Doctor of Philosophy

Size: px
Start display at page:

Download "Doctor of Philosophy"

Transcription

1 FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE by Sunil Kumar Department of Physics Indian Institute of Science BANGALORE February, 2012 i

2 (Sunil Kumar), 2012 All rights reserved ii

3 THESIS SYNOPSIS In a broad sense, ultrafast laser pulses (pulsewidth t < 1ps) have three important applications: (i) inducing a perturbation in a system of study within a time much shorter than the characteristic life-times of the system-constituents such as charge-carriers, phonons and other excitations. The temporal evolution and the channels through which the system restores to its equilibrium state can be studied by using a much weaker second pulse. (ii) Electromagnetic energy contained in the ultrafast laser-pulse results in high peak power (~10 10 Watt) which is sufficient to induce nonlinear effects in materials, primarily electronic in nature as compared to thermal phenomena in the nanosecond time domain. (iii) Thirdly, the spectral width of the femtosecond laser pulses is very broad ( 1/ t) resulting in generation of new radiation such as terahertz radiation by nonlinear frequency-mixing in a nonlinear crystal. In the present thesis we have taken advantage of all these three features of femtosecond laser pulses and have studied varieties of novel systems in condensed matter. We have experimentally investigated electron and phonon dynamics in newly discovered iron pnictide superconductors, graphene and analogous BCN (boron-carbonnitrogen) and other semiconducting and metallic nanosystems. Third-order optical nonlinear coefficients of graphene, BCN, silicon nanowires and gold nanoparticles have been estimated using nonlinear transmission measurements. Also, investigations of the electronic and vibrational characteristics of carbon nanotubes and silver nanoparticles embedded in a polymer matrix have been carried out using terahertz time-domain spectroscopy. Chapter 1 reviews the important physical principles involved in the ultrafast processes in condensed matter, in general, describing the above mentioned three attributes of femtosecond laser pulses. The physics to be derived from time-resolved pump-probe spectroscopy, nonlinear transmission experiments and terahertz time-domain spectroscopy has been discussed in detail. Background study of the electronic and phononic properties of the systems studied is given in the last section of the chapter. In Chapter 2, the experimental techniques and related tools used in the present thesis are described. These include generation and detection of femtosecond laser pulses, femtosecond time-resolved pump-probe spectroscopy, nonlinear transmission single beam iii

4 z-scan technique, and terahertz time-domain spectroscopy using sub-picosecond terahertz pulses. The remainder of the thesis has been organised into three parts. Part I: Femtosecond time-resolved measurements on recently discovered spin density wave and superconducting Ca(Fe 1-x Co x ) 2 As 2 iron pnictides; Part II: Pump-probe and z-scan measurements on graphene, BCN, silicon nanowires and gold-nanoparticles, and Part III: Terahertz time-domain spectroscopy of single-walled and double-walled carbon nanotubes and silver nanoparticles embedded in polymer films. In Part I (Chapters 3 and 4) we have presented results on quasiparticle dynamics in femtosecond photoexcited Ca(Fe 1-x Co x ) 2 As 2 iron pnictides with x = 0 (parent compound) and optimally doped x = The undoped crystal shows spin density wave phase transition at T SDW ~ 165K with a concurrent structural transition from high symmetric tetragonal to low symmetry orthorhombic phase. Optimally doped crystal shows superconducting transition at T SC ~ 20K and spin density wave transition at T SDW ~ 85K, and high-temperature tetragonal to low temperature orthorhombic phase transition at about 88K. We have carried out detailed temperature (3.5 K to 300 K) and laser-fluence dependent studies on these compounds. It is observed that the photoexcited carrier dynamics evolves with three relaxation components in both the spin density wave and the superconducting states, showing large variations in their amplitudes and time-constants. We observed coherent longitudinal acoustic phonons (LAM) in the undoped crystal whereas both the longitudinal and transverse acoustic phonons (TAM) along with a high frequency single optical phonon mode at frequency ~5.6 THz were detected in the doped crystal. The temperature-dependence has been studied in the whole temperature range of 3.5 K to 300 K. Using the thermal and/or electronic stress induced strain pulse propagation for the generation and detection of the acoustic phonons in the crystals we estimate the elastic behaviour as a function of temperature. We have used Routhwarf-Taylor (R-T) phonon-bottleneck relaxation model for gapped systems to understand our experimental results for the carrier dynamics. We will see in Chapter 3 that the temperature evolution of the fast (sub-picosecond) electronic relaxation parameters in the parent compound can be understood by considering the weak phonon-bottleneck description in the R-T model, whereas that in the doped superconducting compound, we have to invoke the strong phonon-bottleneck regime of the model (Chapter 4). iv

5 In Part II (Chapters 5, 6 and 7), the femtosecond photophysics of nanosystems including graphene have been discussed where results on the ultrafast carrier-dynamics and optical nonlinearities of these systems have been presented. In Chapter 5, we have presented results of pump-probe measurements on graphene suspensions as well as their thin films deposited on glass plates or indium-tin-oxide (ITO) coated glass plates. The dependence of the carrier dynamics on the laser-fluence and the pump-wavelength has been studied in detail. Our pump-probe measurements in conjunction with nonlinear transmission z-scan show saturable absorption in graphene. Optical responses from BCN (boron-carbon-nitrogen) (two to three layers), an analogue of graphene shows photobleaching at 395 nm pump and 790 nm probe, and optical limiting at 395 nm. The evolution of pump-induced changes in the differential reflectivity and transmission from a silicon nanowire film consisting of crystalline-core amorphous-shell silicon nanowires is reported in Chapter 6. Comparing our results on these nanowires with those obtained separately on crystalline silicon-on-sapphire under similar conditions, we infer that the multicomponent relaxation of the differential reflectivity or transmission from the core-shell nanowires has contributions at larger time-scales (> 100 ps) from the electrons in the crystalline core and at faster time-scales (< 10 ps) from the electrons in the amorphous shell. Unusual femtosecond photophysics of gold nanoparticles makes the subject study of Chapter 7. We have taken two examples of gold nanoparticles for our study: the gold nanorods and 15-atom gold clusters. Gold nanorods are prepared such that they have the longitudinal surface plasmon peak ( LSP ) varying from 660 nm to 849 nm (depending on the nanorods aspect ratio), which lie on either side of the laser wavelength ( L ) used in our experiments. In the degenerate pump-probe experiments ( L = 790 nm) we usually see photobleaching (PB) for nanorods with LSP > L, and photo-induced absorption (PA) for nanorods with LSP < L which can be understood from our simulations. The unusual behaviour of the gold nanorods is in terms of transition from PB to PA for the same nanorods sample which otherwise should have always shown PB ( LSP > L ). In nondegenerate pump-probe experiments (395 nm pump and 790 nm probe) the probefluence can be used as a control parameter to show a gradual change from PB to PA for the gold nanorods samples with LSP > L. Concurrently, around the threshold value of the probe-fluence in such a cross-over, the carrier relaxation time increases significantly. We v

6 have given a physical reasoning for this switching behaviour, hand in hand with the understanding of switching from photo-bleaching to photo-induced absorption in terms of two-photon absorption from the probe. Next, the 15-atom gold clusters deposited on an ITO coated glass plate show significant enhancement of the third-order optical susceptibility as compared to the clusters deposited on a glass plate, as observed from z-scan and pump-probe experiments. Noting that these 15-atom gold clusters do not show any surface plasmon resonance band in the optical absorption, we have qualitatively attributed the enhancement effect to excited state charge transfer between the gold cluster and ITO film. In Part III (Chapters 8 and 9) we have discussed the low-energy electronic and phononic features of carbon nanotubes, semi-crystalline polymer and silver nanoparticles as investigated using terahertz time-domain spectroscopy. We show that the experimentally measured real and imaginary parts of the frequency-dependent dielectric function have signatures in the experimental frequency range of THz for all the three nanosystems. In carbon nanotubes, these low frequency resonances are attributed to flexural modes which have been predicted theoretically but not observed directly in any scattering or absorption experiments so far. For silver nanoparticles, these resonances arise due to infrared active confined acoustic phonons. Similarly, in a poly(vinyl alcohol) film, the observed single resonance feature at ~1.2 THz is due to longitudinal acoustic mode of vibrations localized along the length of the crystalline lamellae in the polymer. vi

7 TABLE OF CONTENTS Declaration Acknowledgement Synopsis Publications i iii v ix Chapters 1 Introduction 1.1 Response of a material under optical excitation Linear and nonlinear optical properties Second order optical nonlinearities Third order optical nonlinearities z-scan method to estimate and 1.2 Time-resolved pump-probe spectroscopy Photoexcited carrier dynamics Coherent optical phonons Thermo-elastic strain pulse propagation in solid media 1.3 Coherent terahertz radiation for spectroscopy Photoconductive antennas Optical rectification and electro-optical sampling Principles of THz time domain spectroscopy 1.4 Condensed matter systems studied: a background survey Graphene: electronic and phonon structures Carbon nanotubes: low-energy electronic and phononic structures Metal nanoparticles Surface plasmon resonance Lattice vibrations of a small particle Elastic vibrations of a spherical particle Elastic vibrations of a cylindrical rod Iron pnictide superconductors The 122 family of iron pnictides Electronic structure Optical phonons 2 Experimental tools and procedures. 2.1 Femtosecond laser pulses as experimental tools Low-pulse-energy high-repetition-rate femtosecond oscillator High pulse-energy low-repetition-rate femtosecond regenerative amplifier system Pulse-width Measurements by autocorrelation techniques vii

8 Intensity autocorrelation by second harmonic generation Autocorrelation by two-photon absorption 2.2 Experimental Techniques Femtosecond time-resolved pump-probe spectroscopy Degenerate pump-probe spectroscopy Nondegenerate pump-probe spectroscopy Single beam z-scan method Designing a terahertz time-domain spectrometer Photoconductive antenna based spectrometer ZnTe based spectrometer 3 Gap dependent quasiparticle dynamics and coherent acoustic phonons in parent iron pnictide CaFe 2 As 2 across the spin density wave phase transition 3.1 Introduction 3.2 Experimental details 3.3 Results and discussion Carrier dynamics Generation and detection of coherent longitudinal acoustic phonons 3.4 Conclusions 4 Charged quasiparticle dynamics, coherent optical and acoustic phonons studied by time-resolved spectroscopy in superconducting iron-pnictide Ca(Fe Co ) 2 As Introduction 4.2 Experimental details 4.3 Results and discussion Carrier dynamics Dynamics below T SC Dynamics in the region T SC < T < T SDW Fluence-dependent dynamics Coherent acoustic phonons Coherent optical phonons 4.4 Conclusions 5 Femtosecond photoresponse from graphene and analogous BCN Graphene under ultrafast laser excitation Carrier dynamics in graphene flakes suspended in various solvents Preparation of colloidal suspensions of graphene Degenerate time-resolved differential transmission spectroscopy Results and discussion Comparison of pump-fluence dependent carrier-dynamics in reduced-graphene-oxide suspensions and films Two-color pump-probe spectroscopy of reduced-graphene oxide layers in suspensions and thin films Nonlinear optics on graphene by z-scan Saturable absorption in graphene-suspensions at 790 nm excitation viii

9 Saturable absorption in graphene-suspensions at 395 nm excitation 5.2 Graphene analogue BCN Hot carrier dynamics in few layer BCN Optical-limiting and nonlinear refraction in BCN-suspension at 395 nm 5.3 Conclusions 6 Probing ultrafast carrier dynamics and nonlinear absorption and refraction in core-shell silicon nanowires. 6.1 Introduction 6.2 Experimental details 6.3 Results and discussion 6.4 Conclusions 7 Unusual femtosecond photophysics of (a) gold nanorods and (b) excited state charge transfer enhanced optical nonlinearity in 15-atom gold clusters. 7.1 Gold nanorods Preparation and characterization of gold nanorod suspensions Time-resolved differential transmission measurements on gold nanorods Tuning between photo-bleaching and photo-induced absorption by selective longitudinal surface plasmon resonance Transition from photo-bleaching to photo-induced absorption triggered by probe fluence Coherent extensional vibrational mode of nanorods 7.2 Ultrafast optical limiting in gold nanoclusters Gold 15-atom clusters Nonlinear transmission measurements Time-resolved differential transmission measurements Discussion 7.3 Conclusions 8 Direct observation of confined acoustic phonons in silver nanoparticles and elongated polymeric chains in poly(vinyl alcohol) free standing films Spectroscopy of metal nanoparticles 8.2 Terahertz time-domain spectroscopy Samples and experimental conditions Results for pristine PVA film Longitudinal acoustic modes of crystalline lamellae in PVA Results for silver nanoparticles-embedded PVA film Confined acoustic phonons in silver nanoparticles 8.3 Conclusions Experimental evidence of ultralow frequency vibrations of single-walled And double-walled carbon nanotubes 209 ix

10 9.1 History of ultralow frequency vibrations of carbon nanotubes 9.2 Terahertz time-domain spectroscopy of single-walled carbon nanotubes Sample details and experimental conditions Results and discussion Low frequency phonons of single walled carbon nanotubes 9.3 Terahertz time-domain spectroscopy of double-walled carbon nanotubes Details of sample and experimental conditions Results and discussion 9.4 Conclusions x

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Dr. Ari Salmi www.helsinki.fi/yliopisto 26.3.2018 1 Last lecture key points Coherent acoustic phonons = sound at nanoscale Incoherent

More information

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 161 CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 7.1 SUMMARY OF THE PRESENT WORK Nonlinear optical materials are required in a wide range of important applications, such as optical

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11231 Materials and Methods: Sample fabrication: Highly oriented VO 2 thin films on Al 2 O 3 (0001) substrates were deposited by reactive sputtering from a vanadium target through reactive

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy

Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy F. Wang, 1 J. Shan, 1,2 E. Knoesel, 1,3 M. Bonn, 4 and T. F. Heinz 1 1 Departments of Physics and Electrical Engineering,

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

ULTRAFAST THZ PHOTO-GALVANIC CARRIER TRANSPORT. EXTREME FIELD INDUCED REGIME

ULTRAFAST THZ PHOTO-GALVANIC CARRIER TRANSPORT. EXTREME FIELD INDUCED REGIME Romanian Reports in Physics, Vol. 67, No. 4, P. 1597 1601, 2015 Dedicated to International Year of Light 2015 ULTRAFAST THZ PHOTO-GALVANIC CARRIER TRANSPORT. EXTREME FIELD INDUCED REGIME CARMINE SOMMA

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement

Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement IMPACT 2016, Cargese, France ICQM International Center for Quantum Materials Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement Nan-Lin Wang

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics Physics Paper - V : ELECTROMAGNETIC THEORY AND MODERN OPTICS (DPHY 21) Answer any Five questions 1) Discuss the phenomenon of reflection and refraction of electromagnetic waves at a plane interface between

More information

phase retardance THz intensity ratio THz filling factor in air : 0.2 filling factor in si : 0.8 length of air : 4um length of si : 16um depth : 27.

phase retardance THz intensity ratio THz filling factor in air : 0.2 filling factor in si : 0.8 length of air : 4um length of si : 16um depth : 27. 3. Research on THz-wave applications using frequency-agile THz-wave source 3.1 Development of spectroscopic Stokes polarimeter by using tunable THz-wave source (T. Notake, H. Minamide) In THz frequency

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP L. Subačius a,,

More information

All-optical generation of surface plasmons in graphene

All-optical generation of surface plasmons in graphene All-optical generation of surface plasmons in graphene T. J. Constant, 1, S. M. Hornett, 1 D. E. Chang, 2, and E. Hendry 1 1 Electromagnetic Materials Group, Department of Physics, College of Engineering,

More information

The generation of terahertz frequency radiation by optical rectification

The generation of terahertz frequency radiation by optical rectification University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 29 The generation of terahertz frequency radiation by optical

More information

Ultrafast nanoscience with ELI ALPS

Ultrafast nanoscience with ELI ALPS Ultrafast nanoscience with ELI ALPS Péter Dombi Wigner Research Centre for Physics, Budapest & Max Planck Institute of Quantum Optics, Garching Overview ultrafast (femtosecond/attosecond) dynamicsin metal

More information

UvA-DARE (Digital Academic Repository) Charge carrier dynamics in photovoltaic materials Jensen, S.A. Link to publication

UvA-DARE (Digital Academic Repository) Charge carrier dynamics in photovoltaic materials Jensen, S.A. Link to publication UvA-DARE (Digital Academic Repository) Charge carrier dynamics in photovoltaic materials Jensen, S.A. Link to publication Citation for published version (APA): Jensen, S. A. (2014). Charge carrier dynamics

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS Second Edition B.K. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Preface Introduction 1 Simple Models of the Electron-Phonon Interaction

More information

Tuning of 2-D Silicon Photonic Crystals

Tuning of 2-D Silicon Photonic Crystals Mat. Res. Soc. Symp. Proc. Vol. 722 2002 Materials Research Society Tuning of 2-D Silicon Photonic Crystals H. M. van Driel, S.W. Leonard, J. Schilling 1 and R.B. Wehrspohn 1 Department of Physics, University

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE - 411007 SYLLABUS for the M.Phil. (Physics ) Course Each Student will be required to do 3 courses, out of which two are common courses. The third course syllabus

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

Lecture #2 Nanoultrasonic imaging

Lecture #2 Nanoultrasonic imaging Lecture #2 Nanoultrasonic imaging Dr. Ari Salmi www.helsinki.fi/yliopisto 24.1.2014 1 Background Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 24.1.2014

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Ultrafast Dynamics in Complex Materials

Ultrafast Dynamics in Complex Materials Ultrafast Dynamics in Complex Materials Toni Taylor MPA CINT, Center for Integrated Nanotechnologies Materials Physics and Applications Division Los Alamos National Laboratory Workshop on Scientific Potential

More information

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde Inst. for Laser- and Plasmaphysics, University

More information

CHARACTERISTS OF NANO-SCALE COMPOSITES AT THZ AND IR SPRECTRAL REGIONS

CHARACTERISTS OF NANO-SCALE COMPOSITES AT THZ AND IR SPRECTRAL REGIONS CHARACTERISTS OF NANO-SCALE COMPOSITES AT THZ AND IR SPRECTRAL REGIONS JOHN F. FEDERICI Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 HAIM GREBEL Department of Electrical

More information

ULTRAFAST CARRIER AND LATTICE DYNAMICS STUDIES IN GaAs WITH INTENSE OPTICAL EXCITATION. Amlan Kumar Basak

ULTRAFAST CARRIER AND LATTICE DYNAMICS STUDIES IN GaAs WITH INTENSE OPTICAL EXCITATION. Amlan Kumar Basak ULTRAFAST CARRIER AND LATTICE DYNAMICS STUDIES IN GaAs WITH INTENSE OPTICAL EXCITATION by Amlan Kumar Basak B.Sc. (Hons.), Physics, University of North Bengal, 1999 M.Sc., Physics, Indian Institute of

More information

Supporting Information

Supporting Information Supporting Information Longqing Cong, 1,2 Yogesh Kumar Srivastava, 1,2 Ankur Solanki, 1 Tze Chien Sum, 1 and Ranjan Singh 1,2,* 1 Division of Physics and Applied Physics, School of Physical and Mathematical

More information

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons

More information

Research Letter Observation of Quantum Confinement Effects with Ultrashort Excitation in the Vicinity of Direct Critical Points in Silicon Nanofilms

Research Letter Observation of Quantum Confinement Effects with Ultrashort Excitation in the Vicinity of Direct Critical Points in Silicon Nanofilms Research Letters in Physics Volume 8, Article ID 83753, 5 pages doi:1.1155/8/83753 Research Letter Observation of Quantum Confinement Effects with Ultrashort Excitation in the Vicinity of Direct Critical

More information

Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene

Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene Leonhard Prechtel, Li Song, Dieter Schuh, Pulickel Ajayan, Werner Wegscheider & Alexander W. Holleitner Walter

More information

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork Understanding Solid State Physics Sharon Ann Holgate (И CRC Press Taylor & Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa business A TAYLORS FRANCIS

More information

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz Supplemental Material Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy H. Yada 1, R. Uchida 1, H. Sekine 1, T. Terashige 1, S. Tao 1, Y. Matsui 1, N. Kida

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Optically enhanced coherent transport in YBa 2 Cu 3 O 6.5 by ultrafast redistribution of interlayer coupling

Optically enhanced coherent transport in YBa 2 Cu 3 O 6.5 by ultrafast redistribution of interlayer coupling Optically enhanced coherent transport in YBa 2 Cu 3 O 6.5 by ultrafast redistribution of interlayer coupling W. Hu 1*, S. Kaiser 1*, D. Nicoletti 1*, C.R. Hunt 1,4*, I. Gierz 1, M. C. Hoffmann 1, M. Le

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Nonlinear optical spectroscopy in one-dimensional photonic crystals. Abstract

Nonlinear optical spectroscopy in one-dimensional photonic crystals. Abstract Applied Physics Letters #L03-3261, revised manuscript Nonlinear optical spectroscopy in one-dimensional photonic crystals Garrett J. Schneider and George H. Watson Department of Physics and Astronomy,

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy Sensors 2010, 10, 4342-4372; doi:10.3390/s100504342 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

Lecture #8 Non-linear phononics

Lecture #8 Non-linear phononics Lecture #8 Non-linear phononics Dr. Ari Salmi www.helsinki.fi/yliopisto 10.4.2018 1 Last lecture High pressure phononics can give insight into phase transitions in materials SASER can be used to generate

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

NANO/MICROSCALE HEAT TRANSFER

NANO/MICROSCALE HEAT TRANSFER NANO/MICROSCALE HEAT TRANSFER Zhuomin M. Zhang Georgia Institute of Technology Atlanta, Georgia New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore

More information

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Heedeuk Shin 1, Wenjun Qiu 2, Robert Jarecki 1, Jonathan A. Cox 1, Roy H. Olsson III 1, Andrew Starbuck 1, Zheng Wang 3, and

More information

Supporting information for: Ultrafast Transient. Terahertz Conductivity of Monolayer MoS 2 and WSe 2. Grown by Chemical Vapor Deposition

Supporting information for: Ultrafast Transient. Terahertz Conductivity of Monolayer MoS 2 and WSe 2. Grown by Chemical Vapor Deposition Supporting information for: Ultrafast Transient Terahertz Conductivity of Monolayer MoS 2 and WSe 2 Grown by Chemical Vapor Deposition Callum J. Docherty, Patrick Parkinson, Hannah J. Joyce, Ming-Hui Chiu,

More information

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008 A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide Ryan Huschka LANP Seminar February 19, 2008 TiO 2 Applications White Pigment Photocatalyst Previous methods to

More information

Lecture ) Electrical, Magnetic 2) Optical Properties of Nanomaterials (C4)

Lecture ) Electrical, Magnetic 2) Optical Properties of Nanomaterials (C4) Nanostructures and Nanomaterials: Characterization and Properties Prof.Anandh Subramaniam Prof. Kantesh Balani Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Lecture

More information

transmission reflection absorption

transmission reflection absorption Optical Cages V. Kumar*, J. P. Walker* and H. Grebel The Electronic Imaging Center and the ECE department at NJIT, Newark, NJ 0702. grebel@njit.edu * Contributed equally Faraday Cage [], a hollow structure

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

OPTICAL PROPERTIES of Nanomaterials

OPTICAL PROPERTIES of Nanomaterials OPTICAL PROPERTIES of Nanomaterials Advanced Reading Optical Properties and Spectroscopy of Nanomaterials Jin Zhong Zhang World Scientific, Singapore, 2009. Optical Properties Many of the optical properties

More information

Cross-propagating Beam-Deflection measurements of third-order nonlinear optical susceptibility

Cross-propagating Beam-Deflection measurements of third-order nonlinear optical susceptibility Cross-propagating Beam-Deflection measurements of third-order nonlinear optical susceptibility Sepehr Benis, David J. Hagan, Eric W. Van Stryland CREOL, The College of Optics and Photonics, P.O. Box 162700,

More information

Scattering-type near-field microscopy for nanoscale optical imaging

Scattering-type near-field microscopy for nanoscale optical imaging Scattering-type near-field microscopy for nanoscale optical imaging Rainer Hillenbrand Nano-Photonics Group Max-Planck-Institut für Biochemie 82152 Martinsried, Germany Infrared light enables label-free

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses I - Fundamentals Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Non-linear optical glasses

More information

Ultrafast Laser Physics. THz pulse generation and detection

Ultrafast Laser Physics. THz pulse generation and detection Ultrafast Laser Physics THz pulse generation and detection Goals: Explain why THz pulses are useful Explain conceptually some common methods to generate THz pulses Photoconductive switches Rectification

More information

Graphene Based Saturable Absorber Modelockers at 2µm

Graphene Based Saturable Absorber Modelockers at 2µm ISLA Workshop Munich Integrated disruptive components for 2µm fibre Lasers ISLA Graphene Based Saturable Absorber Modelockers at 2µm Prof. Werner Blau - Trinity College Dublin Friday, 26th of June 2015

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Aluminum for nonlinear plasmonics: Methods Section

Aluminum for nonlinear plasmonics: Methods Section Aluminum for nonlinear plasmonics: Methods Section Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst, ICFO - Institut de Ciencies Fotoniques, and ICREA - Institució Catalana de

More information

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. Mat. Res. Soc. Symp. Proc. Vol. 797 2004 Materials Research Society W4.6.1 Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. L. A. Sweatlock 1, J. J. Penninkhof 2, S. A.

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

THz Spectroscopy of Nanoscale Materials

THz Spectroscopy of Nanoscale Materials THz Spectroscopy of Nanoscale Materials Frontiers of THz Science Stanford, Sept. 5, 2012 Tony F. Heinz Columbia University New York, NY 10027 http://heinz.phys.columbia.edu tony.heinz@columbia.edu Thanks

More information

Material Analysis. What do you want to know about your sample? How do you intend to do for obtaining the desired information from your sample?

Material Analysis. What do you want to know about your sample? How do you intend to do for obtaining the desired information from your sample? Material Analysis What do you want to know about your sample? How do you intend to do for obtaining the desired information from your sample? Why can you acquire the proper information? Symmetrical stretching

More information

Acoustic metamaterials in nanoscale

Acoustic metamaterials in nanoscale Acoustic metamaterials in nanoscale Dr. Ari Salmi www.helsinki.fi/yliopisto 12.2.2014 1 Revisit to resonances Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

PHYSICS (PHYS) Physics (PHYS) 1. PHYS 5880 Astrophysics Laboratory

PHYSICS (PHYS) Physics (PHYS) 1. PHYS 5880 Astrophysics Laboratory Physics (PHYS) 1 PHYSICS (PHYS) PHYS 5210 Theoretical Mechanics Kinematics and dynamics of particles and rigid bodies. Lagrangian and Hamiltonian equations of motion. PHYS 5230 Classical Electricity And

More information

Terahertz wave generation based on laser-induced microplasmas

Terahertz wave generation based on laser-induced microplasmas Invited Paper Terahertz wave generation based on laser-induced microplasmas Fabrizio Buccheri * and Xi-Cheng Zhang The Institute of Optics, University of Rochester, 275 Hutchison Road, Rochester, NY, 14627

More information

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Graphene for THz technology

Graphene for THz technology Graphene for THz technology J. Mangeney1, J. Maysonnave1, S. Huppert1, F. Wang1, S. Maero1, C. Berger2,3, W. de Heer2, T.B. Norris4, L.A. De Vaulchier1, S. Dhillon1, J. Tignon1 and R. Ferreira1 1 Laboratoire

More information

Exploring Ultrafast Excitations in Solids with Pulsed e-beams

Exploring Ultrafast Excitations in Solids with Pulsed e-beams Exploring Ultrafast Excitations in Solids with Pulsed e-beams Joachim Stöhr and Hans Siegmann Stanford Synchrotron Radiation Laboratory Collaborators: Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford

More information