Physical Principles of Electron Microscopy. 2. Electron Optics

Size: px
Start display at page:

Download "Physical Principles of Electron Microscopy. 2. Electron Optics"

Transcription

1 Physical Principles of Electron Microscopy 2. Electron Optics Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada

2 Properties of an ideal image (Maxwell s rules) 1. For each point in the object there is an equivalent point in the image. Image defects: defocus (first-order focusing) aberrations (point à disk of confusion) 2. The object pattern and image pattern are similar. Defect: distortion (barrel, pincushion, spiral) A triangle imaged with magnification and inversion, showing ray paths. Points A,B,C are equivalent to a,b,c and the triangles are similar. M(r) increase M(r) decrease f(r) non-zero 3. If object is planar and perpendicular to the optic axis, so is the image. Defect: curvature of field

3 Imaging in Light Optics is based on refraction Snell s law: n 1 sinθ 1 = n 2 sinθ 2 Refraction by a glass prism For small angles, deviation α ~ (n-1)φ Focusing by a convex lens à (think of it as a prism whose angle increases with distance from the optic axis)

4 Fermat s Principle of least time (ray & wave optics) Total time T for travel between O and I is a minimum (otherwise the phases of alternative paths are almost random, so the net amplitude becomes zero). T = 4f/c t/c + n t /c path A = (2/c)[(2f) 2 + r 2 ] 1/2 path B Making these two times equal gives a formula for the focal length f, which can be compared with the Lensmakers Formula: path A t r path B 1/f = (n-1) [2/R 2 - (1-1/n)t/R 2 )] R is the radius of curvature for both lens surfaces and r 2 = Rt - t 2 /4 from geometry. 2f 2f

5 Ray diagrams with a few special ray paths: Thin-lens ray diagram (geometric optics) showing first-order focusing A ray parallel to the optic axis defines the focal length of the lens Thin-lens equations: 1/u + 1/v = 1/f (real image: u and v are positive) M = x i /x 0 = v/u (usually take M > 0 for a real image)

6 Lens aberrations (higher-order focusing) Axial aberrations: Spherical aberration: f depends on distance from optic axis Chromatic aberration: f depends on radiation wavelength (dispersion) Both of these give a circular disk of confusion. Axial astigmatism: f varies with azimuthal angle φ. Gives elliptical line foci from a non-round lens. Off-axis aberrations (less important in electron optics): Coma: each object point à comet-like effect in the image Third-order astigmatism à line foci, even for a round lens

7 Electron optics Ray bending cannot use solid lenses (too much scattering) 1. Electrons are charged particles (electrostatic deflection) Electrostatic force: F = (-e) E Used for beam deflection and focusing (axial symmetry) 2. Moving electron is equivalent to an electrical current, so there is a magnetic (Lorentz) force: F = -e (v x B) More effective when the electron speed v is high (limit is speed of light) Also used for deflection and focusing.

8 Electrostatic (einzel) lens Used in CRT display tube (TV, oscilloscope), ion optics (e.g. FIB machine, v is lower than for electrons) Advantages: lightweight, low power, no image rotation, self-compensating for voltage fluctuations Disadvantages: high voltage (insulation, surface breakdown), higher aberrations, no immersion lens for conducting specimen

9 Magnetic lens (usually electromagnetic) 1. Uniform field: point-to-point focusing > but cannot focus a parallel beam. 2. Localised field (axial symmetry) : B 1 rev. coil carrying direct current rotation through angle φ

10 Electron trajectories bell-shaped towards axis Div(B) = 0 à B r = -(r/2)(db z /dz) F φ = - e (v z B r ) + e (B z v r ) produces angular speed v φ, then F r = - e (v φ B z ) gives radial force towards axis F z = (v φ B r ) ß net effect = 0

11 Comments on magnetic focusing No force in direction of electron travel, so electron speed v remains constant at all times. Kinetic energy (KE) always stays the same. Rotation effect is ignored in e-ray diagram (plot of r versus z). Radial field B r causes force F r towards axis (focusing) and is present only where db z /dz is non-zero (e.g. in fringing field at the entrance and exit of a solenoid). So a long uniform field (as in a solenoid) is unnecessary. For efficiency, keep the field as short as possible, using polepieces.

12 Practical lenses Soft magnetic material surrounds windings except at the lens gap For mechanical stability, the electron column is vertical with O-ring seals between lenses. Cooling water ensures constant temperature and low thermal drift.

13 Focusing power of a magnetic lens in the thin-lens approximation (a << f ): electron KE For Lorentzian field B z = B 0 /(1 + z ß much lower for ions Reversing the lens current reverses the image rotation but does not change the focusing power

14 Defects in electron lenses: Spherical aberration mid-plane of thin lens Focus change Δf increases with distance x from axis. Axial symmetry implies Δf = c 2 x 2 + c 4 x 4 + But x = f 1 tanα ~ f α and r s = Δf tanα ~ Δf α so r s ~ c 2 (fα) 2 α = C s α 3 where C s is the coefficient of spherical aberration For a broad beam (radius x), r s is the radius of the disk of confusion. Paraxial focus is at F (Gaussian image plane) Screen could be moved to the left to display a smaller disk of least confusion.

15 Practical cases of spherical aberration demagnification e.g. SEM objective magnification (electron rays reversed) magnification (Rayleigh criterion)

16 Chromatic aberration concerns the kinetic energy E 0 of the electrons 1/f = (π/16)(ab 02 )[e 2 /(8mE 0 )] à f = c E 0, Δf = c ΔE 0 = (f/e 0 ) ΔE 0 If E 0 decreases, f decreases à focus closer to lens (dashed rays below) object plane image plane M = v/u = tanα / tanβ ~ α/β r i = Δv tanβ ~ β Δv, equivalent to r c ~ β Δv/M ~ α Δv/M 2 1/u + 1/v = 1/f à Δv = (v 2 /f 2 ) Δf and M>>1 à u ~ f, v ~ Mf So Δv = M 2 Δf and r c ~ α (Μ 2 Δf)/M 2 = α Δf = α (f/e 0 ) ΔE 0 More generally, r c = C c α (ΔE 0 /E 0 ) where C c = f approximately Rayleigh criterion

17 Calculations for an objective lens with a = 1.8 mm and E 0 = 200keV using thin-lens approximation and more accurate theory (Glaeser, 1952) 1. C s and C c are roughly equal to f 2. Small r s and r c require a strong lens (small focal length ~ 1 or 2 mm) Causes of chromatic aberration: 1. Spread of kinetic energy from electron source 2. Fluctuations in accelerating voltage (drift and ripple) 3. Energy losses in specimen, due to inelastic scattering

18 Axial astigmatism arises from different 1/f in the x-z and y-z planes à two elliptical line foci It is a parasitic aberration, due to imperfection in lens-polepiece material or machining Solution: use a weak quadrupole lens (called a stigmator)

19 Electrostatic (a) and magnetic (b) stigmators viewed along the optic axis Need to adjust amplitude and rotation (mechanically or electrically) while sweeping through focus. In light optics, a weak cylindrical lens is used to correct astigmatism of the eye

20 Distortion R = Mr + C d r 3 C d > 0 gives pincushion distortion, C d < 0 gives barrel distortion. Related to spherical aberration, C s > 0 à C d > 0. Arises mainly from final (projector) lens in TEM. Distortion is more visible at low magnification. Important in high-resolution (lattice) imaging of crystals but does not lead to loss of resolution. Curvature of field is unimportant in TEM because the depth of focus is large

21 Correction of lens aberrations Scherzer (1936) proved that any electron-optical system will suffer from spherical and chromatic aberration if all of the following are true: 1. The optical system has rotational (axial) symmetry 2. The system produces a real image of the object 3. The focusing fields are time-independent 4. No charge is present on the electron-optical axis 3. is violated in particle accelerators in order to correct chromatic aberration and is being pursued in femtosecond electron optics. [also allows correction by an electrostatic mirror, where v is reversed] 4. has been investigated in the TEM by using foils or mesh, one problem being hydrocarbon contamination 2. seems a necessary requirement (intermediate virtual images don t help) 1. has been the main target of development, using weak multipole lenses

22 Multipoles Dipole is used for beam deflection (scan coils) E r Weak quadrupole used to correct axial astigmatism Strong quadrupole lenses are used in particle accelerators Sextupoles & octupoles are used for aberration correction in the TEM and SEM Diagram by A. Bleloch & Q. Ramasse in Aberration-Corrected Analytical Electron Microscopy (Wiley, 2011). E=constant Multipoles E r 3 E r 2 Dipole is used for beam deflection (scan coils) Weak quadrupole used to correct axial astigmatism Strong quadrupole lenses are used in particle

23 Quadrupole-Octupole corrector (Scherzer 1947, Krivanek 1994, Nion STEM) y-cor. 4-fold stig. cor. x-cor. Diagram by A. Bleloch & Q. Ramasse in Aberration-Corrected Analytical Electron Microscopy (Wiley, 2011).

24 Aberration-corrected STEM (Nion Company, Seattle)

25 Hexapole (sextupole) corrector (Hawkes 1965, Rose 1981, Haider 1998, CEOS TEM/STEM corrector) transfer lenses long Hex1 Hex2 rotated 60deg Diagram by A. Bleloch & Q. Ramasse in Aberration-Corrected Analytical Electron Microscopy (Wiley, 2011).

26 CEOS sextupole corrector

Principles of Electron Optics

Principles of Electron Optics Principles of Electron Optics Volume 1 Basic Geometrical Optics by P. W. HAWKES CNRS Laboratory of Electron Optics, Toulouse, France and E. KASPER Institut für Angewandte Physik Universität Tübingen, Federal

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1 David Buckley, SAAO 24 Feb 2012 NASSP OT1: Telescopes I-1 1 What Do Telescopes Do? They collect light They form images of distant objects The images are analyzed by instruments The human eye Photographic

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

Principles of Electron Optics

Principles of Electron Optics Principles of Electron Optics Volume 2 Applied Geometrical Optics by P. W. HAWKES CNRS Laboratory of Electron Optics, Toulouse, France and E. KASPER Institut für Angewandte Physik Universität Tübingen,

More information

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications In materials science, people are always interested in viewing

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Modeling and Analysis of Aberrations in Electron Beam Melting (EBM) Systems

Modeling and Analysis of Aberrations in Electron Beam Melting (EBM) Systems Modeling and Analysis of Aberrations in Electron Beam Melting (EBM) Systems Armin Azhirnian 1, David Svensson 2 1 Chalmers University of Technology, Gothenburg, Sweden 2 Arcam AB, Mölndal, Sweden Abstract

More information

Weak-Beam Dark-Field Technique

Weak-Beam Dark-Field Technique Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 Weak-Beam Dark-Field Technique near the dislocation core, some planes curved to s = 0 ) strong Bragg reflection

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO David Buckley, SAAO 27 Feb 2012 1 Some other Telescope Parameters 1. Plate Scale This defines the scale of an image at the telescopes focal surface For a focal plane, with no distortion, this is just related

More information

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO David Buckley, SAAO 17 Feb 2010 1 Some other Telescope Parameters 1. Plate Scale This defines the scale of an image at the telescopes focal surface For a focal plane, with no distortion, this is just related

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Astro 500 A500/L-7 1

Astro 500 A500/L-7 1 Astro 500 1 Telescopes & Optics Outline Defining the telescope & observatory Mounts Foci Optical designs Geometric optics Aberrations Conceptually separate Critical for understanding telescope and instrument

More information

Computations on Gabor lens having two different field distributions

Computations on Gabor lens having two different field distributions IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 6, Issue 6 Ver. II (Nov.-Dec. 2014), PP 06-11 Computations on Gabor lens having two different field distributions Saif KamilShnain Department

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Aberration Correction in Electron Optics with N- Fold Symmetric Line Currents

Aberration Correction in Electron Optics with N- Fold Symmetric Line Currents Title Author(s) Aberration Correction in Electron Optics with N- Fold Symmetric Line Currents HOQUE, SHAHEDUL Citation Issue Date Text Version ETD URL https://doi.org/1.1891/69584 DOI 1.1891/69584 rights

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The diagram shows the concave mirror of a Cassegrain reflecting telescope, together with the eyepiece lens. Complete the diagram of the telescope and mark on it the focal

More information

Physics 3312 Lecture 7 February 6, 2019

Physics 3312 Lecture 7 February 6, 2019 Physics 3312 Lecture 7 February 6, 2019 LAST TIME: Reviewed thick lenses and lens systems, examples, chromatic aberration and its reduction, aberration function, spherical aberration How do we reduce spherical

More information

5. Aberration Theory

5. Aberration Theory 5. Aberration Theory Last lecture Matrix methods in paraxial optics matrix for a two-lens system, principal planes This lecture Wavefront aberrations Chromatic Aberration Third-order (Seidel) aberration

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

20. Aberration Theory

20. Aberration Theory 0. Aberration Theory Wavefront aberrations ( 파면수차 ) Chromatic Aberration ( 색수차 ) Third-order (Seidel) aberration theory Spherical aberrations Coma Astigmatism Curvature of Field Distortion Aberrations

More information

Telescopes and Optics II. Observational Astronomy 2017 Part 4 Prof. S.C. Trager

Telescopes and Optics II. Observational Astronomy 2017 Part 4 Prof. S.C. Trager Telescopes and Optics II Observational Astronomy 2017 Part 4 Prof. S.C. Trager Fermat s principle Optics using Fermat s principle Fermat s principle The path a (light) ray takes is such that the time of

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Systems Part 10: Performance criteria 1 Summer term 01 Herbert Gross Overview 1. Basics 01-04-18. Materials 01-04-5 3. Components 01-05-0 4. Paraxial optics 01-05-09 5.

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

CHEM-E5225 :Electron Microscopy Imaging

CHEM-E5225 :Electron Microscopy Imaging CHEM-E5225 :Electron Microscopy Imaging 2016.10 Yanling Ge Outline Planar Defects Image strain field WBDF microscopy HRTEM information theory Discuss of question homework? Planar Defects - Internal Interface

More information

Electron microscopy in molecular cell biology I

Electron microscopy in molecular cell biology I Electron microscopy in molecular cell biology I Electron optics and image formation Werner Kühlbrandt Max Planck Institute of Biophysics chemistry biology Objects of interest Galaxy 10 6 light years 10

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Optical Microscope Plan Lenses In an "ideal" single-element lens system all planar wave fronts are focused to a point at distance f from the lens; therefore: Image near the optical axis will be in perfect

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr

DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr SET: 1 General Instructions:- DELHI PUBLIC SCHOOL, BAHADURGARH Sample Paper 1 PHYSICS CLASS-XII Date- Duration:3hr All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry

More information

Miami Dade College. PHY Physics with Applications

Miami Dade College. PHY Physics with Applications Miami Dade College PHY 1005 - Physics with Applications PHY 1005 3 credits Course Description PHY 1005, Physics with Applications, is the second semester of a two semester physics without calculus sequence.

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

Optics of high-performance electron microscopes

Optics of high-performance electron microscopes Science and Technology of Advanced Materials TOPICAL REVIEW Optics of high-performance electron microscopes To cite this article: H H Rose 008 Sci. Technol. Adv. Mater. 9 014107 View the article online

More information

6. Analytical Electron Microscopy

6. Analytical Electron Microscopy Physical Principles of Electron Microscopy 6. Analytical Electron Microscopy Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca

More information

A Compact Magnetic Focusing System for Electron Beams Suitable with Metamaterial Structures

A Compact Magnetic Focusing System for Electron Beams Suitable with Metamaterial Structures A Compact Magnetic Focusing System for Electron Beams Suitable with Metamaterial Structures Ms. Kimberley Nichols University of New Mexico Advised by Dr. Edl Schamiloglu work performed in collaboration

More information

Electron and Ion Optics

Electron and Ion Optics Electron and Ion Optics MICRODEVICES Physics and Fabrication Technologies Series Editors: Ivor Brodie and Julius J. Muray SRI International Menlo Park, California ELECTRON AND ION OPTICS Miklos Szilagyi

More information

Electron beam scanning

Electron beam scanning Electron beam scanning The Electron beam scanning operates through an electro-optical system which has the task of deflecting the beam Synchronously with cathode ray tube which create the image, beam moves

More information

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed.

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed. 8.2.11 Star Test n The visual examination of the image of a point source is one of the most basic and important tests that can be performed. Interpretation of the image is to a large degree a matter of

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential Units of Chapter 23 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Electric Potential Due to Point Charges Potential

More information

P 3 SOURCE SOURCE IMAGE

P 3 SOURCE SOURCE IMAGE Introduction to ion-optic This appendix is intended to provide a short introduction to the formalism describing the transport of charged particles in magnetic fields. Due to the analogies between ion-optic

More information

The Treptow Giant Telescope in Berlin is the longest moveable refracting telescope on Earth. Some of its properties are summarised below:

The Treptow Giant Telescope in Berlin is the longest moveable refracting telescope on Earth. Some of its properties are summarised below: Q1.(a) Draw a ray diagram for an astronomical refracting telescope in normal adjustment. Your diagram should show the paths of three non-axial rays passing through both lenses. Label the principal foci

More information

Maharaja Agrasen Model School, PitamPura. SAMPLE QUESTION PAPER, Physics

Maharaja Agrasen Model School, PitamPura. SAMPLE QUESTION PAPER, Physics Maharaja Agrasen Model School, PitamPura SAMPLE QUESTION PAPER, Physics MAX.MARKS- 70 TIME- 3 HOURS General Instructions: (i) All questions are compulsory. (ii) Question numbers 1 to 5 are very short answer

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5 MULTIPLE CHOICE 1. What is the wavelength of the longest wavelength light visible to the human eye? a. 400 nm b. 4000 nm c. 7000 nm

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 2: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes

More information

Practical course in scanning electron microscopy

Practical course in scanning electron microscopy Practical course in scanning electron microscopy Fortgeschrittenen Praktikum an der Technischen Universität München Wintersemester 2017/2018 Table of contents 1. Introduction 3 2. Formation of an electron

More information

For more sample papers visit :

For more sample papers visit : PHYSICS (THEORY) (Three hours) For more sample papers visit : www.4ono.com Answer all questions in Part I and six questions from Part II, choosing two questions from each of the Sections A, B and C. All

More information

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants. PHYSICS 253 SAMPLE FINAL EXAM Name Student Number CHECK ONE: Instructor 1 10:00 Instructor 2 1:00 Note that problems 1-19 are worth 2 points each, while problem 20 is worth 15 points and problems 21 and

More information

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm.

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. TC [66 marks] This question is about a converging (convex) lens. A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. (i) Deduce the magnification

More information

Chapter 1. Ray Optics

Chapter 1. Ray Optics Chapter 1. Ray Optics Postulates of Ray Optics n c v A ds B Reflection and Refraction Fermat s Principle: Law of Reflection Fermat s principle: Light rays will travel from point A to point B in a medium

More information

CBSE PHYSICS QUESTION PAPER (2005)

CBSE PHYSICS QUESTION PAPER (2005) CBSE PHYSICS QUESTION PAPER (2005) (i) (ii) All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry one mark each, Questions 9 to 18 carry two marks each, Question 19 to 27

More information

THE INDIAN COMMUNITY SCHOOL, KUWAIT

THE INDIAN COMMUNITY SCHOOL, KUWAIT THE INDIAN COMMUNITY SCHOOL, KUWAIT SERIES : I SE / 2016-2017 CODE : N 042 MAX. MARKS : 70 TIME ALLOWED : 3 HOURS NO. OF PAGES : 6 PHYSICS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points)

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points) Question 1 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points) Consider n=2 moles of ideal Helium gas at a pressure P 0, volume V 0 and temperature T 0 = 300 K placed in a vertical cylindrical container

More information

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Harmonic oscillation: Experiment Experiment to find a mathematical description of harmonic oscillation Kapitel 14 Harmonisk oscillator 1 2 Harmonic oscillation: Experiment Harmonic

More information

SAMPLE PAPER III. Time : 3 hours Max. Marks : 70

SAMPLE PAPER III. Time : 3 hours Max. Marks : 70 SAMPLE PAPER III Time : 3 hours Max. Marks : 70 General Instructions All questions are compulsory. 1. Draw the equipotential surfaces for two point charges each of magnitude q > 0 placed at some finite

More information

Outline of College Physics OpenStax Book

Outline of College Physics OpenStax Book Outline of College Physics OpenStax Book Taken from the online version of the book Dec. 27, 2017 18. Electric Charge and Electric Field 18.1. Static Electricity and Charge: Conservation of Charge Define

More information

CBSE Examination Paper

CBSE Examination Paper CBSE Examination Paper Time allowed : 3 hours Maximum marks: 70 General Instructions: Same as CBSE Examination Paper SET I 1. Using the concept of force between two infinitely long parallel current carrying

More information

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Electromagnetic Waves Lectures 21-22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Minicourse on Experimental techniques at the NSCL Fragment Separators

Minicourse on Experimental techniques at the NSCL Fragment Separators Minicourse on Experimental techniques at the NSCL Fragment Separators Thomas Baumann National Superconducting Cyclotron Laboratory Michigan State University e-mail: baumann@nscl.msu.edu August 2, 2001

More information

Chapter 2 Structure and Imaging of a Transmission Electron Microscope (TEM)

Chapter 2 Structure and Imaging of a Transmission Electron Microscope (TEM) Chapter 2 Structure and Imaging of a Transmission Electron Microscope (TEM) In this chapter, we overview the structure of a transmission electron microscope (TEM) for nanoimaging, and mathematical descriptions

More information

XXXXXXXXXXXXXXX. First Pre-Board Examination, Physics

XXXXXXXXXXXXXXX. First Pre-Board Examination, Physics Series SSO Code No. 55/1/B Roll No. Candidates must write the code on the title page of the answer book General Instructions: Please check that this question paper contains 6 printed pages. Code number

More information

Final Exam is coming!

Final Exam is coming! Final Exam is coming! Thurs., May 4, 4:30 to 6:30 pm, in this room. 25 multiple-choice questions Personalized exams I will enter the grade on your Mastering Physics account ( Final ). Old Part is comprehensive.

More information

Assignment 3 Due September 27, 2010

Assignment 3 Due September 27, 2010 Assignment 3 Due September 27, 2010 Text readings Stops section 5.3 Dispersing and Reflecting Prisms [sections 5.5.1 and 5.5.2] Optical systems section 5.7 Lens Aberrations [section 6.3] Be careful about

More information

Free electron lasers

Free electron lasers Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Free electron lasers Lecture 2.: Insertion devices Zoltán Tibai János Hebling 1 Outline Introduction

More information

Emittance preserving staging optics for PWFA and LWFA

Emittance preserving staging optics for PWFA and LWFA Emittance preserving staging optics for PWFA and LWFA Physics and Applications of High Brightness Beams Havana, Cuba Carl Lindstrøm March 29, 2016 PhD Student University of Oslo / SLAC (FACET) Supervisor:

More information

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity.

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity. Linear Dynamics, Lecture 5 Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity. Andy Wolski University of Liverpool, and the Cockcroft Institute, Daresbury, UK. November, 2012 What we Learned

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term Lens Design II Lecture 1: Aberrations and optimization 18-1-17 Herbert Gross Winter term 18 www.iap.uni-jena.de Preliminary Schedule Lens Design II 18 1 17.1. Aberrations and optimization Repetition 4.1.

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Microscopy: Principles

Microscopy: Principles Low Voltage Electron Microscopy: Principles and Applications Edited by David C. Bell Harvard University, USA and Natasha Erdman JEOL USA Inc., USA Published in association with the Royal Microscopical

More information

CHAPTER IV INSTRUMENTATION: OPTICAL TELESCOPE

CHAPTER IV INSTRUMENTATION: OPTICAL TELESCOPE CHAPTER IV INSTRUMENTATION: OPTICAL TELESCOPE Outline: Main Function of Telescope Types of Telescope and Optical Design Optical Parameters of Telescope Light gathering power Magnification Resolving power

More information

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched Introduction p. xvii Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched String p. 16 Velocities of Mechanical

More information

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity

JRE Group of Institutions ASSIGNMENT # 1 Special Theory of Relativity ASSIGNMENT # 1 Special Theory of Relativity 1. What was the objective of conducting the Michelson-Morley experiment? Describe the experiment. How is the negative result of the experiment interpreted? 2.

More information

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A)

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A) PHYS 102 Exams PHYS 102 Exam 3 PRINT (A) The next two questions pertain to the situation described below. A metal ring, in the page, is in a region of uniform magnetic field pointing out of the page as

More information

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum

Spatial Frequency and Transfer Function. columns of atoms, where the electrostatic potential is higher than in vacuum Image Formation Spatial Frequency and Transfer Function consider thin TEM specimen columns of atoms, where the electrostatic potential is higher than in vacuum electrons accelerate when entering the specimen

More information

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator.

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator. Block diagram Medical Linac Electron source Bending magnet Accelerating structure Pulse modulator Klystron or magnetron Treatment head 1 Medical Linac 2 Treatment Head 3 Important Accessories Wedges Dynamic

More information

Final Exam Solutions

Final Exam Solutions Prof. Yasu Takano Prof. Paul Avery Dec. 8, 007 Final Exam Solutions (First answer is correct) 1. (Exam 1) Charges +9Q and 3Q are held in place at positions x = 0 m and x = m, respectively. At what position

More information

Final Exam. PHY2049 Fall11

Final Exam. PHY2049 Fall11 Exam 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting on q3?

More information

10 Lecture, 5 October 1999

10 Lecture, 5 October 1999 10 Lecture, 5 October 1999 10.1 Aberration compensation for spherical primaries: the Schmidt camera All-reflecting optical systems are called catoptric; all-refracting systems are called dioptric. Mixed

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Depths of Field & Focus (I) First identify the location and size of the image of a flat (2-D) object by tracing a number of rays.

Depths of Field & Focus (I) First identify the location and size of the image of a flat (2-D) object by tracing a number of rays. Depths of Field & Focus (I) d First identify the location and sie of the image of a flat (-D) object by tracing a number of rays. d Depths of Field & Focus (II) The image of a point on the object will

More information

CBSE_2014_SET_3 Physics

CBSE_2014_SET_3 Physics CBSE_2014_SET_3 Physics 1. A conducting loop is held below a current carrying wire PQ as shown. Predict the direction of the induced current in the loop when the current in the wire is constantly increasing.

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Depths of Field & Focus

Depths of Field & Focus Depths of Field & Focus Depth of Field: If the resolution is, then the entire object is in focus when: d D d D depth of field Depth of Focus: d D Image in focus if: d M D M M 1 M M D M M depth of focus

More information

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point Magnifying Glass Angular magnification (m): 25 cm/f < m < 25cm/f + 1 relaxed eye, image at (normal) far point image at 25 cm (= normal near point) For more magnification, first use a lens to form an enlarged

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 CLASS: XII AISSCE 2016 Subject: Physics EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016 Q3 Section A ( 1 Mark ) A force F is acting between two charges placed some distances apart in vacuum. If a brass

More information

THE HEAVY ION BEAM PROBE

THE HEAVY ION BEAM PROBE THE HEAVY ION BEAM PROBE CONTENTS Principles of operation Apparatus ions source accelerator beam bending system sweep plates analyzer Sample volumes Space potential Space potential fluctuations Density

More information

Scanning Electron Microscopy & Ancillary Techniques

Scanning Electron Microscopy & Ancillary Techniques Scanning Electron Microscopy & Ancillary Techniques By Pablo G. Caceres-Valencia The prototype of the first Stereoscan supplied by the Cambridge Instrument Company to the dupont Company, U.S.A. (1965)

More information

SEM Optics and Application to Current Research

SEM Optics and Application to Current Research SEM Optics and Application to Current Research Azure Avery May 28, 2008 1 Introduction 1.1 History The optical microscope was invented in the early 17th century. Although revolutionary, the earliest microscopes

More information

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on atomoptic.

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on  atomoptic. Erasmus Mundus Mundus OptSciTech Nathalie Westbrook Ray Optics 30 teaching hours (every wednesday 9-12am) including lectures, problems in class and regular assignments,, as many labs as possible, tutoring

More information

CHAPTER 11 RADIATION 4/13/2017. Outlines. 1. Electric Dipole radiation. 2. Magnetic Dipole Radiation. 3. Point Charge. 4. Synchrotron Radiation

CHAPTER 11 RADIATION 4/13/2017. Outlines. 1. Electric Dipole radiation. 2. Magnetic Dipole Radiation. 3. Point Charge. 4. Synchrotron Radiation CHAPTER 11 RADIATION Outlines 1. Electric Dipole radiation 2. Magnetic Dipole Radiation 3. Point Charge Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 4. Synchrotron Radiation

More information

Test 4 Preparation Questions

Test 4 Preparation Questions Test 4 Preparation Questions A1. One joule of work is required to move a one-coulomb point charge from point A to point B in a uniform electric field. This indicates that (A) the resistance between points

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

FIRST YEAR PHYSICS. Unit 4: Light II

FIRST YEAR PHYSICS. Unit 4: Light II FIRST YEAR PHYSICS Unit 4: Light II Contents PHASORS...3 RESOLUTION OF OPTICAL INSTRUMENTS...5 Rayleigh s criterion... 7 MORE ON DIFFRACTION...11 Multiple slits:... 11 Diffraction gratings... 14 X-RAY

More information

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors Lecture 2: Basic Astronomical Optics Prisms, Lenses, and Mirrors Basic Optical Elements Refraction (Lenses) No longer used for large telescopes Widely used for instrument optics Reflection (mirrors) Widely

More information

1986 s Nobel Prize in Physics

1986 s Nobel Prize in Physics Revised version: 2017.12.19 1986 s Nobel Prize in Physics (Electron Microscope & STM) Huiwon Ahn Seoul National University Department of Physics & Astronomy, Korea Abstract The structure of matter or organisms

More information

Physics 102: Lecture 16 Introduction to Mirrors

Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16, Slide 1 Physics 102 recent lectures Light as a wave Lecture 14 EM waves Lecture 15 Polarization Lecture 20 & 21 Interference & diffraction

More information