ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES

Size: px
Start display at page:

Download "ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES"

Transcription

1 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA Astrt. Givn st of flxil rnh juntion DNA moluls with stiky-ns (uiling loks), ll hr tils, w onsir th prolm of trmining th propr stoihiomtry suh tht ll stiky-ns oul n up onnt. In gnrl, th stoihiomtry is not uniform, n th gol is to trmin th propr proportion (sptrum) of h typ of moluls prsnt to llow for omplt ssmly. W prtition multists of tils, ll hr pots, into thr lsss: wkly stisfil, stisfil n strongly stisfil oring to possil omponnts tht ssml in omplt omplxs. This lssifition is hrtriz through th sptrum of th pot, whih n omput in PTIME using th stnr Guss-Jorn limintion mtho. 1. Introution Although nturlly ourring DNA molul hs oul hlix strutur, it n onfigur in othr mor omplx struturs,.g.: hirpin, rnh 3- n 4-rm juntion moluls, stik u, trunt othron, t. (s [4, 6, 15, 23, 27]). Ths nwly form moluls hv n propos for omputtionl purposs [8] s wll s sffols for othr struturs [4, 6, 23, 27]. A mol for DNA slf-ssmly introu y Winfr [25] using rigi squr tils hs n stui mor xtnsivly [1, 2, 13, 18, 19, 20]. In this ppr, w onsir nothr mol tht uss flxil tils (h til ompos of singl rnh juntion molul). This mol ws initilly propos in [7] n lort in [12, 9]. Flxil juntion moluls hv n us in xprimnts to otin rgulr grph struturs, suh s th u [4] n trunt othron [23, 27], non-rgulr grph struturs [8], n rntly for prforming omputtion [26]. Th mol using flxil juntion moluls is s on DNA rnh juntion moluls with flxil rms xtning to fr stiky-ns. In this mol, prolm is no in rnh juntion moluls (tils) n solution of th prolm is otin if n only if omplt omplx (omplx without stiky-ns) of pproprit siz n ssml. By imposing rstritions on th numr of typs of tils us in ssmly of omplxs, on n gt DNA omputility lsss tht orrspon to xtnt omplxity lsss. A polynomil rstrition prous prisly th NPTIME quris; no rstrition on th numr of til typs prous th lsss of ll omputl quris [9, 11]. In tst tu, vry molul pprs with high multipliity, on th orr of th Avogro numr, thrfor on n xpt to otin mny kins of omplx struturs, n som, ut not nssrily ll of thm my rprsnt th signt struturs. It n osrv xprimntlly tht portion of th DNA mtril in th pot ns up in inomplt omplxs. Also th pprn of topoisomrs hv n rport [17, 21]. Mthos from rnom grph thory wr us in [12] to invstigt th proility tht rtin siz omplx struturs n otin. In this ppr w onsir th qustion how to ru th th mount of th unsir mtril tht is otin t th n of n xprimnt. W propos mtho tht trmins th orrt stoihiomtry of th moluls in il onitions in orr to ru th inomplt omplxs prsnt t th n of n xprimnt. W show tht th right Dt: Mrh 6, 2009.

2 2 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA proportions of h molul n intifi suh tht t th n of th (thought) xprimnt 1 only fully ssml struturs r otin. A pot is fin to multist of finit numr of typs of tils. For vry pot w fin th sptrum of th pot to th st of vtors of right proportions for th moluls. Th sptrum of pot is onvx sust of Q m (Q is th st of rtionl numrs n m is th numr of istint tils); hn if it is not mpty, it is ithr singlton or infinit. With us of Guss- Jorn limintion lgorithm for mtris, w prov tht th sptrum of givn pot is PTIME omputl polytop. This pross lso intifis th tils tht r uslss, in th sns tht suh tils nnot ppr in omplt omplx. Th sription of th mol proviing th min finitions of omplxs n struturs tht r uilt up y juntion moluls is prsnt in Stion 2. In Stion 3, w lssify th pots in thr tgoris tht istinguish th pots pning on whthr vry juntion (til), or stoky-n n inlu into n ssmly of omplt omplx, or simply whthr th pot givs ris to omplt omplx. Th stoihiomtry is trmin with proportions in whih h typ of molul shoul ppr in mix. Th proportions for givn mix r onsir s oorint ntris of vtor. Th st of suh vtors fins sptrum of givn pot. Th lgri n gomtri proprtis of th sptrum r givn in Stion 4 whr w lso hrtriz th iffrnt lsss of pots oring to th proprtis of th sptrum. 2. Th Mol for Flxil-til Assmly Th min uiling loks for this mol r inspir y th rnh juntion DNA moluls. Ths r synthsiz strlik moluls [22] tht hv flxil rms with stiky-ns (s Figur 1 () to th lft). Eh rm hs two prts: oy n stiky-n xtning from th oy. Th oy prt is oul strn DNA molul, whil th stiky-n prt is singl strn DNA molul. Whn singl strn prts of two rms with omplmntry stiky-ns hyriiz, thy glu th moluls y th stiky-ns, forming mor omplx strutur. ) *t 1 ) * t1 *t 2 *t 2 Figur 1. Aov: Wtson-Crik oning of two DNA juntion moluls. Blow: Juntion grph tht rprsnts oning of th two DNA juntion moluls pit on th lft. For simpliity w ignor som of th thnilitis of th slf-ssml omplxs (.g. w mol squn of stiky-ns with symol) n rprsnt thm s ll grphs. For xmpl, Figur 1 () rprsnts thr- n four-rnh juntion molul nnl long omplmntry 1 Othr thn th ssumption of uniform mixing, th thrmoynmi proprtis of th moluls in th tst tu (pot) r not inlu in th sription of th ssmly pross. Also, rltivly uniform mlting tmprtur for th stiky-ns is ssum.

3 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES 3 stiky-n in on of thir rms, whil Figur 1 () is grph rprsnttion of suh thr- n four-rnh juntion moluls for n ftr nnling. In Figur 1 (), th grphs on th lft rprsnt four-rnh juntion molul with four stiky-ns ll,,, n, n thr rnh juntion molul with stiky-ns â,, n. Th stiky-ns not â n rprsnt omplmntry squns. In th nnling pross, th omplmntry stiky-ns hyriiz, n th rsulting omplx is prout of gluing of ths two str-lik grphs (rprsnt in Figur 1, whr th grphs on th right hv only th stiky-ns, n ). Whn th juntion moluls r flxil, two suh moluls n hyriiz in iffrnt wys. Th flxiility is otin y ing ulg T s in th oy of th juntion n long th squns of th rms, lik in [8, 10] n [17]. With flxiility, w onsir tht ll hyriiztions of rms with omplmntry stiky-ns r possil. In our mol, tst tu with DNA rnh juntion moluls (tils) in it is ll pot. Using pproprit hmil protools, th omplmntry prts of th DNA moluls in th tst tu hyriiz n form mor omplx struturs. W wnt to prform stuy of th ssmly pross n on th possil outoms. For tht, forml mthmtil finition of th omponnts n of th pross is n. For th purpos of ompltion of th ppr w inlu th finitions n kgroun mtril s in [11] Prliminris n Nottion. Th numr of lmnts in finit st A is not y #A. Th miniml lmnt of th st of nturl numrs N is 0 n [n] = {1,2,...,n}. Lt H finit st. A ll multigrph G with lls in H is 4-tupl G = (V,E,η,λ) whr V is finit st of vrtis, E is finit st of gs, η : E P V is funtion from E to th st of two-lmnt susts of V, whih w not P V, n λ : E H is lling funtion. For n g E th two vrtis in th st η() is th st of npoints of th g. As G is multigrph, thr might svrl gs with th sm st of npoints. Not tht this finition os not inlu multigrphs with loops. Whn η is injtiv, G is simply grph. For vrtx v V w fin th nighorhoo of v s N v = { w w = v or E, η() = {v,w} }. W us th nottion: th sugrph of G gnrt y N v (vrtis in N v n ll gs with n points in N v ) is lso not y N v. Th gr of vrtx v V is g(v) = #{ v η() }. A sugrph G of G gnrt y th vrtx sust V is th sugrph tht onsists of vrtis V n ll gs tht hv npoints in V. A sugrph G is gnrt y n g sust E if onsists of ll npoints of th gs in E n gs E. Th lling of th gs is inhrit from G. Givn two ll multigrphs G 1 n G 2 with lls in H 1 n H 2 rsptivly, grph homomorphism from G 1 to G 2, not φ : G 1 G 2, is tripl of funtions φ = (φ v,φ,φ h ) suh tht φ v : V 1 V 2, φ : E 1 E 2 stisfis φ v (η 1 ()) = η 2 (φ ()) n φ h : H 1 H 2 stisfis φ h (λ 1 ()) = λ 2 (φ ()) for h E 1. As is stnr in grph thory, w writ φ for ny of φ v, φ, or φ h whn it is lr from th ontxt whih on of th thr is us. In this ppr, w rquir tht φ h th intity whn H 1 = H 2 = H. A grph homomorphism is onto if oth φ v n φ r onto. Th homomorphism is ll n isomorphism whn oth φ v n φ r ijtions in whih s w ll G 1 n G 2 isomorphi. For st T multist of lmnts of T is pir (T,f) whr f : T N. Th numr f(t) is th multipliity of t T. To s nottion, w writ T for th multist (T,f) tking th isjoint union of th opis of t in T, ut onsir it s st whn pproprit Mol Dsription. W strt with th finition of th stiky-ns. If two stiky-ns hv th sm squns of nulotis, w sy tht thy r of th sm stiky-n typ n w not y H th st of stiky n typs. Eh stiky-n in th tst tu is of rtin stiky n typ, n sin thr r only finitly mny stiky-n typs, H is finit. A stiky-n h is opy of th stiky-n typ h n hs th sm squn on nulotis s th stiky-n typ h. Th Wtson-Crik omplmntrity is mol y funtion θ : H H whih is n involution, i.., θ(θ(h)) = h for ll h H. W ll θ(h) H th omplmntry stiky-n typ to h suh tht

4 4 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA stiky-ns of typs h n θ(h) on. If θ(h) = h thn th stiky ns h n h n glu togthr. For h h H w ssum tht θ(h) h = θ(θ(h)). Thus H n prtition into two sts, H + n H, suh tht if h is n lmnt of H + thn θ(h) is n lmnt of H. W writ (H,θ) for th st of stiky-ns H for whih θ rprsnts th omplmntry funtion n ll this port oning systm or PBS. Furthr, w simplify th nottion y writing ĥ for θ(h) n w fix H. Dfinition 1. Lt (H,θ) port oning systm. A k-til t ovr (H,θ) is grph with lls in H fin y (V t,e t,η t,λ t ) with vrtis V t = { t } J t whr J t = {j 1,...,j k }, gs E t = { 1,..., k }, η t ( i ) = { t,j i } for i = 1,...,k, n lling funtion λ t : E t H stisfying: λ 1 t (h) implis λ 1 t (θ(h)) =. Th lls of lmnts of J t r ll stiky-ns for til t. A til typ of k-til t ovr n PBS (H,θ) is funtion typ(t) = t: H N fin y t(h) = #{ E t λ() = h }. A til is str-lik grph, th vrtx t of k-til t is ll th ntrl vrtx of t n its gr is k. All othr vrtis of t hv gr on n n g inint to on of thm is lso inint to th ntrl vrtx. A k-til n sn s physil rprsnttion of k-rm rnh juntion moluls. A til is k-til for som k. For h h H, ny til of typ t hs xtly t(h) stiky-ns of typ h. In gnrl, til typ n rgr s multist of stiky-n typs (lthough w usully hv t(h) 1 for ll h H, mking t kin to st). Osrv tht h H t(h) = g( t). Th finition of λ implis tht ithr t(h) > 0 or t(θ(h)) > 0 ut not oth. In othr wors, rms of th sm til nnot on. Evry two tils of th sm til typ r isomorphi. For xmpl, Figur 1 () shows xmpls of two tils with grs 4 n 3, rsptivly. Th ntrl vrtx is rprsnt with lk irl n th stiky-ns r init with iffrnt olors n lls. Ths til typs r s follows: t 1 () = 1,t 1 () = 1,t 1 () = 1,t 1 () = 1,t 2 (â) = 1,t 2 ( ) = 1,t 2 (ê) = 1. Dfinition 2. A pot typ ovr PBS (H,θ) is st P of til typs ovr (H,θ). A pot P is multist of tils with til typs in P. For xmpl th pot typ of Figur 1 is P = {t 1,t 2 }. W prsum tht for h pot P thr is n ritrrily lrg numr of tils of givn typ. Lt T finit multist of tils s isjoint union of tils with rtin til typs. Dnot T = { t t T } n with J T = t T J t. Furthrmor, E T = t T E t, n η T n λ T r xtnsions of η t n λ t to omin E T for h t T. Lt G T = ( T J T,E T,η T,λ T ) th isonnt grph whih is th isjoint union of th tils in T. Dfinition 3. Th finit multist of tils T mits grph G T = (T J,E,η,λ) if G T is onnt n thr is n onto grph homomorphism φ : G T G T suh tht φ T is ijtion onto T, φ JT is onto J, n for h j J, φ 1 (j) {j,j } stisfis: φ(j ) = φ(j ) implis λ t () = θ(λ t ( )) whr η t () = { t,j }, n η t ( ) = { t,j } Not tht ll vrtis in J hv grs ithr on or two, s thy r imgs of vrtis of gr on in G T n h n hv t most two primgs. If vrtx j J hs gr two, thn it is inint to two gs, on with ll h n th othr with ll θ(h). Lt J = J f J whr J f onsists of ll vrtis in J of gr on, whih w ll fr n J onsists of ll vrtis in J of gr two, whih w ll on. Informlly, J is th st of oning sits twn two omplmntry stiky-ns. Th stiky-ns of G T vill for furthr oning r lls of th st of fr vrtis J f. It follows tht th rstrition φ t is n isomorphism from til t in G T to th nighorhoo N t in G T [11].

5 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES 5 Hn, h til is grph mitt y itslf. By onnting k-rm DNA rnh juntion moluls, two onnting rms r onsir s nw g twn th juntions. Similrly, th two-gr vrtis from J in G T r ignor n th two inint gs to h of thos vrtis n sustitut with singl g. This gnrts multigrphs whih w ll omplxs. Dfinition 4. Lt G T grph mitt y multist of tils T. Th omplx C T mitt y T gnrt y G T is multigrph otin from G T with lls in H y () rmovl of vrtis J, n () for h j J, rmovl of th pir 1, 2 with η( 1 ) = { t1,j}, η( 2 ) = { t2,j}, λ( 1 ) H + n ition of n g with η() = { t1, t2 } with ll λ() = λ( 1 ). Th g is si to otin y gluing th gs 1 n 2. Th vrtis J f r ll th stiky-ns of C T, n not y J(C T ). Th typ of th omplx C T is funtion typ(c T ) : H N suh tht typ(c T )(h) = #{ E j J f, η() = { t,j},λ() = h }. Th st of omplxs mitt y pot typ P is th st { C T T, t T,typ(t) P, n C T is mitt y T } Thrfor th st of vrtis in omplx C T is trmin with st T J whr T is th multist of vrtis with nighorhoos isomorphi to tils n th st J r th vrtis tht rprsnt th fr stiky-ns of C T, i.., J = J f. Agin, for h til t, J t = J f, so til is onsir s omplx mitt y itslf, n th typ of th til is th sm s th typ of th omplx. W sy tht C T is mitt y T if thr is grph G T mitt y T tht gnrts C T. Th typ of omplx C T inits th numr for h of th typs of its fr stiky-ns. W ssum tht th ssmly pross ours in n xtrmly ilut solution, so tht whn two omplxs mt, ll of thir omplmntry fr stiky ns join up. Thrfor, w n trt th omplx s if t no tim os it hv omplmntry fr stiky-ns. (This is whr th flxiility of th tils is so ritil.) Thus: Dfinition 5. A omplx C mitt y tils T is stl if, for h h H, ithr typ(c)(h) = 0 or typ(c)(θ(h)) = 0 or oth. Not: In this ppr, ll omplxs r stl unlss othrwis init. Unlik th s of til typs whn h til typ trmins uniqu (up to isomorphism) til, non-isomorphi omplxs n hv th sm typ. Consir th xmpl shown in Figur 2. Thr tils shown in () r (mximlly) onnt to prou two non-isomorphi omplxs of th sm typ mitt y th thr tils. Th stikyns r shown with iffrnt olors, n lls on th gs of th tils init th stiky-n typs. Th grph homomorphism from th thr tils to th two grphs mitt y th tils shown in () is suh tht j 1,j 2 j, k 1,k 2 k, p 1,p 2 p n n 2,n 3 n for th grph to th lft n j 1,j 2 j, k 1,k 2 k, p 2,p 3 p n n 2,n 3 n for th grph to th right. Th two orrsponing omplxs mitt y th tils r pit in (). Thy r otin from th grphs in () y rmovl of th two-gr vrtis j, k, p n n n y onnting th orrsponing two inint gs into singl g. Dfinition 6. A omplx is ll omplt if it hs no fr stiky-ns, i.., if for ll port oning typs h, typ(c)(h) = 0. Th st of ll omplt omplxs mitt y pot typ P is ll th output of th pot typ P n is not with O(P). Hn, omplx C = (T J,E,η,λ) is omplt iff J =, in whih s w writ C = (T,E,η,λ). Th output of th pot typ P is th st of omplxs tht hv rh its finl stg of th ssmly, in th sns tht thy nnot furthr hng thir strutur.

6 6 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA p p 2 1 k 2 m 2 k 1 Θ() Θ() Θ () j 3 p 3 * 1 j 2 Θ() Θ () n 2 *3 *2 j 1 n 3 *1 j k Θ() Θ () p Θ() Θ() m 2 j3 p n Θ() * 2 3 * () 3 () * 1 p 1 j k Θ() Θ() p Θ() Θ () Θ () * 2 m 2 n * 3 j 3 *1 m 2 j 3 Θ() * * 2 3 p 3 () * 1 p 1 j 3 m 2 * 3 Θ () * 2 Figur 2. () Thr tils with thir ntrl vrtx shown s lrgr lk irl, n th fr stiky-ns shmtilly prsnt with iffrnt olors n lls. () Two iffrnt grphs mitt y th thr tils in () otin y onnting th omplmntry ports. () Two (inomplt) omplxs orrsponing to th grph struturs in () mitt y tils in (). Thy r of iffrnt (non-isomorphi) unrlying grphil struturs ut of th sm omplx typ. 3. Pot Typ Clssifition In this stion w prtition th pots into four lsss: unstisfil, wkly stisfil, stisfil n strongly stisfil, oring to possil ssmlis of omplt omplxs n stuy thir proprtis. Dfinition 7. A omplx C = (T J,E,η,λ) is m in omplx C = (T J,E,η,λ ) if T T n thr is grph homomorphism φ from C to C suh tht φ T is th intity. In othr wors, if h is fr in C, thn φ(h) = h, whil if h is on to som h xtning from som til t, thn φ(h) = t. Nturlly, til t is m in omplx C = (T J,E,η,λ) if t T. Now w lssify th pot typs. Dfinition 8. A pot typ P is wkly stisfil if it mits omplt omplx, i., O(P). Othrwis it is unstisfil. A pot typ P is stisfil if, for h h H, thr is omplt omplx C O(P) with C = (T,E,η,λ) suh tht λ() = h for som E. A pot typ P is strongly stisfil if vry omplx tht is mitt y P n m into omplt omplx in O(P).

7 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES 7 Th omputtionl output of pot typ P is fin y th st O(P), hn, ruing th numr of inomplt omplxs is of intrst. Thrfor, strong stisfiility is th notion of most immit intrst in our stuy. Dfinition 9. A omplx C = (T J,E,η,λ) is ll k-omplx if #T = k. Lmm 1. A pot typ P is strongly stisfil if n only if for vry til typ t P, thr xists omplt omplx with til t suh tht typ(t) = t. Proof. On implition of th lmm is trivil; if P is strongly stisfil, thn s vry til is omplx, it n m into omplt omplx. W prov th onvrs y inution on th numr of tils in th omplx to m. If omplx onsists of only on til, thn th omplx C to m is itslf th til t. Assum th sttmnt hols for omplxs with k tils; w show tht th lmm hols for ny (k + 1)-omplx. Lt C = (T J,E,η,λ) (k + 1)-omplx with T = {t 0,t 1,...,t k }. If C is omplt thn th lmm hols. Assum it is not, i.., for som h H, typ(c)(h) > 0. Consir th (possily non-stl) omplx C with tils T = {t 1,t 2,...,t k } otin from C y rmovl of til t 0 (Figur 3()). Not tht som of th fr stiky-ns in C might omplmntry to som of thos fr y thing t 0, n in this s C is not stl. Lt J = { thr is n g in C otin y gluing n for som J(t 0 )}. Ths r th stiky-ns fr y thmnt of til t 0. til t 0 Complx C z f () z Complx C f f g () f g * t 0 Complx C* z Complx C 1 f * 1 g Complx C 2 * 1 *2 *1 f g () *t 0 f z * 1 f g () g *2 *t 0 Figur 3. Constrution stps for ming omplx C in omplt omplx in strongly stisfil pot. () Th omplx C with stiky-ns. () Complx C otin from C y rmovl of til t 0 n th til t 0. () Eming of C in omplt omplx C 1 n ming th til t 0 in omplt omplx C 2. () Complt omplx C whih ontins th omplx C s n m omplx. Sin oth C n t 0 r omplxs with lss thn k + 1 tils, y th inutiv hypothsis, thr r omplt omplxs C 1, C 2 O(P) suh tht C n m in C 1 n t 0 n m in C 2 (Figur 3()). Bus oth C 1 n C 2 r omplt, thr r gs in oth of ths omplxs with lls intil to th lls of th gs in J. By Dfinition 4, vry g with ll h in C 1

8 8 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA (or C 2 ) is otin y intifying (gluing) two on-gr vrtis, h ing jnt to ntrl vrtx of til, ll s -vrtx. For n g f J, lt f 1 n f 2 gs in C 1 n C 2 rsptivly, suh tht f 1 is otin y gluing f 1 with som othr g whr f 1 n f 2 is otin y gluing two gs f 2 n f 2 f 2 J(t 0) with λ(f 2 ) = θ(λ(f 1 )). Thn λ(f 1) = λ(f 2 ). Furthr, for i = 1,2, st η(f i ) = { i,j i }, η(f i ) = { i,j i } suh tht λ(f i) = λ(f i ) = θ(λ(f i )). By onstrution, 2 is th ntrl vrtx of t 0, t0 (ntrl vrtis inint to on suh pir of gs r init in Figur 3()). W form nw omplt omplx C y rmoving pirs of gs f 1 in C 1 n f 2 in C 2 n ing gs f1 n f 2 with η(f 1 ) = { 1, t0 } n η(f2 ) = { 1, 2} with lls λ(f1 ) = λ(f 2 ) = λ(f 1) = λ(f 2 ) (s Figur 3()). By onstrution, th grph C is m in C sin ll ons twn t 0 n C hv n rstlish, n lso C is omplt, us thr r no fr stiky-ns from C 1 n C 2 tht hv not n on. Lmm 1 implis tht ll strongly stisfil pot typs r lso stisfil n tht ll stisfil pot typs r wkly stisfil. But th onvrs is not nssry tru. Figur 4() shows pot typ tht is stisfil, ut not strongly stisfil, sin tils of til typs t 3 n t 4 n nvr m into omplt omplx. Th pot typ of Figur 4() is n xmpl of pot typ tht is wkly stisfil, ut not stisfil sin th stiky-n typ n nvr prt of ny finit omplt omplx. () t 1 t t 3 t 4 2 () t 1 t 2 t 3 t 4 Figur 4. () Stisfil pot typ tht is not strongly stisfil (til typs t 3 n t 4 nnot prt of omplt omplx) () wkly stisfil pot typ tht is not stisfil (th stiky-n nnot prt of omplt omplx). Not tht th numr of stiky-n typs os not pn on th numr of til typs. Th pot typs in ll thr xmpls in Fig 5 r strongly stisfil; in th first xmpl th numr of til typs n stiky-n typs r qul; in th son on th numr of til typs r lss thn fr stiky-n typs; n in th thir xmpl th numr of til typs is grtr thn stiky-n typs. Nottion. For th rst of th ppr w rsrv m = #P, i.., m rprsnts th numr of til typs in pot typ P n P = {t 1,t 2...,t m }. Th numr of stiky-ns is 2n = #H with H = {h 1,...,h n,ĥ1,...,ĥn}. As w ssum tht h omplx is stl omplx, to h omplx typ C w ssoit vtor z C = (z 1,z 2,...,z n ) from Z n suh tht z i : H + Z, whr z i = typ(c)(h i ) typ(c)(ĥi).

9 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES 9 () t 1 t 2 t 3 () t 1 t 2 () t 1 t 2 t 3 Figur 5. Strongly stisfil pot typs: () #P = #H + () #P < #H + () #P > #H +. Thrfor, ithr typ(c)(h i ) > 0 or typ(c)(ĥi) > 0, ut not oth. If typ(c)(h i ) > 0, thn z i > 0, n if typ(c)(ĥi) > 0, thn z i < 0. Thus in this sns z C givs informtion out th rmining fr stiky n typs on th omplx C. Sin til is omplx, for vry t P n vry h H, if t(h) > 0 thn t(ĥ) = 0. In this s, for vry til t, w ssoit vtor z t = (z t (h 1 ),z t (h 2 ),...,z t (h n )) from Z n suh tht z t (h i ) = t(h i ) if t(h i ) > 0 t(h i ) if t(ĥi) > 0 0 othrwis. 4. Sptrum of Pot 4.1. Dfinitions. Rports on DNA ssmlis (.g., [15, 21, 23, 27]) init tht whn on runs n xprimnt, th sign omplxs r only prt of th struturs tht show up in th pot; thr my lot of inomplt omplxs. Suh inomplt struturs my inrs th rror rt n th ost of th xprimnt. If th stoihiomtry in th tst tu is not wll lirt, i.., if th rtio of th moluls us in th mix os not orrspon to th potntil us in th finl ssmly, thn unr ny xprimntl onitions, inomplt omplxs shoul xpt. In this stion w propos mtho whih thortilly (ignoring ll ynmi onsirtions suh s thos in [14]) llows possiility tht only omplt omplxs r ssml (ssuming tht ssmly ours in il onitions in wll mix ilut pot). W ll th st of vtors of th rtios of th moluls llowing suh omplt ssmly th sptrum of th pot. Furthr, w giv n lgorithm for omputing th sptrum using stnr linr lgr mthos. W show tht th losur of sptrum of pot in Euliin sp is simplx, whos vrtis orrspon to onnt omplt omplxs. Hr, through invstigting susts of ffin sps, w otin hrtriztion of th sptrum of givn lss of pot typ. Dfinition 10. Givn pot typ P, th sptrum of P is th st S = S(P) of ll vtors r = (r t Q : t P) suh tht: (1) for h t, r t 0, n t P r t = 1, (2) for h h, t P r t t(h) = t P r t t(ĥ), i.., t P r t (t(h) t(ĥ)) = 0 In sptrum, for h h H thr r s mny stiky-ns of typ ĥ s thr r of typ h. Whn til t is onsir s omplx, w n us vtor z t (h) = t(h) t(ĥ), n thn th

10 10 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA son prt of th finition n rwrittn (2 ) r t z t (h) = 0. t P Thr r finit numr of tils in givn pot typ, so th proportion of h til is rtionl numr. For th prtil purposs w onsir S(P) Q m, Q ing th st of rtionl numrs. From th finition of th sptrum, it n osrv tht th sptrum n rprsnt m s n intrstion of th hyprpln H 1 = {x R m : x i = 1} with th krnl of th linr trnsformtion (2) in Dfinition 10. Thrfor th sptrum is sust of th unit u S(P) [0,1] m. Rmrk. If pot hs mixtur of tils whos proportions orrspon to vtor in th sptrum, thn th finition for sptrum sys tht, in il onitions, us thr is onto-on orrsponn twn stiky-ns n orrsponing omplmnts, ll stiky-ns oul on, n thrfor mixtur with only omplt omplxs oul otin. If th us proportion of th moluls is not in th sptrum, thr r no onitions unr whih t th n of th xprimnt only omplt omplxs will prsnt in th tst tu. Convrsly, givn omplt omplx C, thn thr is vtor in th sptrum whos ntris r prisly th rtios of th numr of tils of givn typ vs th totl numr of tils in C. If thr r til typs tht o not ppr in C thn th orrsponing ntris in th sptrum vtor r 0. Lt Ĉ st of omplt omplxs in O(P) with i numr ( of tils of ) typ t i (som i my 0), totl numr of tils us y omplxs in Ĉ n lt s = 1,..., m, w sy tht s orrspons to Ĉ. Lmm 2. For pot typ P, O(P) if n only if S(P). ( ) Proof. Lt C O(P) omplt omplx n s = 1,..., m vtor tht orrspons to {C}. Sin C is omplt omplx, for vry h H thr r s mny stiky-ns of typ h m mong th tils in C s of typ ĥ. Consquntly m i t i (h) = i t i (ĥ), or y iviing oth sis of th qulity y th totl numr of tils, it follows tht m i t i(h) = m i ti(ĥ). By th finition of th sptrum it follows tht th vtor s is n lmnt of th sptrum. Convrsly, if S(P), thr xists nonzro vtor r = (r i : t i P) of rtionl numrs in S(P). Eh oorint of r n writtn s r i = q i for q i 0 n i > 0 oth intgrs. Lt i = lm( 1, 2,... m ), so tht for h i, p i i = for n intgr p i. Thus r = (r 1,r 2,...,r m ) = (p 1 q 1,p 2 q 2,...,p m q m ). A st of stl omplxs tht ontins totl of p i q i tils of typ t i, i [m], is st of omplt omplxs. Lmm 2 in ft, sys tht pot typ is wkly stisfil if n only if its sptrum is non-mpty. Exmpl 1. Th sptrum of th pot typ givn in Figurs 4 (), () h ontining four til typs, is th solution of th following systms of qutions for r 1,r 2,r 3,r 4 0. () r 1 + r 2 + r 3 + r 4 = 1 () r 1 + r 2 + r 3 + r 4 = 1 r 1 r 2 + 2r 3 = 0 r 1 r 2 + r 3 + r 4 = 0 r 1 r 2 + 2r 4 = 0 r 1 r 2 = 0 r 1 r 2 = 0 r 3 r 4 = 0. Both systms hv th sm solution, i.., oth pot typs hv th sm sptrum S = { ( 1 2, 1 2,0,0) }, ut th first pot typ is stisfil, whil th son is only wkly stisfil. Ths two xmpls

11 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES 11 show tht sptr lon nnot us to istinguish twn wkly stisfil pot typ n strongly stisfil pot typ. In th ov xmpl, th sol point of th sptrum mnts tht ln stoihiomtry is otin if on uss qul numr of moluls of th first two typs t 1,t 2, ut no moluls from th othr two typs. Points (vtors) in th sptrum of givn pot typ provi proportions for ln stoihiomtry, ut thy o not giv ny informtion out th typ of omplt omplxs t th n of th ssmly. W n only ssum tht in vry ilut solution, th smllst omplxs in O(P) r most likly to ppr Gomtri Rprsnttion of th Sptrum. In this stion w us onpts from Linr Progrmming n w rfr th rr to [5, 16] for goo introution to th sujt. It is known tht th onvx hull of st S is th smllst onvx st ontining S [3]. Also, vry polytop is th onvx hull of its xtrm points n th xtrm points r th vrtis of th polytop [3]. Turning to linr progrmming, givn systm of inqulitis i,1 x i,n x n i, i = 1,...,n (whih w n rvit s Ax ), si fsil solution is point suh tht A hols with mximl numr of qulitis in th systm. It is known tht vtor is n xtrm point of th onvx polyhron S = {r : Ar =, r 0} (A is n m mtrix, rnk(a) = n < m, R n, n r R m ) if n only if is si fsil solution to Ar [3, 16]. Dnot y H m th intrstion of Q m + = {(r 1,r 2,r 3,...,r m ) : r i Q, r i 0 for i [m]} with th hyprpln r 1 + r r m = 1. Dfinition 10 implis tht th sptrum of pot with m til typs is sust of th st H m n th hyprplns t Pr t z t (h) = 0, for h h. Th losur of th intrstion of ths hyprplns n R m + is polytop, i.., it is onvx hull of its vrtis. Thrfor th following proprty hols. Proposition 1. Th sptrum S(P) of pot typ P with P = m n orrsponing st of stiky-ns H with H + = n is n intrstion of n hyprplns n th st H m. Morovr th losur of sptrum in Euliin sp is onvx hull whos vrtis r rtionl points. Proposition 2. Th sptrum S(P) of givn pot P is ithr mpty, singlton or n infinit st. Proof. Th sptrum of n unstisfil pot is mpty (Lmm 2). Sin th sptrum is ns in onvx hull n inlus th vrtis of tht onvx hull, if it ontins two points thn it ontins t lst two vrtis, n hn vry rtionl point twn thos vrtis, so th sptrum is infinit. Proposition 3. Lt P = {t 1,t 2,...,t m } pot typ n S(P) its sptrum. For vry xtrm ( k1 point s =, k 2,..., k ) m of S(P), thr xists omplt omplx C = (T,E,η,λ) O(P) with 1 2 m k i i tils of typ t i, for i [m] whr = lm( 1, 2,..., m ) n g(k j, j ) = 1, for j [m]. Proof. First not tht, y th finition of sptrum n s S(P), w hv m k i i = 1. It follows tht th stiky-ns of k i i tils of typ t i n ll on suh tht th rsult is st of omplt

12 12 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA omplxs. Dnot this st Ĉ. Th numr of tils us y omplxs in st Ĉ is m #T = k m i k i = =. i i W n to show tht Ĉ onsists of singl omplt omplx. Assum tht Ĉ n prtition to two non-mpty susts Ĉ1 n Ĉ2 with p i n q i th numrs of tils of typ t i us y omplxs in Ĉ1 n Ĉ2, rsptivly. Lt u n v th totl numr of tils ppring in( omplxs in Ĉ1 n Ĉ2, rsptivly. Th sptrum points orrsponing to p1 Ĉ 1 n Ĉ2 r s 1 = u, p 2 u,..., p ) ( m q1 n s 2 = u v, q 2 v,..., q ) m. Sin Ĉ is isjoint union of Ĉ1 v n Ĉ2, thn #T = u + v, n sin oth Ĉ1 n Ĉ2 r nonmpty, u < n v <. First, w osrv tht s 1 s 2. Othrwis, suppos tht s 1 = s 2, so tht p i u = q i for h i, w v hv k i = p i + q i i u + v = p i + v u p i = p i u + v u, so k i = p i i u = q ( i v, n s = p1 u,..., p ) m = s 1 = s 2. For h i, u lt r i = g(p i,u), n so p i = r i k i, n u = r i i. Thn i u for vry i, so lm( 1, 2,..., m ) u, i.., u, whih ontrits u <. Hn, s 1 s 2. Nxt w osrv tht s n writtn s onvx omintion of s 1 n s 2 with u u + v s 1 + v ( u + v s p1 + q 1 2 = u + v,..., p m + q ) ( m k1 =,..., k ) m = s. u + v 1 m This ontrits th ft tht s is n xtrm point. So, Ĉ nnot prtition into two non-mpty susts, thrfor Ĉ must hv singl omplx. ( k1 Rmrk 1. To vry xtrml point s =, k 2,..., k ) m, thr might mor thn on omplx 1 2 m with k i i tils of typ t i, pning on th numr of possil onntions twn th tils. Similrly, thr might mor thn on omplt omplx ssoit with givn point from th sptrum of givn pot typ. Dfinition 11. Lt P pot typ with its sptrum S = S(P). Th omplt omplxs orsponing to xtrm points in S(P) r ll xtrml omplxs for P. Dfinition 12. A omplx C with st of tils T(C) is ll miniml omplt omplx if thr is no omplt omplx C with st of tils T(C ) stisfying T(C ) T(C). From Proposotion 3, it follows tht vry onnt xtrm omplx is lso miniml omplt omplx. But th onvrs is not nssry tru. Th following xmpl shows tht not ll miniml omplxs r xtrm omplxs s sn in Figur 6. Exmpl 2. Consir th pot typ in Figur 5 (). Its sptrum is th st of solutions to th following systm of qutions. r 1 + r 2 + r 3 = 1 3r 1 2r 2 r 3 = 0. Hn, th sptrum is S(P) = {(u,4u 1,2 5u) : 1 4 u 2 }. Th xtrm points r ( 5 1 s 1 = 4 4),0, 3 ( 2 n s 2 = 5, 3 ) 5,0, whih r solutions to th following systms. [ ] [ ] [ r1 1 = r 2 0 for r 1 0, r 2 0,r 3 0. ], [ ][ ] [ r1 1 = r 3 0 ], [ ][ ] [ r2 1 = r 3 0 ]

13 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES 13 Thr miniml omplt omplxs for this pot typ r shown in Figur 6. t 2 () t 1 t 3 t 3 t 3 t t 1 1 t 2 t 2 () t 1 t 2 t 3 Figur 6. ) Th xtrm omplt omplxs for th pot typ givn in Figur 5 () ) A omplt omplx tht is miniml, ut not xtrm omplt omplx. ( 1 Complxs C 1 n C 2 r xtrml orrsponing to xtrml points 4,0, 3 ( 2 n 4) 5, 3 ) 5,0, ( 1 rsptivly. Th sptrum point orrsponing to C 3 is 3, 1 3, 1, n C 3 is not xtrml, ut 3) miniml. Dfinition 13. Lt C omplt omplx with tils T n lt s = (r 1,...,r m ) sptrum point orrsponing to C. A til-numr vtor for C is th vtor = ( 1,..., m ) whr i = r i #T. Proposition 4. Lt P = {t 1,t 2,...,t m } pot typ. Th til-numr vtor of vry omplt omplx in O(P) is linr omintion of th til-numr vtors of th xtrml omplt omplxs. Proof. Lt S(P) th sptrum of P with l xtrm points s i, i [l], n C 1, C 2,..., C l xtrm omplt omplxs orrsponing to th xtrm points. Lt C with st of tils T omplt omplx uilt from tils typs in P, lt s = (r 1,r 2,...,r m ) th vtor in S(P) orrsponing to C n lt = ( 1, 2,..., m ) = #T s th til-numr vtor for C. For i [l], lt s i = (r1 i,ri 2,...,ri m ), whr ri j 0 for h j, xtrm points for S(P). Lt m i (i [l]) th numr of tils in C i. Thn for h i = i j whr (i 1,...,i m ) = i is th til-numr vtor for C i. Thus, s i = 1 i i. By Proposition 1, s n writtn s onvx omintion of th xtrm points in S(P), sy s = = #T s = l l µ i s i n #T µi i i. j=1 l µ i = 1. Thn Thrfor th til-numr vtor of C n writtn s linr omintion of th til-numr vtors of th xtrml omplt omplxs. Th prvious proposition stts tht th til-numr vtor of vry omplt omplx is linr omintion of th til-numr vtors of th xtrm omplxs. Although til-numr vtors hv intgr ntris y finition, this linr omintion is not nssrily n intgr omintion. For givn pot typ P, th st of omplt omplxs, O(P) n hrtriz through th xtrm omplt omplxs. Corollry 1. If th sptrum onsists of only on point, S(P) = {(r t1,r t2,...,r tm )}, with r ti > 0 for ll i [m], thn P is strongly stisfil.

14 14 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA Proof. If r ti > 0 for ll i [m], thn th omplt omplx orrsponing to th xtrm point from th sptrum ontins tils of h typ. If th sptrum onsists of only on point, thn tht point must n xtrm point. By Proposition 3 thr is miniml omplt omplx orrsponing to th xtrm point ontins tils of typs t i for whih r ti > 0. So, y Lmm 1, P is strongly stisfil. Corollry 1 sys tht if th sptrum S(P), of givn pot typ P, onsists of only on point with positiv oorints, thn vry omplt omplx in O(P) ontins tils of h typ, n hn P is strongly stisfil. Lt onsir othr xmpls for th sptr of strongly stisfil pot typs. In two-imnsionl sp (orrsponing to pot typ with xtly two til typs) th sptrum is prt of th lin sgmnt (r 1 + r 2 = 1, 0 r 1 1, 0 r 2 1) onnting th points (0,1) n (1,0). So non-mpty sptrum is ithr point of tht lin sgmnt, or it is th ntir lin sgmnt. Th sptrum is th ntir lin sgmnt if n only if omplmntry stiky-ns r llow on th sm til. Bus (1,0) n (0,1) r in th sptrum whn til of th first typ forms omplt omplx, n til of th son typ forms omplt omplx. Howvr, th finition for tils ssurs tht tils hv no omplmntry stiky-ns, thrfor th sptrum in two-imnsionl s lwys onsists of only on point. In thr-imnsionl sp, (orrsponing to pot typ with xtly thr til typs) th 3 sptrum is within th intrstion of th plns r i z ti (h) = 0, th pln r 1 +r 2 +r 3 = 1 n th susp {(r 1,r 2,r 3 ) r i 0 for i {1,2,3}}. Thrfor, th sptrum of pot with thr tils is sust of th tringl {(r 1,r 2,r 3 ) r 1 + r 2 + r 3 = 1} {(r 1,r 2,r 3 ) r i 0 for i {1,2,3}} (whih is th tringl tht onnts points (1, 0, 0), (0, 1, 0) n (0, 0, 1)). Similrly s in two imnsions th sptrum is th ntir st if n only if omplmntry stiky-ns on singl til r llow, i.., whn til of th first typ forms omplt omplx, til of th son typ forms omplt omplx, n til of th thir typ forms omplt omplx. As this sitution is not llow so, th sptrum in thr imnsionl s onsists of only on point or lin sgmnt. W gnrliz ths osrvtions. Proposition 5. Th sptrum, S(P), of th pot typ P = {t 1,t 2,...,t m } is onvx hull with vrtis {(1,0,0,...,0), (0,1,0,...,0),...,(0,0,...,0,1)} if n only if h til with typ in P is omplt omplx. Proof. Assum th sptrum S(P), of th pot typ P = {t 1,t 2,...,t m } is onvx hull with vrtis {(1,0,0,...,0),(0,1,...,0),...,(0,0,...,1)}. Proposition 4 shows tht for h i [m] th omplx C i orrsponing to th sptrum point of ll 0s with on 1 in th ith position onsists of tils of typ t i n is onnt omplt omplx. Hn, for ths sptrum points, for h m h, z ti (h) = z tj (h) = 0. Thus, h til forms omplx in O(P). j=1 Convrsly, ssum tht h til from typ in P is omplt omplx. Thn, for h h H z ti (h) = 0, n thrfor th son onition in th finition of th sptrum is trivilly stisfi. So, th sptrum of P is: S(P) = {(r 1,r 2,...,r m ) : r i 0, for i [m] n m r i = 1}, whih is polytop with vrtis {(1,0,0,...,0), (0,1,...,0),...,(0,0,...,1)}. As stoihiomtry is our intrst, th points in th sptrum r vtors with rtionl ntris, ut w usully pit its losur in Euliin sp whih is ompt sust of R m.

15 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES Figur 7. Th losur of th sptrum of th pot typ givn in Figur 5 () is lin sgmnt; th losur of th sptrum of th pot typ givn in Figur 5 () is th tringl oun y th ott lins long with its intrior Algri Rprsnttion of th Sptrum. Th sptrum is th intrstion of n hyprplns (for h h, t Pr t z t (h) = 0) n H m. Hn it is th solution of n homognous n on non-homognous qutions with m vrils ovr Q +. (3) r 1 + r r m = 1 z t1 (h 1 )r 1 + z t2 (h 1 )r z tm (h 1 )r m = 0 z t1 (h 2 )r 1 + z t2 (h 2 )r z tm (h 2 )r m = z t1 (h n )r 1 + z t2 (h n )r z tm (h n )r m = 0. A stnr n n ffiint wy to solv this systm is y th Guss-Jorn limintion pross, whih trnsforms th ugmnt mtrix of systm (3) into th row-hlon form. Th omputtionl omplxity of solving systm (3) with Guss-Jorn limintion is O(m 2 n) [5]. From Exmpl 1 it n sn tht points (vtors) of th sptrum for stisfil n wkly stisfil pots (ut not nssrily strongly stisfil pots) my hv zro oorints. If th sptrum of strongly stisfil pot typ is singlton, thn ll of its oorints r positiv (Proposition 6). Dfinition 14. Lt A st of m imnsionl vtors. Th support of A is th st supp(a) = {i [m] : thr xists vtor u = (u 1,u 2,...,u m ) A suh tht u i 0}. In othr wors, if i / supp(a), thn th i th oorint of vry point in A is 0. Proposition 6. Suppos S(P) is th sptrum of givn pot typ P with P = m. Thn: (): supp(s(p)) = [m] if n only if P is strongly stisfil. (): supp(s(p)) [m] if n only if P is wkly stisfil ut not strongly stisfil. Proof. (): supp(s(p)) = [m] if n only if vry til n prt of omplt omplx, whih y Lmm 1 mns tht th pot typ is strongly stisfil. (): supp(s(p)) [m] if n only if thr is oorint tht is zro in vry vtor of th sptrum, i.., t lst on til typ nnot m into omplt omplx, so th pot is not strongly stisfil, ut it is wkly stisfil sin it hs nonmpty sptrum.

16 16 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA Dfinition 15. Lt P(H,θ) = {t 1,...,t m } pot typ. Th m imnsionl vtors l h = (l 1 (h),l 2 (h),...,l m (h)) suh tht { 1 if ti (h) 1 or t l i (h) = i (ĥ) 1 0 othrwis r ll stiky-n vtors. Proposition 7. Clssifition of pot typs into wk stisfiility, stisfiility n strong stisfiility is in PTIME. Proof. Lt P = {t 1,t 2,...,t m } pot typ with m til typs n n stiky-n typs. Th sptrum S(P) is otin y solving systm (3) of n + 1 qutions with m vrils. If thr is solution with ll positiv oorints, y Proposition 6, th pot is strongly stisfil. If thr is solution to th systm (3) n supp(s(p)) [m], thn th sptrum is nonmpty n y Lmm 2 n Proposition 6, th pot is wkly stisfil ut not strongly stisfil. Thrfor wk stisfiility n strong stisfiility r in PTIME. Now suppos tht th pot is wkly stisfil ut not strongly stisfil, i.., supp(s(p)) [m]. Consir th stiky-n vtors l h = (l i (h) : t i P) for P. If thr xists stiky-n h H suh tht l i (h) = 0 for ll i supp(s(p)), thn h oul not m into ny omplt omplx, hn th pot is wkly stisfil, ut not stisfil (othrwis th pot is stisfil). To hk whthr th pot is stisfil, on ns to hk whthr th stiky-n vtors r orthogonl to th sptrum. This is otin through th ot prout twn th stiky-n vtors n gnri vtor v of th sptrum, i.., v is in th intrior of th sptrum (trt s mnifol). Th pot is stisfil if n only if l h v > 0 for h h H. Hn, th omputtionl omplxity for lssifying pot typs oring to thir typ of stisfiility is O(m 2 n) + O(mn) = O(m 2 n), i.., it is in PTIME. Corollry 2. A pot typ P(H,θ) is stisfil if n only if for vry h H, l i (h) = 1 for som i supp(s(p)). Exmpl 3. Th pot typs givn in Figur 4 hv th sm sptrum onsisting of th singl vtor s = ( 1 2, 1 2,0,0) Thrfor supp(p) = {1,2}, lthough on of thm (Figur 4()) is stisfil, whil th othr (Figur 4() ) is only wkly stisfil. Proposition 7 hlps to lssify thm. For th pot typ givn in Figur 4 ) th stiky-n vtors r: l = (1,1,1,0), l = (1,1,0,1). Th ot prouts twn th sptrum n th stiky-n vtors r: s l = 1, n s l = 1. Thrfor, this pot typ is stisfil. For th pot typ givn in Figur 4 ) th stiky-n vtors r: l = (1,1,1,1), l = (1,1,0,0), n l = (0,0,1,1). Th ot prouts twn th sptrum n ths vtors r: s l = 1, s l = 1, ut s l = 0. Thrfor, this pot typ is not stisfil. Proposition 7 provis stright-forwr wy to omput th stoihiomtry vtors for givn pot typ n to lssify th pot typ into on of th lsss: non-stisfil, wkly stisfil, stisfil n strongly stisfil. A Mpl progrm tht omputs th sptrum of givn pot typ, th support, n lssifis th pot typ in on of th stisfiility lsss is givn in [24]. Th input of th progrm r th numr of til typs m, th numr of stiky-n typs n, sptrum mtrix = [ p,q ] of siz (n + 1) (m + 1), whr p,q = z tq (h p 1 ) for p = 2,...,n + 1, q [m], 1,i = 1 for i [m + 1], i,m+1 = 0 for i = 2,...,n + 1, n stiky-n vtor mtrix L = [l p,q ] of siz n m whr l p,q = 1 if t q (h p ) > 0 or t q (ĥp) > 0, othrwis l p,q = 0. Th Mpl progrm outputs th support of th pot, th sptrum of th pot n lssifis th pot typ.

17 ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES Conluing Rmrks Dtrmining th stoihiomtry for omplx tst tus with lrg numr of iffrnt typs of moluls is iffiult. It pns on th mutully nnling proprtis of th moluls s wll s th thrmoynmil proprtis of th mix whih my iffr for iffrnt xprimntl onitions. Furthr, s lrgr omplxs form in th tst tu, thir thrmoynmil proprtis hng n furthr ssmly my pn of th ntropi onitions in th tst tu. In this ppr w fous on DNA moluls with flxil rnh juntions tht xtn with stiky-ns n th nnling rltions twn ths stiky-ns. Th onsir stoihiomtry is otin s st of vtors with ntris orrsponing to th rtios of th molulr prsn in th tst tu. Th finition of til os not llow omplmntry stiky-ns to prsnt on sm til. All rsults, howvr, hol rgrlss of this onstrint, n our hoi to inlu this proprty in th til finition ws mostly gui y th simpliity n th lgn of th rgumnts. Th sptrum strutur n th lssifition of th pot typs rmin unhng without this onstrint. Th rsults on stoihiomtry vtors, i.., th sptrum, o not onsir ny thrmoynmil proprtis n w ssum tht ssmly pross hppns in il onitions, mning, it is possil for ll vill stiky-ns to on with thir omplmnts. Any slf-ssmly in n tul xprimnt will hv to tk into ount th thrmoynmil proprtis whih shoul proly trmin mpirilly. W liv th finings in this ppr provi strting point for suh n xprimntl nlysis. Th mtho prsnt hr pns on th oning rltions of th stiky-ns n is gnrl nough suh tht this pproh, w liv, n sily ppli to othr oning rltions s wll. Aknowlgmnt. Authors thnk Stphn W. Sun n Dvi A. Rson for proviing vlul suggstions. Th work is support in prt y NSF grnts CCF # n CCF # Rfrns [1] L.M. Almn, Q. Chng, A. Gol, M-D. Hung, D. Kmp, P. Moisst Espns, P.W.K. Rothmun. Comintoril optimiztion prolms in slf-ssmly, STOC 02 Proings, Montrl Qu, Cn, [2] L.M. Almn, J. Kri, L. Kri, D. Rishus. On th iility of slf-ssmly of infinit rions, Proings of FOCS 2002, IEEE Symposium on Fountions of Computr Sin, Wshington (2002) [3] A. Bronst. An Introution to Convx Polytops, Springr-Vrlg, (1983). [4] J.H. Chn, N.C. Smn. Synthsis from DNA of molul with th onntivity of u, Ntur 350 (1991). [5] L. Coopr, D. Stinrg. Mthos n Applitions of Linr Progrmming, W. B. Sunrs Compny, (1974). [6] R. P. Goomn, I. A. T. Shp, C. F. Trin, C. M. Ern, R. M. Brry, C. F. Shmit, A. J. Turrfil. Rpi Chirl Assmly of Rigi DNA Builing Bloks for Molulr Nnofrition, Sin 310 (2005). [7] N. Jonosk, S. Krl, M. Sito. Thr imnsionl DNA struturs in omputing, BioSystms 52 (1999) [8] N. Jonosk, P. S-Aryn, N.C. Smn. Computtion y slf-ssmly of DNA grphs, Gnti Progrmming n Evolvl Mhins 4 (2003) [9] N. Jonosk, G.L. MColm. A omputtionl mol for slf-ssmling flxil titls, C. S. Clu t l. (s) Springr LNCS 3699 (2005). [10] N. Jonosk, G.L. MColm. Slf-ssmly y DNA Juntion Moluls: Th Thortil Mol, Fountions of Nnosin. J.Rif (i) (2004). [11] N. Jonosk, G.L. MColm, Complxity Clsss for Slf-Assmling Flxil Tils to ppr in Thortil Computr Sin, (2009)

18 18 N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA [12] N. Jonosk, G. MColm, A. Stninsk. Expttion n vrin of slf-ssml grph struturs, A. Cron, N. Pir (s) Springr LNCS 3892 (2006) [13] M-Y. Ko, V. Rmhnrn. DNA slf-ssmly for onstruting 3D oxs. Algorithms n Computtions, ISAC 2001 Prings, Springr LNCS 2223 (2001) [14] S. A. Kurtz, S. R. Mhny, J. S. Royr, J. Simon. Ativ trnsport in iologil omputing. L. Lnwr n E. Bum (s) DIMACS Vol 44 (1997) [15] C. Mo, W. Sun, N.C. Smn. Dsign two-imnsionl DNA holliy juntion rrys visuliz y tomi for mirosopy, Journl of Amrin Chmil Soity 121(23) (1999) [16] M. J. Pnik. Linr Progrmming: Mthmtis, Thory n Algorithms, Kluwr Ami Pulishrs, (1996). [17] J. Qi, X. Li, X. Yng, N.C. Smn. Ligtion of tringls uilt from ulg 3-rm DNA rnh juntions, Journl of Amrin Chmil Soity 120 (1996) [18] J. H. Rif, S. Shu, P. Yin. A slf-ssmly mol of tim-pnnt glu strngth, A. Cron, N. Pir (s) Springr LNCS 3892 (2006). [19] P.W.K. Rothmun, P. Ppkis, E. Winfr. Algorithmi slf-ssmly of DNA Sirpinski tringls, PLoD Biology 2 (12) 424 (2004). [20] P.W.K. Rothmun, E. Winfr. Th progrm-siz omplxity of slf-ssml squrs, Proings of 33r ACM mting STOC 2001, Portln, Orgon, My (2001) [21] P. S-Aryn, N. Jonosk, N.C. Smn. Slf-ssmly of grphs rprsnt y DNA hlix xis topology, Journl of Amrin Chmil Soity 126(21) (2004) [22] N. C. Smn, J. H. Chn n N. R. Kllnh. Gl Eltrophorti Anlysis of DNA Brnh Juntions, Eltrophorsis 10 (1989) [23] W.M. Shih, J.D. Quisp, G.F. Joy., A 1.7-kilos singl strn DNA fols into nnosl othron, Ntur 427 (2004) [24] A. Stninsk, A Thortil Mol for Slf-ssmly of Flxil Tils Ph.D. Thsis, Univrsity of South Flori, Tmp, [25] E. Winfr, Algorithmi Slf-Assmly of DNA, PhD thsis, Clth, Jun [26] G. Wu, N. Jonosk, N.C. Smn Constrution of DNA nno-ojt irtly monstrts omputtion sumitt. [27] Y. Zhng, N.C. Smn. Th onstrution of DNA trunt othron, Journl of Amrin Chmil Soity 116(5) (1994) Dprtmnt of Mthmtis Univrsity of South Flori, Tmp, FL E-mil rss: {jonosk,molm}@mth.usf.u E-mil rss: n.stninsk@hlmholtz-munhn.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

3 Simplicial Complexes

3 Simplicial Complexes CS 468 Wintr 2004 Simpliil Complxs Afr Zomoroin Comintoris is th slums of topology. J. H. C. Whith (ttr.) 3 Simpliil Complxs In th first ltur, w look t onpts from point st topology, th rnh of topology

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information