Light reaction. Dark reaction

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Light reaction. Dark reaction"

Transcription

1 Photosynthesis

2

3 Light reaction Dark reaction

4

5

6

7 Electro-magnetic irradiance and sunlight

8 CO 2 and O 2 fixation by Rubisco

9 Oxygenic photosynthesis was established in Cyanobacteria

10

11

12

13

14 Localisation of the photosynthetic apparatus - Cell organelles, chloproplasts chloroplasts/cell - endocytobiosis - chloroplasts have two outer membranes with different origin (lipids, proteins) - thylakoids derive from inner (procaryotic) membrane - grana- and stroma thylakoids -new compartment: lumen vs. stroma - different transport processes for proteins into the two plastid compartments -photosynthesis in thylakoid membranes - different association of proteins at the thylakoid membrane

15 Chlorophyll, carotinoid, phycobilin

16 Chlorophyll a

17

18

19

20 Chlorophyll, carotinoid, phycobilin

21

22

23

24 HPLC (high performance liquid chromatography)

25

26 Carotenoids have two functions: - light absorbance - protection against excess light

27 Energy dissipation by xanthophylls Low light = Violaxanthin is present in and around PSII High light = Zeaxanthin synthesis in and around PSII

28 In response to high light, plants have evolved photo protection mechanisms to dissipate the excess absorbed light energy and thus avoid damages to the photosynthetic apparatus. One of the mechanisms is through transfer of the absorbed energy from chlorophyll a to xanthophyll pigment zeaxanthin since excited zeaxanthin decays to the ground level much more rapidly than excited chlorophyll a. Under excessive light condition, violaxanthin is converted to zeaxanthin in the xanthophyll cycle, and thus accelerates the energy dissipation from excited chlorophyll a to zeaxanthin.

29

30 Lemna minor: transfer of green turions to Norflurazon blocks carotenoid biosynthesis: Newly formed turions are white due to photo-oxidative destruction of the entire chloroplasts

31 Chlorophyll, carotinoid, phycobilin Absorption spektrum of phycoerythrin

32

33

34 Phycoerythrin, 545 nm Phycocyanin, 615 nm Allophycocyanin, 650 nm

35

36 Chromatic Adaptation Fremyella diplosiphon

37 Northern Hybridisation

38 Organisation of light harvesting complexes in higher plants

39 Most of the chlorophylls and carotenoids are organized in light-harvesting complexes of the photosystems I and II

40 Chl a and b (and carotenoids) not covalently bound to light-harvesting proteins of antenna Stable antenna for the photosystems I and II Mobile antenna migrates between photosystems Pigments are also bound to the two photosystems -inner antenna - reaction center pigmnents -Light harvesting proteins are encoded by multigene families -Specificity for the two photosystems -Phyologenetic analyses -Early light-induced proteins (ELIPs)

41

42 Crystal structure of the light harvesting antenna of PSII

43

44 Mutants in photosynthesis Light is absorbed by antenna and emited as fluorescence hcf (high chlorophyll fluorescence) phenotype

45

46 PSII und PSI wird durch unterschiedliches Licht angeregt: Erzeugung von Redoxsignalen

47 Redox-Signale steuern plastidäre und nukleäre Ereignisse

48

49 Adaptation to unbalanced excitation of PSII and PSI (1) state transition (fast): relocation of mobile antenna (2) change in plastid gene expression: genes for limiting PS complex are upregulated (3) change in nuclear gene expression

50 More PSII excitation > PSI activity is limiting Phosphorylation of mobile antenna migration to PS I

51

52

53

54 Plastid localisation of a protein Comparison of chlorophyllautofluorescence (indicator for plastids, red chlorophyll fluorescence) with green fluorescence protein (tag on protein)

55 The four photosynthetic complexes Photosystem II Cytochrom b6/f -complex Photosystem I ATP-synthase

56

57

58 In eukaryotic organism: thylakoid proteins are of dual genetic origin

59 Structural information of the thylakoid complexes requires purification Photosystem I

60 Photosynthetic complexes contain - membrane integral proteins (e.g. D1) - stroma-exposed proteins - lumen-exposed proteins (different sorting mechanisms)

61

62 PS I can be purified from thylakoid membranes Identification of the protein composition by onedimensional gel electrophoresis

63 The ATP synthase has a membrane-integral F 0 part and a stroma-exposed F 1 part

64

65

66 Chloroplasts derive from symbiotic events primary secondary tertiary symbiosis

67 Arabidopsis is a model system for plant physiologists

68

69 Arabidopsis thaliana complete genome sequenced microarrays proteomics knock-out lines for almost all genes available transformation techniques are available genetics is easy to perform generation time is short (3 months) small plant (easy to grow and cultivate)

70

71 Protochlorophyllide oxidoreductase (POR) The key enzyme for greening in angiosperms Etioplasts: prolamellar body Storage for POR and protochlorophyllide light-activated enyzme Light: photoconversion of protochlorophyllide to chlorophyllide Pinus: POR is not light-activated Greening in the dark Similarities to phytochrome function

72 Biosynthesis of chlorophylls - starts with glutamate - porphyrin - tetrapyrrole

73

74

75 Immunolokalisation

76

Photosynthesis is the main route by which that energy enters the biosphere of the Earth.

Photosynthesis is the main route by which that energy enters the biosphere of the Earth. Chapter 5-Photosynthesis Photosynthesis is the main route by which that energy enters the biosphere of the Earth. To sustain and power life on Earth, the captured energy has to be released and used in

More information

light-dependent reactions (i.e., light reactions)

light-dependent reactions (i.e., light reactions) LEARNING OBJECTIVES By the end of this lecture you will be able to: 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy - available

More information

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll:

Photosynthesis 05/03/2012 INTRODUCTION: Summary Reaction for Photosynthesis: CO 2 : H 2 O: chlorophyll: Photosynthesis INTRODUCTION: metabolic process occurring in green plants, algae, some protists and cyanobacteria Photosynthesis is an PROCESS (building organic molecules which store radiant energy as chemical

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

Photosynthesis. From Sunlight to Sugar

Photosynthesis. From Sunlight to Sugar Photosynthesis From Sunlight to Sugar What is Photosynthesis? Photosynthesis is a process that captures energy from sunlight to make sugars used as food for producers. The light energy is stored as chemical

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

LIGHT DEPENDENT & INDEPENDENT REACTIONS

LIGHT DEPENDENT & INDEPENDENT REACTIONS LIGHT DEPENDENT & INDEPENDENT REACTIONS Photosynthesis is a two stage process Light dependent reactions o requires DIRECT light energy omakes energy carrier molecules that are used in the dark reaction

More information

Photosynthesis: Light reactions

Photosynthesis: Light reactions 5.21.08 Photosynthesis: Light reactions Reading Assignment: Chapter 14 Nice tutorial on photosynthesis http://bioweb.wku.edu/courses/biol120/images/photosynthesis.asp Another decent site on photosynthesis

More information

Photosynthesis 1. Light Reactions and Photosynthetic Phosphorylation. Lecture 31. Key Concepts. Overview of photosynthesis and carbon fixation

Photosynthesis 1. Light Reactions and Photosynthetic Phosphorylation. Lecture 31. Key Concepts. Overview of photosynthesis and carbon fixation Photosynthesis 1 Light Reactions and Photosynthetic Phosphorylation Lecture 31 Key Concepts Overview of photosynthesis and carbon fixation Chlorophyll molecules convert light energy to redox energy The

More information

Complete the notes on photosynthesis in the spaces below.

Complete the notes on photosynthesis in the spaces below. Section: 3.2 Name: Opening Activity: What type of energy is absorbed by pigment molecules in plant cells to start photosynthesis? Latin Root Word: Review of Old Information: ATP then provides the energy

More information

THE BASICS OF PHOTOSYNTHESIS

THE BASICS OF PHOTOSYNTHESIS THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic matter through photosynthesis Sunlight energy is transformed

More information

CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT

CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT Photosynthesis is a Physic o chemical process, uses light energy to synthesis organic compounds (sugar). Importance

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg UNIT 2: Metabolic Processes Chapter 5: Photosynthesis: The Energy of Life pg. 210-240 5.2: Pathways of Photosynthesis pg. 220-228 Light Dependent Reactions Photosystem II and I are the two light capturing

More information

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata PS Lecture Outline I. Introduction A. Structures B. Net Reaction II. Overview of PS A. Rxns in the chloroplast B. pigments III. Closer looks A. LD Rxns B. LI Rxns 1. non-cyclic e- flow 2. cyclic e- flow

More information

Chapter 18 - Photosynthesis. light (CH 2 O) + O 2

Chapter 18 - Photosynthesis. light (CH 2 O) + O 2 hapter 18 - Photosynthesis Introduction - The capture of solar energy by photosynthetic organisms is the ultimate source of nearly all biological energy. Solar energy is stored as both ATP and NADP ( reducing

More information

Photosynthesis Part I: Overview & The Light-Dependent Reac<ons

Photosynthesis Part I: Overview & The Light-Dependent Reac<ons Photosynthesis Part I: Overview & The Light-Dependent Reac

More information

I. Photosynthesis. Algal Physiology. I. Photosynthesis in algae II. Characteristics to distinguish algal divisions

I. Photosynthesis. Algal Physiology. I. Photosynthesis in algae II. Characteristics to distinguish algal divisions Algal Physiology I. Photosynthesis I. Photosynthesis in algae II. Characteristics to distinguish algal divisions 1 2 PSU : Photosynthetic Unit = Antennae + rxn center Light reactions: solar energy is harvested

More information

Photosynthesis in Detail. 3/19/2014 Averett

Photosynthesis in Detail. 3/19/2014 Averett Photosynthesis in Detail 1 In photosynthesis many chemical reactions, enzymes and ions work together in a precise order. Enzymes Biological catalyst Substance that initiates or speeds up the rate of a

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Forms of stored energy in cells

Forms of stored energy in cells Forms of stored energy in cells Electrochemical gradients Covalent bonds (ATP) Reducing power (NADH) During photosynthesis, respiration and glycolysis these forms of energy are converted from one to another

More information

Energy Converion: Mitochondria and Chloroplasts. Pınar Tulay, Ph.D.

Energy Converion: Mitochondria and Chloroplasts. Pınar Tulay, Ph.D. Energy Converion: Mitochondria and Chloroplasts Pınar Tulay, Ph.D. pintulay@gmail.com Energy Conversion Prokaryotes use plasma membrane to produce adenosine triphosphate (ATP) used in the cell function

More information

The light reactions convert solar energy to the chemical energy of ATP and NADPH

The light reactions convert solar energy to the chemical energy of ATP and NADPH 10.2 - The light reactions convert solar energy to the chemical energy of ATP and NADPH Chloroplasts are solar-powered chemical factories The conversion of light energy into chemical energy occurs in the

More information

Endosymbiotic Theory. p

Endosymbiotic Theory. p Endosymbiotic Theory p. 427-428 The Endosymbiotic Theory Review: What is a theory? What is the difference between prokaryotic and eukaryotic cells? The endosymbiotic theory is the idea that a long time

More information

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 Process Location Reactants (Starting) Products (Ending) Light Reactions Calvin Cycle Introduction to Photosynthesis Mrs. Meyer Target SWBAT describe the reactants

More information

Bio 111 Study Guide Chapter 8 Photosynthesis

Bio 111 Study Guide Chapter 8 Photosynthesis Bio 111 Study Guide Chapter 8 Photosynthesis BEFORE CLASS: Reading: Read the whole chapter from pp. 161-179. Figure 8.16 puts all of the light reactions together for you. Study it and understand it well!

More information

CO 7. Cell Process Photosynthesis

CO 7. Cell Process Photosynthesis CO 7 Cell Process Photosynthesis Cell Process - Photosynthesis Photosynthesis is used to build carbohydrates (the main energy source of all life.) - - Producers (like plants) use carbon dioxide and water

More information

Lecture Series 13 Photosynthesis: Energy from the Sun

Lecture Series 13 Photosynthesis: Energy from the Sun Lecture Series 13 Photosynthesis: Energy from the Sun Photosynthesis: Energy from the Sun A. Identifying Photosynthetic Reactants and Products B. The Two Pathways of Photosynthesis: An Overview C. Properties

More information

Chapter 10: PHOTOSYNTHESIS

Chapter 10: PHOTOSYNTHESIS Chapter 10: PHOTOSYNTHESIS 1. Overview of Photosynthesis 2. Light Absorption 3. The Light Reactions 4. The Calvin Cycle 1. Overview of Photosynthesis Chapter Reading pp. 185-190, 206-207 What is Photosynthesis?

More information

Overview of Photosynthesis

Overview of Photosynthesis Photosynthesis Overview of Photosynthesis During photosynthesis, autotrophs/producers use the sun s energy to make carbohydrate molecules from water and carbon dioxide, releasing oxygen as a by-product

More information

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes Chapter 7 hotosynthesis: Using to Make Food oweroint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction lants,

More information

Lecture 9: Photosynthesis

Lecture 9: Photosynthesis Lecture 9: Photosynthesis I. Characteristics of Light A. Light is composed of particles that travel as waves 1. Comprises a small part of the electromagnetic spectrum B. Radiation varies in wavelength

More information

Section 2 The Calvin Cycle

Section 2 The Calvin Cycle Section 2 The Calvin Cycle Objectives Summarize the main events of the Calvin cycle. Describe what happens to the compounds that are made in the Calvin cycle. Distinguish between C 3, C 4, and CAM plants.

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up: Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:

More information

Chapter 6. Capturing Solar Energy: Photosynthesis. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 6. Capturing Solar Energy: Photosynthesis. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 6 Capturing Solar Energy: Photosynthesis Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 6.1 What Is Photosynthesis? Life on earth depends on photosynthesis.

More information

Photosynthesis Thursday, July 7, 2011

Photosynthesis Thursday, July 7, 2011 Photosynthesis Photosynthesis in Overview Process by which plants and other autotrophs store the energy of sunlight into sugars. Requires sunlight, water, and carbon dioxide. Overall equation: 6 CO 2

More information

X Biology I. Unit 1-4: Cellular Energy

X Biology I. Unit 1-4: Cellular Energy NOTE/STUDY GUIDE: Unit 1-4, Cellular Energy X Biology I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE X Biology I Unit 1-4: Cellular Energy Additional

More information

9- #60 5. Photosynthesis. Sixth edition. D. O. Hall. and. K. K. Rao. Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS

9- #60 5. Photosynthesis. Sixth edition. D. O. Hall. and. K. K. Rao. Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS 9- #60 5 Photosynthesis Sixth edition D. O. Hall and K. K. Rao Published in association with the Institute of Biology CAMBRIDGE UNIVERSITY PRESS Contents General preface to the series Preface to the sixth

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Photosynthesis. (in C 3 plants)

Photosynthesis. (in C 3 plants) Photosynthesis (in C 3 plants) WHAT DO I REMEMBER FROM GCSE ABOUT PHOTOSYNTHESIS? PS WS Photosynthesis uses sunlight energy to create complex organic compounds, initially glucose, from inorganic compounds.

More information

Where It Starts: Photosynthesis. Chapter 5

Where It Starts: Photosynthesis. Chapter 5 Where It Starts: Photosynthesis Chapter 5 Photosynthesis Metabolic Pathways Converts light energy to chemical energy. Photoautotrophs Organisms that can perform photosynthesis Cyanobacteria (prokaryotic-no

More information

PHOTOSYNTHESIS: A BRIEF STORY!!!!!

PHOTOSYNTHESIS: A BRIEF STORY!!!!! PHOTOSYNTHESIS: A BRIEF STORY!!!!! This is one of the most important biochemical processes in plants and is amongst the most expensive biochemical processes in plant in terms of investment. Photosynthesis

More information

PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2

PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2 Photosynthesis Life on Earth is solar powered Photosynthesis nourishes almost all the living world directly or indirectly All organisms use organic compounds for energy and for carbon skeletons. Organisms

More information

Photosynthesis: Chapt. 8

Photosynthesis: Chapt. 8 Respiration vs. Photosynthesis Photosynthesis and respiration as complementary processes in the living world. Photosynthesis uses the energy of sunlight to produce sugars and other organic molecules. These

More information

AP Biology. Chloroplasts: sites of photosynthesis in plants

AP Biology. Chloroplasts: sites of photosynthesis in plants The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-13 PHOTOSYNTHESIS IN HIGHER PLANTS

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-13 PHOTOSYNTHESIS IN HIGHER PLANTS CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-13 PHOTOSYNTHESIS IN HIGHER PLANTS Photosynthesis is an enzyme regulated anabolic process of manufacture of organic compounds inside the chlorophyll

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Autotrophs and Heterotrophs Autotrophs are organisms that make their own food. They obtain everything they need by using CO 2 and inorganic compounds from the environment. Heterotrophs

More information

Photosynthesis: Using Light to Make Food

Photosynthesis: Using Light to Make Food Chapter 7 Photosynthesis: Using Light to Make Food Lectures by Chris C. Romero, updated by Edward J. Zalisko 2010 Pearson Education, Inc. PowerPoint Lectures for Campbell Essential Biology, Fourth Edition

More information

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body METABOLISM What is metabolism? METABOLISM Total of all chemical reactions occurring within the body Categories of metabolic reactions Catabolic reactions Degradation pathways Anabolic reactions Synthesis

More information

10 Identify the stroma. A A B B C C D D E E. 11 Identify a thylakoid. A A B B C C D D E E. 12 Where does the Calvin cycle occur? A A B B C C D D E E

10 Identify the stroma. A A B B C C D D E E. 11 Identify a thylakoid. A A B B C C D D E E. 12 Where does the Calvin cycle occur? A A B B C C D D E E Unit 4 Review 1 elow is an absorption spectrum for an unknown pigment molecule. What color would this pigment appear to you? red blue green violet yellow 2 In green plants, most of the TP for synthesis

More information

Unit 4.2: Photosynthesis - Sugar as Food

Unit 4.2: Photosynthesis - Sugar as Food Unit 4.2: Photosynthesis - Sugar as Food Lesson Objectives Outline the stages of photosynthesis. Describe the chloroplast and its role in photosynthesis. List the steps of the light reactions. Describe

More information

Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis

Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis Photosynthesis Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis Photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O Pigments

More information

Chapter 7 AN OVERVIEW OF PHOTOSYNTHESIS. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes

Chapter 7 AN OVERVIEW OF PHOTOSYNTHESIS. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes Chapter 7 hotosynthesis: Using to Make Food Introduction lants, algae, and certain prokaryotes convert light energy to chemical energy and store the chemical energy in sugar, made from carbon dioxide and

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as Photosynthesis.

More information

CELLULAR ENERGETICS PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS. Cellular Energetics Activity #4 page 1

CELLULAR ENERGETICS PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS. Cellular Energetics Activity #4 page 1 AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #4 NAME DATE HOUR PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS Cellular Energetics Activity #4 page 1 SITE OF PHOTOSYNTHESIS PROKARYOTES STRUCTURE

More information

Autotrophs and Heterotrophs

Autotrophs and Heterotrophs Section 8-1 Notes Energy and Life Energy is the ability to do work. Living things depend on energy. Without the ability to obtain and use energy, life would cease to exist. Where does the energy that living

More information

CELLULAR ENERGETICS PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS. Cellular Energetics Activity #4 page 1

CELLULAR ENERGETICS PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS. Cellular Energetics Activity #4 page 1 Cellular Energetics Activity #4 page 1 AP BIOLOGY NAME CELLULAR ENERGETICS ACTIVITY #4 DATE HOUR PHOTOSYNTHESIS SUMMARY EQUATION SITE OF PHOTOSYNTHESIS -- PLANTS Cellular Energetics Activity #4 page 2

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Name: Chloroplasts and Mitochondria Plant cells and some algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as

More information

photosynthesis autotrophic organisms photoautotrophs photoautotrophs chapter 14

photosynthesis autotrophic organisms photoautotrophs photoautotrophs chapter 14 autotrophic organisms heterotroph autotrophs produce organic nutrients from and HS. Chemoautotrophs use energy from inorganic molecules. hotoautotrophs use radiant energy to make organic compounds photosynthesis

More information

Photosynthesis. Dr. Bertolotti

Photosynthesis. Dr. Bertolotti Photosynthesis Dr. Bertolotti Photosynthesis: Life from Light and Air How do plants and other organisms capture energy from the sun? What is ATP and why is it useful in cells? Plants are energy producers

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Name Date Your # Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process

More information

Chapter 8: Photosynthesis

Chapter 8: Photosynthesis Name: KEY Class: Date Chapter 8: Photosynthesis Section 8-1 Energy and Life (pages 201-203) Autotrophs and Heterotrophs (page 201) 1. Where does the energy of food originally come from? The sun, plants

More information

Photosynthesis Life Is Solar Powered!

Photosynthesis Life Is Solar Powered! Photosynthesis Life Is Solar Powered! What Would Plants Look Like On Alien Planets? 1 Why Would They Look Different? Different Stars Give off Different types of light or Electromagnetic Waves The color

More information

Sunlight and Survival. Plants are photoautotrophs; they use sunlight and CO2 to produce sugar in the process of photosynthesis

Sunlight and Survival. Plants are photoautotrophs; they use sunlight and CO2 to produce sugar in the process of photosynthesis Photosynthesis Sunlight and Survival Plants are photoautotrophs; they use sunlight and CO2 to produce sugar in the process of photosynthesis Energy From The Sun Many kinds of energy Wavelengths of visible

More information

Bio102 Problems Photosynthesis

Bio102 Problems Photosynthesis Bio102 Problems Photosynthesis 1. Why is it advantageous for chloroplasts to have a very large (in surface area) thylakoid membrane contained within the inner membrane? A. This limits the amount of stroma

More information

AN OVERVIEW OF PHOTOSYNTHESIS

AN OVERVIEW OF PHOTOSYNTHESIS Figure 7.0_ Chapter 7: Big Ideas An Overview of hotosynthesis The Reactions: Converting Solar Energy to Chemical Energy AN OVERVIEW OF HOTOSYNTHESIS The : Reducing CO to Sugar hotosynthesis Reviewed and

More information

Cell organelles. Cell Wall

Cell organelles. Cell Wall Cell organelles Cell Wall Plant cells have an outermost structure called a cell wall. A cell wall is a rigid structure that gives support to a cell. Plants and algae have cell walls made of a complex sugar.

More information

Photosynthesis. 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton:

Photosynthesis. 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton: CAPE BIO UNIT 2 Lesson 1-10 th Sept 2012 1 Define the following: Photosynthesis 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton: Photosynthesis is simply the process by which organisms convert solar energy

More information

Outcome: Explain the process of photosynthesis.

Outcome: Explain the process of photosynthesis. Outcome: Explain the process of photosynthesis. Warm-up: 1. Compare the two types of cells. Give examples for each. 2. Using double bubble map, differentiate plants and animal cells. 3. What organelles

More information

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko Chapter 7 Photosynthesis: Using Light to Make Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Bimolecular processes

Bimolecular processes Bimolecular processes Electron transfer *A + B A + + B - *A + B A - + B + EA IP *EA *IP LUMO An excited state is a better oxidant and a better reductant than the ground state HOMO X X* Kinetic of electron

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as Photosynthesis.

More information

Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis?

Chapter 7 Capturing Solar Energy: Photosynthesis. Chapter 7: Photosynthesis. What is Photosynthesis? Chapter 7 Capturing Solar Energy: Photosynthesis What is Photosynthesis? Answer: The capture of sunlight energy and the subsequent storage of that energy in the chemical bonds (e.g., glucose) Chemical

More information

Chemistry of Life Cells & Bioprocesses CRT Review

Chemistry of Life Cells & Bioprocesses CRT Review Chemistry of Life Cells & Bioprocesses CRT Review Chapter 2: The Chemistry of Life macromolecules - The four types of macromolecules are carbohydrates, lipids, nucleic acids, and proteins Types of Macromolecules

More information

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc.

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc. AN OVERVIEW OF PHOTOSYNTHESIS Copyright 2009 Pearson Education, Inc. Introduction: Plant Power Plants use water and atmospheric carbon dioxide to produce a simple sugar and liberate oxygen Earth s plants

More information

What cellular structure carries out respiration?

What cellular structure carries out respiration? What cellular structure carries out photosynthesis? Label it s parts Chloroplast double membrane grana thylakoid membrane with chlorophyll stroma What cellular structure carries out respiration? Mitochondrian

More information

Photosynthesis. Light-dependent Reactions

Photosynthesis. Light-dependent Reactions Photosynthesis Light-dependent Reactions video http://www.youtube.com/watch?v=hj_wkgnl 6MI&feature=related Overview Photosynthesis transforms the radiant energy from the sun into the chemical energy of

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Prokaryotic Cells No nucleus Archaea & Eubacteria One circular chromosome Extremely small Eukaryotic Cells Has a nucleus!!! Membrane-bound organelles Plants, Animals, Fungi, &

More information

Photosynthesis. Review Cellular Respiration. Photosynthesis. Why do we need to know this?

Photosynthesis. Review Cellular Respiration. Photosynthesis. Why do we need to know this? Review Cellular Respiration http://www.youtube.com/watch?v=2igiy A57Brc&feature=related - Cellular respiration and emphasis on the electron transport chain Why do we need to know this? Why do we need to

More information

1 Photosynthesis in Higher Plants https://biologyaipmt.com/

1 Photosynthesis in Higher Plants https://biologyaipmt.com/ 1 Photosynthesis in Higher Plants https://biologyaipmt.com/ CHAPTER 13 PHOTOSYNTHESIS IN HIGHER PLANTS Green plants carry out 'photosynthesis', a physico-chemical process by which they use light energy

More information

The Two Phases of Photosynthesis

The Two Phases of Photosynthesis : light reactions & carbon fixation Global Importance of by green plants and algae provides nearly all of the energy and organic carbon required by living organisms. provides all of the oxygen required

More information

Chapter 10. The Plant Cell. Plant cells are eukaryotic and have many of the structures found in animal cells.

Chapter 10. The Plant Cell. Plant cells are eukaryotic and have many of the structures found in animal cells. Chapter 10 The Plant Cell 10.1. Structure Plant cells are eukaryotic and have many of the structures found in animal cells. Fig.10.1. The Structure of a Plant Cell All cells have a Plasma membrane, Nucleus

More information

Photosynthesis in Nature

Photosynthesis in Nature PHOTOSYNTHESIS Photosynthesis in Nature 1. Plants and other autotrophs are the producers of the biosphere 2. Chloroplasts are the site of photosynthesis in plants Introduction Life on Earth is solar powered.

More information

1) What is fundamental difference between the cells of prokaryotes and eukaryotes? 4) Write the balanced chemical equation for cellular respiration

1) What is fundamental difference between the cells of prokaryotes and eukaryotes? 4) Write the balanced chemical equation for cellular respiration Midterm 1 study guide (NOTE* This guide is supplemental to the Quiz 1 study guide (i.e., it covers material since Quiz 1). You should be able to answer all questions posed here, and on the Quiz 1 study

More information

Photosynthesis. Chapter 10. Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece

Photosynthesis. Chapter 10. Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece Chapter 10 Photosynthesis Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece Edited by William Wischusen, Louisiana State University

More information

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised: Photosynthesis (Chapter 7 Outline) Sun, Rain, and Survival A. For life based on organic compounds, two questions can be raised: 1. Where does the carbon come from? 2. Where does the energy come from to

More information

Photosystem I in Arabidopsis Thaliana

Photosystem I in Arabidopsis Thaliana Photosystem I in Arabidopsis Thaliana Part A. Photosystem I in Arabidopsis Thaliana Arabidopsis thaliana is a small flowering plant related to the cabbage and mustard plants. Like all plants, Arabidopsis

More information

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November Name: Class: Date: 2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of 02-09 November 1 Which of the following statements is true for all cells? a They use solar energy

More information

1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy.

1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy. PHOTOSYNTHESIS A. INTRODUCTION 1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy. a. It takes energy input for synthesis.

More information

Where It Starts - Photosynthesis

Where It Starts - Photosynthesis Where It Starts - Photosynthesis What Is Photosynthesis? The Rainbow Catchers Making ATP and NADPH Making Sugars Alternate Pathways What is Photosynthesis? Energy flow through ecosystems begins when photosynthesizers

More information

Cyanide (CN) blocks transfer of H. to oxygen Jim Jones, millipedes

Cyanide (CN) blocks transfer of H. to oxygen Jim Jones, millipedes Respiratory Poisons Cyanide (CN) blocks transfer of H. to oxygen Jim Jones, millipedes DNP (dinitrophenol) makes inner mt membrane leak H + short circuits oxidative phosphorylation diet pills and bug poison

More information

1/23/2011. Grapevine Anatomy & Physiology. What is Light? WSU Viticulture Certificate Program. Photosynthesis & Respiration.

1/23/2011. Grapevine Anatomy & Physiology. What is Light? WSU Viticulture Certificate Program. Photosynthesis & Respiration. WSU Viticulture Certificate Program Grapevine Anatomy & Physiology & Respiration Markus Keller PHOTOS: Converts sunlight to chemical energy SYNTHESIS: Uses energy to convert inorganic compounds to organic

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Lecture Outline Overview: The Process That Feeds the Biosphere Life on Earth is solar powered. The chloroplasts of plants use a process called photosynthesis to capture light

More information

122-Biology Guide-5thPass 12/06/14. Topic 1 An overview of the topic

122-Biology Guide-5thPass 12/06/14. Topic 1  An overview of the topic Topic 1 http://bioichiban.blogspot.com Cellular Functions 1.1 The eukaryotic cell* An overview of the topic Key idea 1: Cell Organelles Key idea 2: Plasma Membrane Key idea 3: Transport Across Membrane

More information

1. What is the source of the oxygen released into the air as a product of photosynthesis? D. Both water and carbon dioxide (Total 1 mark)

1. What is the source of the oxygen released into the air as a product of photosynthesis? D. Both water and carbon dioxide (Total 1 mark) 2.9 Photosynthesis Paper 1 Possible Mult Choice Questions 1. What is the source of the oxygen released into the air as a product of photosynthesis? A. Chlorophyll B. Carbon dioxide only C. Water only D.

More information