Patterning of Freestanding Monolayer. Graphene at Elevated Temperature

Controllable Atomic Scale Patterning of Freestanding Monolayer. Graphene at Elevated Temperature Controllable Atomic Scale Patterning of Freestanding Monolayer Graphene at Elevated Temperature AUTHOR NAMES Qiang Xu 1, Meng-Yue Wu 1, Grégory F. Schneider 1, Lothar Houben 2, Sairam K. Malladi 1, Cees

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Energy Dispersive X-ray Spectroscopy B513 Stand: 19.10.2016 Contents 1 Introduction... 2 2. Fundamental Physics and Notation... 3 2.1. Alignments of the microscope... 3 2.2.

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

stands for Transmission Electron (Microscope/Microscopy) Q: Why use electrons instead of light for imaging nanomaterials?

stands for Transmission Electron (Microscope/Microscopy) Q: Why use electrons instead of light for imaging nanomaterials? What is TEM? stands for Transmission Electron (Microscope/Microscopy) Q: Why use electrons instead of light for imaging nanomaterials? A: 1) Shorter wavelength () Higher resolution ) Wavelength determined

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Sub-Angstrom Edge Relaxations Probed by Electron. Microscopy in Hexagonal Boron Nitride (h-bn)

Sub-Angstrom Edge Relaxations Probed by Electron. Microscopy in Hexagonal Boron Nitride (h-bn) Supplementary Material for Sub-Angstrom Edge Relaxations Probed by Electron Microscopy in Hexagonal Boron Nitride (h-bn) Nasim Alem 1,2,3, Quentin M. Ramasse 4,*, Che R. Seabourne 5, Oleg V. Yazyev 1,3,6,

More information

Physical resolution limits of single particle 3D imaging with X-rays and electrons

Physical resolution limits of single particle 3D imaging with X-rays and electrons Physical resolution limits of single particle 3D imaging with X-rays and electrons Coherence 2005 Dirk Van Dyck and Sandra Van Aert June 15, 2005 Ultimate goal: imaging of atoms! Understanding properties

More information

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear propagation. Once a tear is identified at low magnification,

More information

Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy

Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy Supplementary information Exploring the Formation of Symmetric Gold Nanostars by Liquid-Cell Transmission Electron Microscopy Nabeel Ahmad, 1,2 Guillaume Wang, 1 Jaysen Nelayah, 1 Christian Ricolleau,

More information

Ultra-high Resolution Electron Microscopy- Diving into the World of Atoms. Knut W. Urban Jülich, Germany. I see you...

Ultra-high Resolution Electron Microscopy- Diving into the World of Atoms. Knut W. Urban Jülich, Germany. I see you... Ultra-high Resolution Electron Microscopy- Diving into the World of Atoms Knut W. Urban Jülich, Germany I see you... Real Intuitive SrTiO 3 Electrons see matter in their own way They are not interested

More information

Characterisation of Nanoparticle Structure by High Resolution Electron Microscopy

Characterisation of Nanoparticle Structure by High Resolution Electron Microscopy Journal of Physics: Conference Series OPEN ACCESS Characterisation of Nanoparticle Structure by High Resolution Electron Microscopy To cite this article: Robert D Boyd et al 2014 J. Phys.: Conf. Ser. 522

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

Aberration Correction in Electron Optics with N- Fold Symmetric Line Currents

Aberration Correction in Electron Optics with N- Fold Symmetric Line Currents Title Author(s) Aberration Correction in Electron Optics with N- Fold Symmetric Line Currents HOQUE, SHAHEDUL Citation Issue Date Text Version ETD URL https://doi.org/1.1891/69584 DOI 1.1891/69584 rights

More information

Raman spectroscopy study of rotated double-layer graphene: misorientation angle dependence of electronic structure

Raman spectroscopy study of rotated double-layer graphene: misorientation angle dependence of electronic structure Supplementary Material for Raman spectroscopy study of rotated double-layer graphene: misorientation angle dependence of electronic structure Kwanpyo Kim 1,2,3, Sinisa Coh 1,3, Liang Z. Tan 1,3, William

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

Transmission Electron Microscopy: A Textbook For Materials Science (4-Vol Set) By C. Barry Carter, David B. Williams

Transmission Electron Microscopy: A Textbook For Materials Science (4-Vol Set) By C. Barry Carter, David B. Williams Transmission Electron Microscopy: A Textbook For Materials Science (4-Vol Set) By C. Barry Carter, David B. Williams If you are searched for the ebook Transmission Electron Microscopy: A Textbook for Materials

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes Ryosuke Senga 1, Hannu-Pekka Komsa 2, Zheng Liu 1, Kaori Hirose-Takai 1, Arkady V. Krasheninnikov 2

More information

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

History of electron microscopy

History of electron microscopy History of electron microscopy C9940 3-Dimensional Transmission Electron Microscopy S1007 Doing structural biology with the electron microscope February 16, 2015 Syllabus Week Date Instructor Topic 1 02/16

More information

Special Properties of Au Nanoparticles

Special Properties of Au Nanoparticles Special Properties of Au Nanoparticles Maryam Ebrahimi Chem 7500/750 March 28 th, 2007 1 Outline Introduction The importance of unexpected electronic, geometric, and chemical properties of nanoparticles

More information

Supporting Information

Supporting Information Supporting Information Interaction between Single Noble Metal Atom and Graphene Edge: A Study via Aberration-corrected Transmission Electron Microscopy METHODS Preparing Monolayer Graphene with Free Edges.

More information

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Challenges to New Developments in Electron Microscopy

Challenges to New Developments in Electron Microscopy Tonomura FIRST International Workshop on Challenges to New Developments in Electron Microscopy Workshop Report The recent and on-going revolution in electron optics over the successful correction of aberrations,

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials Brent Fultz James Howe Transmission Electron Microscopy and Diffractometry of Materials Fourth Edition ~Springer 1 1 Diffraction and the X-Ray Powder Diffractometer 1 1.1 Diffraction... 1 1.1.1 Introduction

More information

Energy-Filtering. Transmission. Electron Microscopy

Energy-Filtering. Transmission. Electron Microscopy Part 3 Energy-Filtering Transmission Electron Microscopy 92 Energy-Filtering TEM Principle of EFTEM expose specimen to mono-energetic electron radiation inelastic scattering in the specimen poly-energetic

More information

Experimental methods in Physics. Electron Microscopy. Basic Techniques (MEP-I) SEM, TEM

Experimental methods in Physics. Electron Microscopy. Basic Techniques (MEP-I) SEM, TEM Experimental methods in Physics Electron Microscopy Basic Techniques (MEP-I) SEM, TEM Advanced Techniques (MEP-II) HR-TEM, STEM Analytical-TEM 3D-Microscopy Spring 2012 Experimental Methods in Physics

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst Text Books Conventional Transmission Electron Microscopy EMSE-509 CWRU Frank Ernst D. B. Williams and C. B. Carter: Transmission Electron Microscopy, New York: Plenum Press (1996). L. Reimer: Transmission

More information

Dislocation networks in graphite

Dislocation networks in graphite Dislocation networks in graphite High Resolution Microscop With Reference to Lattice Fringe Imaging in a TEM f f r Real space Specimen Reciprocal space hr Point spread function Diffraction pattern Back

More information

Optics of high-performance electron microscopes

Optics of high-performance electron microscopes Science and Technology of Advanced Materials TOPICAL REVIEW Optics of high-performance electron microscopes To cite this article: H H Rose 008 Sci. Technol. Adv. Mater. 9 014107 View the article online

More information

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric Atomic Resolution Interfacial Structure of Lead-free Ferroelectric K 0.5 Na 0.5 NbO 3 Thin films Deposited on SrTiO 3 Chao Li 1, Lingyan Wang 1*, Zhao Wang 2, Yaodong Yang 2, Wei Ren 1 and Guang Yang 1

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Unraveling Surface Plasmon Decay in Core Shell Nanostructures towards Broadband Light-Driven Catalytic Organic Synthesis

Unraveling Surface Plasmon Decay in Core Shell Nanostructures towards Broadband Light-Driven Catalytic Organic Synthesis Supporting Information Unraveling Surface Plasmon Decay in Core Shell Nanostructures towards Broadband Light-Driven Catalytic Organic Synthesis Hao Huang,, Lei Zhang,, Zhiheng Lv, Ran Long, Chao Zhang,

More information

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS SCSAM Short Course Amir Avishai RESEARCH QUESTIONS Sea Shell Cast Iron EDS+SE Fe Cr C Objective Ability to ask the

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications

Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications Thomas Neisius Université Paul Cézanne Plan Imaging modes HAADF Example: supported Pt nanoparticles Electron sample interaction

More information

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum Image Formation Spatial Frequency and Transfer Function consider thin TEM specimen columns of atoms, where the electrostatic potential is higher than in vacuum electrons accelerate when entering the specimen

More information

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Mat. Res. Soc. Symp. Vol. 635 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu Shi, Zhou Yu, S. X. Wang 1, Wim J.

More information

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816, Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 MoS 2 /TiO 2 Heterostructures as Nonmetal Plasmonic Photocatalysts for Highly

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

Chapter 2 Instrumentation for Analytical Electron Microscopy Lecture 5. Chapter 2 CHEM 793, 2011 Fall 1

Chapter 2 Instrumentation for Analytical Electron Microscopy Lecture 5. Chapter 2 CHEM 793, 2011 Fall 1 Chater Instrumentation for Analytical Electron Microscoy Lecture 5 Chater CHEM 793, 011 Fall 1 Outline Electron Sources (Electron Guns) Thermionic: LaB 6 or W Field emission gun: cold or Schottky Lenses

More information

Electronic Supplementary Information. Experimental details graphene synthesis

Electronic Supplementary Information. Experimental details graphene synthesis Electronic Supplementary Information Experimental details graphene synthesis Graphene is commercially obtained from Graphene Supermarket (Reading, MA, USA) 1 and is produced via a substrate-free gas-phase

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Characterization of crystallographic defects in LaNiO 3 through TEM image simulations

Characterization of crystallographic defects in LaNiO 3 through TEM image simulations Characterization of crystallographic defects in LaNiO 3 through TEM image simulations Author: Joan Carles Bastons Garcia. Departament d Electrònica, Universitat de Barcelona Advisors: Sònia Estradé Albiol

More information

Transmission Electron Microscopy. Part #1 Diffraction Conventional Imaging

Transmission Electron Microscopy. Part #1 Diffraction Conventional Imaging Transmission Electron Microscopy Part #1 Diffraction Conventional Imaging Nicolas Menguy Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie Outline Part 1 : Conventional TEM - Transmission

More information

EELS Electron Energy Loss Spectroscopy

EELS Electron Energy Loss Spectroscopy EELS Electron Energy Loss Spectroscopy (Thanks to Steve Pennycook, Quan Li, Charlie Lyman, Ondre Krivenak, David Muller, David Bell, Natasha Erdman, Nestor Zaluzec and many others) Nestor Zaluzec,

More information

Designing of metallic nanocrystals embedded in non-stoichiometric perovskite nanomaterial and its surface-electronic characteristics

Designing of metallic nanocrystals embedded in non-stoichiometric perovskite nanomaterial and its surface-electronic characteristics Designing of metallic nanocrystals embedded in non-stoichiometric perovskite nanomaterial and its surface-electronic characteristics Jagadeesh Suriyaprakash 1,2, Y. B. Xu 1, Y. L. Zhu 1, L. X. Yang 1,

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Sub-5 nm Patterning and Applications by Nanoimprint Lithography and Helium Ion Beam Lithography

Sub-5 nm Patterning and Applications by Nanoimprint Lithography and Helium Ion Beam Lithography Sub-5 nm Patterning and Applications by Nanoimprint Lithography and Helium Ion Beam Lithography Yuanrui Li 1, Ahmed Abbas 1, Yuhan Yao 1, Yifei Wang 1, Wen-Di Li 2, Chongwu Zhou 1 and Wei Wu 1* 1 Department

More information

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide Supporting information for Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum disulfide Jinhua Hong,, Yuhao Pan,, Zhixin Hu, Danhui Lv, Chuanhong Jin, *, Wei Ji, *, Jun Yuan,,*,

More information

Determination of redox reaction rates and orders by in-situ liquid cell. electron microscopy of Pd and Au solution growth

Determination of redox reaction rates and orders by in-situ liquid cell. electron microscopy of Pd and Au solution growth BNL-107596-2014-JA Determination of redox reaction rates and orders by in-situ liquid cell electron microscopy of Pd and Au solution growth Eli A. Sutter * and Peter W. Sutter Center for Functional Nanomaterials,

More information

CBE Science of Engineering Materials. Scanning Electron Microscopy (SEM)

CBE Science of Engineering Materials. Scanning Electron Microscopy (SEM) CBE 30361 Science of Engineering Materials Scanning Electron Microscopy (SEM) Scale of Structure Organization Units: micrometer = 10-6 m = 1µm nanometer= 10-9 m = 1nm Angstrom = 10-10 m = 1Å A hair is

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Coupling of Plasmonic Nanopore Pairs: Facing Dipoles Attract Each Other Takumi Sannomiya 1, Hikaru Saito 2, Juliane Junesch 3, Naoki Yamamoto 1. 1 Department of Innovative and

More information

Scanning Electron Microscopy & Ancillary Techniques

Scanning Electron Microscopy & Ancillary Techniques Scanning Electron Microscopy & Ancillary Techniques By Pablo G. Caceres-Valencia The prototype of the first Stereoscan supplied by the Cambridge Instrument Company to the dupont Company, U.S.A. (1965)

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity ASSIGNMENT # 1 Special Theory of Relativity 1. What was the objective of conducting the Michelson-Morley experiment? Describe the experiment. How is the negative result of the experiment interpreted? 2.

More information

Lithium Atom Microscopy at Sub-50pm Resolution by R005

Lithium Atom Microscopy at Sub-50pm Resolution by R005 Volume 45 Number 1 July, 2010 Lithium Atom Microscopy at Sub-50pm Resolution by R005 Contents Lithium Atom Microscopy at Sub-50pm Resolution by R005............... 2 Atomic-Resolution Elemental Mapping

More information

April 10th-12th, 2017

April 10th-12th, 2017 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Introduction: Basics of Transmission Electron Microscopy (TEM) TEM Doctoral Course MS-637 April 10th-12th, 2017 Outline 1. What is microcopy?

More information

Supporting Information

Supporting Information Supporting Information Single-atom and Nano-clustered Pt Catalysts for Selective CO 2 Reduction Yuan Wang, a Hamidreza Arandiyan,* a,b Jason Scott,* a Kondo-Francois Aguey-Zinsou, c and Rose Amal* a Miss

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles

Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles SUPPORTING INFORMATION Synthesis of Colloidal Au-Cu 2 S Heterodimers via Chemically Triggered Phase Segregation of AuCu Nanoparticles Nathan E. Motl, James F. Bondi, and Raymond E. Schaak* Department of

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

OPTICAL PROPERTIES of Nanomaterials

OPTICAL PROPERTIES of Nanomaterials OPTICAL PROPERTIES of Nanomaterials Advanced Reading Optical Properties and Spectroscopy of Nanomaterials Jin Zhong Zhang World Scientific, Singapore, 2009. Optical Properties Many of the optical properties

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Optical properties of spherical and anisotropic gold shell colloids

Optical properties of spherical and anisotropic gold shell colloids 8 Optical properties of spherical and anisotropic gold shell colloids Core/shell colloids consisting of a metal shell and a dielectric core are known for their special optical properties. The surface plasmon

More information

Collective effects in second-harmonic generation from plasmonic oligomers

Collective effects in second-harmonic generation from plasmonic oligomers Supporting Information Collective effects in second-harmonic generation from plasmonic oligomers Godofredo Bautista,, *, Christoph Dreser,,, Xiaorun Zang, Dieter P. Kern,, Martti Kauranen, and Monika Fleischer,,*

More information

Supplementary Information. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction

Supplementary Information. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction Supplementary Information Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction Neil P. Dasgupta 1 ǂ, Chong Liu 1,2 ǂ, Sean Andrews 1,2, Fritz B. Prinz

More information