TL/Finite Length. 2Vi. What happens when a traveling wave reaches the end of a transmission line?

Size: px
Start display at page:

Download "TL/Finite Length. 2Vi. What happens when a traveling wave reaches the end of a transmission line?"

Transcription

1 TL/Finite Length What happens when a traveling wave reaches the end of a transmission line? Vi Vi Vi Ir If It Zt Zt Thought Process: Transmission line with impedance Cut open Develop TEC for open transmission line Terminate with termination impedance Zt Determine current It in termination impedance Split up current into two components: Current If (Ii) due to forward traveling wave Current Ir due to reflection 9/9/5 EE6471 (KR) 35

2 TL/Finite Length/Reflection Coefficient Vi Ir If Termination current is the superposition of the current due to the forward traveling wave, and the current due to the reflection It Zt It Ir Ir Vi Z + Zt If Vi Z It Vi Zt Z Zt + Z Vi If Z Vi + Zt Ii Famous Telegrapher s Equation: Reflection coefficient kr kr can be complex (and f- dependent) but in practice it is desirable to keep kr constant and real kr Ir Ii Vr Vi Zt Zt + Z Z 9/9/5 EE6471 (KR) 36

3 TL/Finite Length/TL/Coefficients Vs Zs Zl TLIA Hx TLT Hx TLRl TLRs Definitions: TLIA(: TL Input Acceptance Coefficient TLT(: TL Output Transmission Coefficient TLRl(: TL Load-End Reflection Coefficient TLRs(: TL Source-End Reflection Coefficient Hx 9/9/5 EE6471 (KR) 37

4 TL/Finite Length/Coefficients/TLRl & TLRs Load-end reflection coefficient TLRl(: TLRl( Zl( Zl( + ( ( Definition of reflection coefficient kr applied to both load-end and source-end of transmission line Source-end reflection coefficient TLRs(: TLRs( Zs( Zs( + ( ( Reflection coefficients No reflection if Zt If Zt and are real: kr in a range [-1..+1] if Zt kr-1 if Zt kr+1 9/9/5 EE6471 (KR) 38

5 TL/Finite Length/Coefficients/TLT Output Transmission Coefficient TLT(: Vt TLT ( 1+ TLRl( Vi because 1+ TLRl 1+ Zt Zt + Z Z Zt + + Zt Zt + Zt Zt + Vt Vi Zt + Zt Ir It Vt Vi + ( 1 TLRl) q.e.d. Vi If Zt 9/9/5 EE6471 (KR) 39

6 TL/Finite Length/Coefficients/TLIA Input acceptance coefficient TLIA(: TLIA( Zs( ( + ( Fraction of the input voltage accepted by the transmission line 9/9/5 EE6471 (KR) 4

7 TL/Finite Length/Transfer Function Zs Transfer function S ( for Vs signals emerging from the TLIA TLT transmission line: Hx Zl Vt Hx TLRl S( TLIA( Hx( TLT ( TLRs Hx ( TLRl( Hx( TLRs( Hx( ) TLT ( ) S1( TLIA( Hx( p S S N ( TLIA( Hx( ( ) N TLRl( Hx( TLRs( TLT ( ( 1+ TLRl( ) TLIA( Hx( Vt( SN ( N 1 TLRl( Hx( TLRs( Vs( ( 9/9/5 EE6471 (KR) 41

8 TL/Finite Length/Transfer Function/Example Example: Reflections on a transmission line C14pF/m, L35nH/m. RGnegligible. Length1m. 5Ω. Tp_pul7ns/m. 5V. Zs1Ω. Zl1kΩ. TLIA.833. TLRl.99. TLRs S 99.8% S V V v_tl_end nf V t( nf) ns Case 1: Low source impedance with unterminated transmission line 17 9/9/5 EE6471 (KR) 4

9 TL/Finite Length/Transfer Function/Example v_tl_end nf V t( nf) ns Case : High source impedance with unterminated transmission line 17 Same example different termination resistors top: Zs5Ω. Zl1kΩ. (TLIA.91. TLRl.99. TLRs.818. S 9%) bottom: Zs5Ω. Zl1kΩ. (TLIA.5. TLRl.99. TLRs. S 99.5%) v_tl_end nf V t( nf) ns Case 3: Source-end terminated 17 9/9/5 EE6471 (KR) 43

10 TL Part /Overview Transmission Lines High Frequency Mechanisms in Transmission Lines Skin-Effect Proximity Effect Terminations Transmission Lines on PCBs Equations 9/9/5 EE6471 (KR) 44

11 TL/Skin Effect At low frequencies, current density inside a conductor is uniform. At high frequencies, it isn t. Conductor carrying high frequency currents: Current flow primarily on the surface of a conductor Phenomena is called skin effect Current density falls off exponentially with depth into the conductor J ( d) J e d δ J d with skin depth δ ρ π f µ ρ : µ : material resistivity permeability 9/9/5 EE6471 (KR) 45

12 TL/Skin Effect Skin effect Current density falls off exponentially with depth into the conductor Modelling: Current flows uniformly in an outer shell of the conductor with thickness δ. Skin depth is a material property (not a function of conductor shape) For most transmission lines, skin effect is the reason for their lossy nature fs ρ πµ r How to tackle skin effect problems Litz wire Planar conductors for f<fs skin effect negligible. RRdc for f>fs skin effect. Resistance increases with square root of frequency 9/9/5 EE6471 (KR) 46

13 TL/Skin Effect conducting area: A r π r A π r ( ) δ π ( δ δ ) for high frequencies δ<<r: Resistance (per unit length): 1 Rhf pul r fµρ π A π rδ R pul ρ A δ r 9/9/5 EE6471 (KR) 47

14 TL/Skin Effect/Example Example: AWG4 Transmission Line C4pF/m, L4nH/m, Rdc8mΩ/m wire radius AWG4: r53µm skin effect frequency fs67khz δ_cu ( f( fi) ) µ meter Plots top right: skin depth bottom right: effective resistance per unit length f( fi) Meg Hz R_potl ( f( fi) ) pul R Rdc + pul Rhf pul /9/5 EE6471 (KR) f( fi) Me g Hz 1

15 TL/Skin Effect/Propagation Constant A Example: AWG4 Transmission Line. Three regions: Low frequency: RC TL behaviour (distortion) Mid frequency: LC TL behaviour (no distortion, just delay) High frequency: Distortion because of skin effect Re( A_potl ( p( fi) )) Im( A_potl ( p( fi) )) f( fi) Meg Hz 9/9/5 EE6471 (KR) 49 1

16 TL/Skin Effect/Example Example: Transmission of a pulse over a long AWG4 Telephone Line C4pF/m, L4nH/m, R8mΩ/m Tp4µs/km Length of transmission line: 1km 6 6 v1 j 1V vo j 1V t() j ns Signal distortion on an RLC Transmission Line due to skin effect 9/9/5 EE6471 (KR) 5

17 TL/Proximity Effect Proximity Effect Current distribution in a conductor is affected by currents in adjacent conductors Like the skin effect, the proximity effect leads to a larger effective resistance at high frequencies Much harder to quantify (use tables, graphs, field solvers) For same current direction increase in resistance is modest (even if conductors almost touch) For opposite current direction proximity effect can be many times higher than skin effect (depending on distance of conductors) Take proximity effect into account whenever conductors are brought closer together than about 3 times their diameter H field Same Current Direction H field Opposite Current Direction 9/9/5 EE6471 (KR) 51

18 TL/Special Case Cl Cl Cl Cl Equally Spaced Capacitive Loads Frequently encountered in large bus formations (e.g. memory modules) n capacitive loads are of equal value and spaced evenly over the length of the transmission line applicable if effective length of rising edge exceeds spacing between capacitive loads 9/9/5 EE6471 (KR) 5 Z ' Tp' C L C L n Cl + length n Cl + length

19 TL/Termination Short Lines (l<lr/6) Termination required for damping bitstream_sampled j bitstream_rlc j j 13 Transmission Lines Termination to eliminate reflections 8.9 v_tl_end nf V t( nf) ns 17 9/9/5 EE6471 (KR) 53

20 TL/Terminations/End Termination End termination Driver connects directly to TL All reflections damped by termination resistor Rt (TLRl) Received voltage is equal to the Rt Cl transmitted voltage (S 1%) Short rise time Drawbacks: High power dissipation Imbalanced load (difficult to drive) Assumptions: Rt. Hx 1. TLIA 1. TLRl. Tr TL end Tr driver +. Cl S S ( ( 1+ TLRl( ) TLIA( Hx( 1 TLRl( Hx( TLRs( ( 1+ TLRl( ) 1 ( TLIA( Hx( 9/9/5 EE6471 (KR) 54

21 TL/Terminations/End Termination/Split Split End termination (Rt1 Rt) Advantages: Balanced power dissipation Easier to drive For CMOS, HCMOS Rt1Rt Rt1 Rt Cl Assumptions: Signal is dc-balanced (equal 1 s and ) Pd Pd Rt1 Rt1 + Pd Pd Rt Rt 4 Worst case: Static signal (1 or )... Pd Rt1max Pd Rt max (assuming that resistance of TL is negligible) 9/9/5 EE6471 (KR) 55

22 TL/Terminations/End Termination/AC Biased AC Biased End termination Time constant large vs signal period Rt Advantages: Lower average power consumption Lower static power consumption Disadvantage Difficult to drive if signal is not dcbalanced Rt Ct Cl Assumptions: Signal is dc-balanced (equal 1 s and ) Pd Rt 1 4 Static signal (1 or )... Pd Rt1 9/9/5 EE6471 (KR) 56

23 TL/Terminations/End Termination/Bifurcation Bifurcation Rt No reflections Difficult to implement ( vs ) Rt Cl Rt Cl 9/9/5 EE6471 (KR) 57

24 TL/Terminations/End Termination/Daisy Chain Diasy Chain Configuration Keep stubs as short as possible Minimise capacitive load Multiple stubs: Space equally Rt Cl 9/9/5 EE6471 (KR) 58

25 TL/Terminations/Source Termination Source termination All reflections damped at the source side by source termination resistor Rt (TLRs) Advantages: Lower average drive currents Disadvantages Output impedance of driver often not tightly specified Daisy-chaining not recommended Rt Assumptions: Rt. Hx 1. TLIA.5. TLRl1 Cl S ( ( 1+ TLRl( ) TLIA( Hx( 1 TLRl( Hx( TLRs( Tr TL end (. Z Cl) driver + Tr S ( TLIA( Hx( ( 1+ TLRl( ) 1 9/9/5 EE6471 (KR) 59

26 TL/Terminations/Source Termination Rt Cl Source termination Driving signal cut in half (TLIA.5) Driving signal propagates down TL Reflection at load side (TLRl1) Reflected signal travels back Reflected signal damps out at the source termination (TLRs) v1 v v3 v4 v1 v v3 v4 Tp Tp t t t t 9/9/5 EE6471 (KR) 6

27 TL/Terminations/Microstrip Equations d w h Example: Microstrip on FR4 εr4.5. oz copper Microstrip Equations Useful approximations Use numeric TL tools for improved accuracy Tp pul 87Ω 5.98h ln εr w + d ns εr +.67 meter _microstrip_approx( h, w, d, 4.5) 1 _microstrip( h, w, d, 4.5) Tp_microstrip_approx_pul( εr) pico s mmeter εr 9/9/5 EE6471 (KR) w h Tp_microstrip_pul(.5 inch,.1 inch, ounce, εr) pico s m meter

28 TL/Terminations/Stripline Equations w d b Stripline Equations Useful approximations Use numeric TL tools for improved accuracy 6Ω εr 1.9b ln.8w + d Tp pul 3.35 ns meter εr 9/9/5 EE6471 (KR) 6

Transmission Line Basics II - Class 6

Transmission Line Basics II - Class 6 Transmission Line Basics II - Class 6 Prerequisite Reading assignment: CH2 Acknowledgements: Intel Bus Boot Camp: Michael Leddige Agenda 2 The Transmission Line Concept Transmission line equivalent circuits

More information

Kimmo Silvonen, Transmission lines, ver

Kimmo Silvonen, Transmission lines, ver Kimmo Silvonen, Transmission lines, ver. 13.10.2008 1 1 Basic Theory The increasing operating and clock frequencies require transmission line theory to be considered more and more often! 1.1 Some practical

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines.  Where transmission lines arise?  Lossless Transmission Line. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines

Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Non-Sinusoidal Waves on (Mostly Lossless)Transmission Lines Don Estreich Salazar 21C Adjunct Professor Engineering Science October 212 https://www.iol.unh.edu/services/testing/sas/tools.php 1 Outline of

More information

Transmission Line Basics

Transmission Line Basics Transmission Line Basics Prof. Tzong-Lin Wu NTUEE 1 Outlines Transmission Lines in Planar structure. Key Parameters for Transmission Lines. Transmission Line Equations. Analysis Approach for Z and T d

More information

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 0 Lecture : Channel Components, Wires, & Transmission Lines Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0 602 CHAPTER 11 TRANSMISSION LINES 11.10 Two identical pulses each of magnitude 12 V and width 2 µs are incident at t = 0 on a lossless transmission line of length 400 m terminated with a load. If the two

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Topic 5: Transmission Lines

Topic 5: Transmission Lines Topic 5: Transmission Lines Profs. Javier Ramos & Eduardo Morgado Academic year.13-.14 Concepts in this Chapter Mathematical Propagation Model for a guided transmission line Primary Parameters Secondary

More information

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7.

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7. Name Section Short Answer Questions 1. (20 Pts) 2. (10 Pts) 3. (5 Pts). (10 Pts) 5. (10 Pts) Regular Questions 6. (25 Pts) 7. (20 Pts) Notes: 1. Please read over all questions before you begin your work.

More information

ECE 546 Lecture 13 Scattering Parameters

ECE 546 Lecture 13 Scattering Parameters ECE 546 Lecture 3 Scattering Parameters Spring 08 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Transfer Function Representation

More information

ELECTROMAGNETISM SUMMARY. Maxwell s equations Transmission lines Transmission line transformers Skin depth

ELECTROMAGNETISM SUMMARY. Maxwell s equations Transmission lines Transmission line transformers Skin depth ELECTROMAGNETISM SUMMARY Maxwell s equations Transmission lines Transmission line transformers Skin depth 1 ENGN4545/ENGN6545: Radiofrequency Engineering L#4 Magnetostatics: The static magnetic field Gauss

More information

ARCHIVE INFORMATION ARCHIVE INFORMATION SEMICONDUCTOR AN1061 REFLECTING ON TRANSMISSION LINE EFFECTS MOTOROLA APPLICATION NOTE

ARCHIVE INFORMATION ARCHIVE INFORMATION SEMICONDUCTOR AN1061 REFLECTING ON TRANSMISSION LINE EFFECTS MOTOROLA APPLICATION NOTE MOTOROLA SEMICONDUCTOR APPLICATION NOTE Order this document by AN1061/D AN1061 REFLECTING ON TRANSMISSION LINE EFFECTS This application note describes introductory transmission line characterization, analysis,

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 013 Eugene V. Colla Definition Distributed parameters networ Pulses in transmission line Wave equation and wave propagation eflections. esistive load Thévenin's

More information

Transmission lines. Shouri Chatterjee. October 22, 2014

Transmission lines. Shouri Chatterjee. October 22, 2014 Transmission lines Shouri Chatterjee October 22, 2014 The transmission line is a very commonly used distributed circuit: a pair of wires. Unfortunately, a pair of wires used to apply a time-varying voltage,

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Transmission Lines. Transmission lines. Telegraphist Equations. Reflection Coefficient. Transformation of voltage, current and impedance

Transmission Lines. Transmission lines. Telegraphist Equations. Reflection Coefficient. Transformation of voltage, current and impedance Transmission Lines Transmission lines Telegraphist Equations Reflection Coefficient Transformation of voltage, current and impedance Application of trasnmission lines 1 ENGN4545/ENGN6545: Radiofrequency

More information

ECE 497 JS Lecture -03 Transmission Lines

ECE 497 JS Lecture -03 Transmission Lines ECE 497 JS Lecture -03 Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 MAXWELL S EQUATIONS B E = t Faraday s Law of Induction

More information

ECEN720: High-Speed Links Circuits and Systems Spring 2017

ECEN720: High-Speed Links Circuits and Systems Spring 2017 ECEN70: High-Speed Links Circuits and Systems Spring 07 Lecture : Channel Components, Wires, & Transmission Lines Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Lab Lab begins

More information

The Wire EE141. Microelettronica

The Wire EE141. Microelettronica The Wire 1 Interconnect Impact on Chip 2 Example: a Bus Network transmitters receivers schematics physical 3 Wire Models All-inclusive model Capacitance-only 4 Impact of Interconnect Parasitics Interconnect

More information

Lecture 2 - Transmission Line Theory

Lecture 2 - Transmission Line Theory Lecture 2 - Transmission Line Theory Microwave Active Circuit Analysis and Design Clive Poole and Izzat Darwazeh Academic Press Inc. Poole-Darwazeh 2015 Lecture 2 - Transmission Line Theory Slide1 of 54

More information

Transient Response of Transmission Lines and TDR/TDT

Transient Response of Transmission Lines and TDR/TDT Transient Response of Transmission Lines and TDR/TDT Tzong-Lin Wu, Ph.D. EMC Lab. Department of Electrical Engineering National Sun Yat-sen University Outlines Why do we learn the transient response of

More information

Differential Impedance finally made simple

Differential Impedance finally made simple Slide - Differential Impedance finally made simple Eric Bogatin President Bogatin Enterprises 93-393-305 eric@bogent.com Slide -2 Overview What s impedance Differential Impedance: a simple perspective

More information

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current? ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

More information

AC Circuits. The Capacitor

AC Circuits. The Capacitor The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

GMII Electrical Specification Options. cisco Systems, Inc.

GMII Electrical Specification Options. cisco Systems, Inc. DC Specifications GMII Electrical Specification Options Mandatory - Communication between the transmitter and receiver can not occur at any bit rate without DC specifications. AC Specifications OPTION

More information

5/1/2011 V R I. = ds. by definition is the ratio of potential difference of the wire ends to the total current flowing through it.

5/1/2011 V R I. = ds. by definition is the ratio of potential difference of the wire ends to the total current flowing through it. Session : Fundamentals by definition is the ratio of potential difference of the wire ends to the total current flowing through it. V R I E. dl L = σ E. ds A R = L σwt W H T At high frequencies, current

More information

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics

ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) Lecture topics ECE414/514 Electronics Packaging Spring 2012 Lecture 6 Electrical D: Transmission lines (Crosstalk) James E. Morris Dept of Electrical & Computer Engineering Portland State University 1 Lecture topics

More information

ECE 497 JS Lecture - 18 Noise in Digital Circuits

ECE 497 JS Lecture - 18 Noise in Digital Circuits ECE 497 JS Lecture - 18 Noise in Digital Circuits Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Announcements Thursday April 15 th Speaker:

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet Farr High School HIGHER PHYSICS Unit 3 Electricity Question Booklet 1 MONITORING ND MESURING.C. 1. What is the peak voltage of the 230 V mains supply? The frequency of the mains supply is 50 Hz. How many

More information

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law,

A free web support in Education. Internal resistance of the battery, r = 3 Ω. Maximum current drawn from the battery = I According to Ohm s law, Exercises Question 3.1: The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4Ω, what is the maximum current that can be drawn from the battery? Answer 3.1: Emf

More information

NETWORK ANALYSIS ( ) 2012 pattern

NETWORK ANALYSIS ( ) 2012 pattern PRACTICAL WORK BOOK For Academic Session 0 NETWORK ANALYSIS ( 0347 ) 0 pattern For S.E. (Electrical Engineering) Department of Electrical Engineering (University of Pune) SHREE RAMCHANDRA COLLEGE OF ENGG.

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part - Circuits Dr.. J. Wassell Gates from Transistors ntroduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits The

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 2: Transmission lines Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Outline Transmission

More information

Broadband transmission line models for analysis of serial data channel interconnects

Broadband transmission line models for analysis of serial data channel interconnects PCB Design Conference East, Durham NC, October 23, 2007 Broadband transmission line models for analysis of serial data channel interconnects Y. O. Shlepnev, Simberian, Inc. shlepnev@simberian.com Simberian:

More information

RADIO AMATEUR EXAM GENERAL CLASS

RADIO AMATEUR EXAM GENERAL CLASS RAE-Lessons by 4S7VJ 1 CHAPTER- 2 RADIO AMATEUR EXAM GENERAL CLASS By 4S7VJ 2.1 Sine-wave If a magnet rotates near a coil, an alternating e.m.f. (a.c.) generates in the coil. This e.m.f. gradually increase

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Application Note. Paralleling of EconoPACK TM + Date: Page

Application Note. Paralleling of EconoPACK TM + Date: Page Date: 27.09.2004 Page 1 Paralleling of EconoPACK TM + 1. EconoPACK TM + Design 2. Paralleling of IGBT 3 and EmCon HE diodes 3. Methods of paralleling EconoPACK TM + 4. Dynamic and static current sharing

More information

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection Wave Phenomena Physics 15c Lecture 8 LC Transmission Line Wave Reflection Midterm Exam #1 Midterm #1 has been graded Class average = 80.4 Standard deviation = 14.6 Your exam will be returned in the section

More information

Digital Electronics Part II Electronics, Devices and Circuits

Digital Electronics Part II Electronics, Devices and Circuits Digital Electronics Part Electronics, Devices and Circuits Dr.. J. Wassell ntroduction n the coming lectures we will consider how logic gates can be built using electronic circuits First, basic concepts

More information

Transmission Lines. Author: Michael Leddige

Transmission Lines. Author: Michael Leddige Transmission Lines Author: Michael Leddige 1 Contents PCB Transmission line structures Equivalent Circuits and Key Parameters Lossless Transmission Line Analysis Driving Reflections Systems Reactive Elements

More information

AN B. Basic PCB traces transmission line effects causing signal integrity degradation simulation using Altium DXP version 6.

AN B. Basic PCB traces transmission line effects causing signal integrity degradation simulation using Altium DXP version 6. AN200805-01B Basic PCB traces transmission line effects causing signal integrity degradation simulation using Altium DXP version 6.9 By Denis Lachapelle eng. and Anne Marie Coutu. May 2008 The objective

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

3/17/2009 PHYS202 SPRING Lecture notes Electric Circuits

3/17/2009 PHYS202 SPRING Lecture notes Electric Circuits PHYS202 SPRING 2009 Lecture notes Electric Circuits 1 Batteries A battery is a device that provides a potential difference to two terminals. Different metals in an electrolyte will create a potential difference,

More information

Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 2018 Eugene V. Colla Definition Distributed parameters network Pulses in transmission line Wave equation and wave propagation Reflections. Resistive load

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs Description: The NTE74HC173 is an high speed 3 State Quad D Type Flip Flop in a 16 Lead DIP type package that

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

PI5A3158. SOTINY TM Low Voltage Dual SPDT An a log Switch 2:1 Mux/DeMux Bus Switch. Features. Description. Connection Diagram.

PI5A3158. SOTINY TM Low Voltage Dual SPDT An a log Switch 2:1 Mux/DeMux Bus Switch. Features. Description. Connection Diagram. PI53158 OINY M Low Voltage Dual PD n a log witch Features CMO echnology for Bus and nalog pplications Low On-Resistance: 8Ω at 3.0V Wide Range: 1.65V to 5.5V Rail-to-Rail ignal Range Control Input Overvoltage

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the

More information

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 http://www.empowermentresources.com/stop_cointelpro/electromagnetic_warfare.htm RF Design In RF circuits RF energy has to be transported

More information

This section reviews the basic theory of accuracy enhancement for one-port networks.

This section reviews the basic theory of accuracy enhancement for one-port networks. Vector measurements require both magnitude and phase data. Some typical examples are the complex reflection coefficient, the magnitude and phase of the transfer function, and the group delay. The seminar

More information

Chapter 7. Chapter 7

Chapter 7. Chapter 7 Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

A) I B) II C) III D) IV E) V

A) I B) II C) III D) IV E) V 1. A square loop of wire moves with a constant speed v from a field-free region into a region of uniform B field, as shown. Which of the five graphs correctly shows the induced current i in the loop as

More information

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits 1 Current current: (also called electric current) is an motion of charge from one region of a conductor to another. Current When

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

SRAM System Design Guidelines

SRAM System Design Guidelines Introduction This application note examines some of the important system design considerations an engineer should keep in mind when designing with Cypress SRAMs. It is important to note that while they

More information

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

What happens when things change. Transient current and voltage relationships in a simple resistive circuit. Module 4 AC Theory What happens when things change. What you'll learn in Module 4. 4.1 Resistors in DC Circuits Transient events in DC circuits. The difference between Ideal and Practical circuits Transient

More information

Compact Equivalent Circuit Models for the Skin Effect

Compact Equivalent Circuit Models for the Skin Effect Microelectromagnetic Devices Group The University of Texas at Austin Compact Equivalent Circuit Models for the Skin Effect Sangwoo Kim, Beom-Taek Lee, and Dean P. Neikirk Department of Electrical and Computer

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

More information

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Overview Review on Laplace transform Learn about transfer

More information

Figure 1. (a) An alternating current power supply provides a current that keeps switching direction.

Figure 1. (a) An alternating current power supply provides a current that keeps switching direction. 1 Figure 1 shows the output from the terminals of a power supply labelled d.c. (direct current). Voltage / V 6 4 2 0 2 0 5 10 15 20 25 Time/ms 30 35 40 45 50 Figure 1 (a) An alternating current power supply

More information

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004 ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

More information

Features. Functional Diagrams, Pin Configurations, and Truth Tables

Features. Functional Diagrams, Pin Configurations, and Truth Tables Features Low On-Resistance (Ω typ) Minimizes Distortion and Error Voltages Low Glitching Reduces Step Errors in Sample-and-Holds. Charge Injection, pc typ Single-Supply Operation (+.V to +1V) Improved

More information

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 5: Exam #3 Solutions Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS CHAPTER 5 CMOS DIGITAL LOGIC CIRCUITS Chapter Outline 5. CMOS Logic Gate Circuits 5. Digital Logic Inverters 5.3 The CMOS Inverter 5.4 Dynamic Operation of the CMOS Inverter 5.5 Transistor Sizing 5.6 Power

More information

Outline of College Physics OpenStax Book

Outline of College Physics OpenStax Book Outline of College Physics OpenStax Book Taken from the online version of the book Dec. 27, 2017 18. Electric Charge and Electric Field 18.1. Static Electricity and Charge: Conservation of Charge Define

More information

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER]

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER] NTIONL QULIFICTIONS CURRICULUM SUPPORT Physics Electricity Questions and Solutions James Page rthur Baillie [HIGHER] The Scottish Qualifications uthority regularly reviews the arrangements for National

More information

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2 Problems 1, 2 P 1 P 1 P 2 The figure shows a non-conducting spherical shell of inner radius and outer radius 2 (i.e. radial thickness ) with charge uniformly distributed throughout its volume. Prob 1:

More information

Interconnect s Role in Deep Submicron. Second class to first class

Interconnect s Role in Deep Submicron. Second class to first class Interconnect s Role in Deep Submicron Dennis Sylvester EE 219 November 3, 1998 Second class to first class Interconnect effects are no longer secondary # of wires # of devices More metal levels RC delay

More information

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS DESCRIPTION The / optocouplers consist of an AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output. The devices are housed in a compact small-outline

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2 EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information

ECE 497 JS Lecture - 13 Projects

ECE 497 JS Lecture - 13 Projects ECE 497 JS Lecture - 13 Projects Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 ECE 497 JS - Projects All projects should be accompanied

More information

CURRENT ELECTRICITY CHAPTER 13 CURRENT ELECTRICITY Qs. Define Charge and Current. CHARGE Definition Flow of electron is known as Charge. It is denoted by Q. Unit Its unit is Coulomb. 1 Coulomb = 10(-6)

More information

Chapter 18 Electric Currents

Chapter 18 Electric Currents Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

More information

IN74HC05A Hex Inverter with Open-Drain Outputs

IN74HC05A Hex Inverter with Open-Drain Outputs TECNICL DT IN74C05 ex Inverter with Open-Drain Outputs The IN74C05 is identical in pinout to the LS/LS05. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible

More information

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be

More information

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002 CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18-322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF PD - 973 INSULATED GATE BIPOLAR TRANSISTOR Features Low VCE (on) Non Punch Through IGBT Technology 1µs Short Circuit Capability Square RBSOA G Positive VCE (on) Temperature Coefficient Maximum Junction

More information

SCSI Connector and Cable Modeling from TDR Measurements

SCSI Connector and Cable Modeling from TDR Measurements SCSI Connector and Cable Modeling from TDR Measurements Dima Smolyansky TDA Systems, Inc. http://www.tdasystems.com Presented at SCSI Signal Modeling Study Group Rochester, MN, December 1, 1999 Outline

More information

Capacitance - 1. The parallel plate capacitor. Capacitance: is a measure of the charge stored on each plate for a given voltage such that Q=CV

Capacitance - 1. The parallel plate capacitor. Capacitance: is a measure of the charge stored on each plate for a given voltage such that Q=CV Capacitance - 1 The parallel plate capacitor Capacitance: is a measure of the charge stored on each plate for a given voltage such that Q=CV Charge separation in a parallel-plate capacitor causes an internal

More information

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT 2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that produces and store electric charges at high voltage

More information

Octal 3-State Noninverting Buffer/Line Driver/Line Receiver High-Performance Silicon-Gate CMOS

Octal 3-State Noninverting Buffer/Line Driver/Line Receiver High-Performance Silicon-Gate CMOS TECNICAL DATA Octal 3-State Noninverting Buffer/Line Driver/Line Receiver igh-performance Silicon-ate CMOS IN74CT244A The IN74CT244A is identical in pinout to the LS/ALS244. The device may be used as a

More information

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel Unit 3C Circuits RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel 2 Types of Electricity Electrostatics Electricity

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

CM200EXS-24S. Chopper IGBT NX-Series Module 200 Amperes/1200 Volts

CM200EXS-24S. Chopper IGBT NX-Series Module 200 Amperes/1200 Volts CM2EXS-24S Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Chopper IGBT NX-Series Module 2 Amperes/12 Volts A D K F G J E H J S T U 6 5 4 3 M 7 2 L N AL (4 PLACES)

More information