Dinamika fluidov. Laminarni in turbulentni tok Viskoznost tekočin Faktor trenja h f

Size: px
Start display at page:

Download "Dinamika fluidov. Laminarni in turbulentni tok Viskoznost tekočin Faktor trenja h f"

Transcription

1 inamika luidov Laminarni in turbulentni tok Viskoznost tekočin Faktor trenja h 1

2 Energijska bilanca: Celokupna energijska bilanca procesa: W 1 + U 1 + K 1 = W + U + K F + M + T Bernoulijeva enačba Enačba velja če privzamemo da: Je tekočina nestisljiva in neviskozna P 1 1 v1 gh1 P v gh 1 Ni energetskih izgub zaradi trenja med tekočino in steno cevi. Ni prenosa toplotne energije na meji med tekočino in steno cevi (toplotne izgube, gretje ali hlajenje). V sistemu ni cevi ni mehanskih črpalk. Tok tekočine je laminaren in stacionaren Laminarni tok: Plastovito gibanje tekočine Hitrostna porazdelitev drsenja plasti tekočine v cevi:

3 Bernoulli Pressure Lowering The linear drop in luid pressure is according to Poiseuille's law, but the constriction produces and extra drop in pressure according to the Bernoulli Principle. višine. 3

4 Viskoznost tekočine: Leta 1678, je Isaac Newton podal Newtonov zakon, ki pravi,: The resistance which arises rom the lack o slipperiness o the parts o a liquid, other things being equal, is proportional to the velocity with which the parts o the liquid are separated rom one another. Odpor tekočine proti toku je pri enostavnem strigu linearno sorazmeren hitrosti strižnega toka oziroma hitrosti strižne deormacije. Faktor proporcionalnosti je v tem primeru»newtonska«viskoznost (). 4

5 Enostavni strig viskoznost tekočine - osnovne deinicije enostavni strig: F x v x A h tekočina y strižna napetost: F strižna deormacija: yx F A F viskoz. A strižna hitrost: d v dt dv y dx F v x v F d dt 5

6 Enostavni strig viskoznost tekočine - osnovne deinicije σ xx yx zx xy yy zy xz yz zz xx yx zx xy yy zy xz yz zz yx xy d dt 6

7 Ni energetskih izgub zaradi viskoznega trenja med tokom Padec tlaka v cevi pri toku zaradi viskoznega trenja F v F v F v F v F v Poiseuille F v A v e R P R 8 L R 8 4 P L L A=r Poiseuille jeva zveza se zelo dobo ujema z eksperimentalnimi podatki za tekočine z newtonskim bnašanjem (Newtonske tekočine), ko tekočina teče plastovito laminarno, torej ni turbulence. 7

8 Energijska bilanca: Celokupna energijska bilanca procesa: W 1 + U 1 + K 1 = W + U + K F + M + T 1 Bernoulijeva enačba: 1 P1 v1 gh1 P v gh Hagen-Poiseuille: Newtonov zakon: F v A v e R P R 8 L R 8 4 P L Strižna napetost: F viskoz. A 8

9 Pomen Poiseuille zveze: F v A v e R P R 8 L 4 R 8 P L F v Pretok tekočine je 100 cm 3 /s. S spremembo parametrov enačbe dobimo: Če x povečamo, bo pretok: dolžino L 50 cm 3 /s viskoznost 50 cm 3 /s tlak P 00 cm 3 /s polmer cevi R 1600 cm 3 /s Pretok krvi skozi žile: že majhna zožitev žile zaradi npr. poapnenja ima presenetljiv vpliv na pretočnost žil: R 1 = 0.8R R 1 = 0.5R R 1 = 0.R 9

10 Laminarni in turbulentni tok Za razumevanje razlike proučimo Reynoldsov eksperiment iz leta 1883 Linearna hitrost pretok tekočine Pretok narašča hitrost narašča Laminarni tok: tekočina teče - struja v plasteh Prehodno področje : plastoviti tok postane valovit Turbulentni tok: tekočina ne teče v plasteh ampak se zaradi vrtincev giblje tudi v radialni smeri. 10

11 Osborne Reynolds,

12 V laminarnem toku je hitrostna komponenta strujanja le v smeri vzdolž plasti vzdolž cevi. V turbulentnem toku je prevladujoča hitrostna komponenta strujana vzdolž cevi, vendar se pojavi tudi radialna komponenta hitrosti. einirano na osnovi dimenzijske analize Linearna hitrost pretok tekočine Reynolds je ugotovil, da lahko nestabilnost toka napovemo z razmerjem med hitrostjo toka in viskoznimi silami, nestabilnosti toka so odvisne od razmerja med kinetično energijo in viskoznim trenjem tekočine: Reynoldsovo število brez-dimenzijsko število: pospešek dušenje Re v vztrajnostne sile viskozne sile v v Laminar Turbulent Reynolds-ov apparatus Prehod iz laminarnega v turbulentno strujanje, ko je Re število okoli 000 1

13 Linearna hitrost pretok tekočine Laminarni in turbulentni tokovi Nastanek turbulence: Kinetične sile oz. vztrajnost sili tekočino v smer toka. Ko le te postanejo prevelike. Viskozne sile delujejo v smeri zaustavitve toka. Plastoviti tok tekočine daje zaradi viskoznega trenja prevelik upor. Zato nastane vrtinčast tok, posledica vrtinčenja je turbulenca. Re > < Re < 4000 Re < 300 V ceveh je za prehod iz laminarnega strujanja v prehodno območje kritično Reynoldsovo števiko okoli Re crit = 300. Če eksperiment izvajamo zelo pazljivo v popolnoma gladkih ceveh lahko tekočina teče pri pogojih laminarnega toka, tudi do

14 Primer: Pretok mleka v cevi: Mleko teče po cevi premera.5 cm pri 1 C. Ali je strujanje laminarno ali turbulentno, če je pretok mleka 0.1 cm 3 /min. Iz priročnika dobimo podatke: = 109 kg/m 3 =.1 cp Reynoldsovo število =.1 cp = Ns/m (Pa.s) F V = 0.1 cm 3 /min = 10-3 m 3 /s A = /4 = m Kontinuitetna enačba: v = F V /A = 4.1 m/s Re v 0.05 m m / s 3 Ns / m kg / m Re število je brez dimenzijsko! Pri računanju moramo paziti, da uporabimo enotni sistem enot. 14

15 Primer: imenzioniranje toplotnega menjalnika za hlajenje mleka Mleko se v toplotnem menjalniku ohladi iz 0 C na 3. Pretok mleka skozi menjalnik je 10 t/h. Toplotni menjalnik se sestoji iz cevi premera 4 cm. Izračunaj koliko cevi je treba vgraditi v menjalnik, da bo pretok zagotavljal Re število F m =10 t/h F m =10 t/h Iz priročnika poiščemo snovne mleka: = Pa.s = kgs -1 m -1 =1030 kg/m 3 masni pretok F m = 10t/h =10000/3600 =.8 kg/s presek cevi: A = x 0.04 /4 = m volumski pretok F v = F m / = (.8kg/s) /(1030 kg/m 3 ) = m 3 /s 3 Re kg m m povprečna hitrost toka skozi eno cev: v s m kg m s Re = x v x / = (1030 x v x 0.04)/.1 x10-3 = 4000 v = 0.1m/s volumski pretok skozi eno cev: F v = A x v = m x 0.1 m/s = 0.6 x10-3 m 3 /s Število cevi = zahtevani pretok mleka/pretok mleka skozi eno cev:.7 x10-3 /0.6 x10-3 = 11 15

16 Laminaren tok V tehnoloških procesih se tekočine med rezervoarji in reaktorji transportirajo (pretakajo) po ceveh Tlačne izgube v zaprtih cevovodih: Na osnovi Bernoullijeve zveze ugotovimo, da je tlačna razlika pri stacionarnih tokovnih pogojih v zaprtih ceveh odvisna od spremembe višine in spremembe hitrosti toka zaradi razlike v preseku cevi. Poiseulle tekočine so viskozne, notranje tekočinsko trenje in trenje tekočine ob površino cevi povzročata dodaten odpor proti toku in padec tlaka v ceveh: viskozni vplivi Celokupna energijska bilanca procesa: W 1 + U 1 + K 1 = W + U + K F + M + T Viskozni vplivi: Važnejši vplivi: padec tlaka v smeri roka pri enakem preseku cevi Manjši vplivi: padec tlaka pri toku skozi ventile, razcepe, kolena in drugih sprememb preseka cevi. 16

17 Laminaren tok Viskozni vplivi: Važnejši vplivi: padec tlaka v smeri toka pri enakem preseku cevi Energijska bilanca stacionarnega toka ne-stisljive tekočine po ravni gladki cevi Energetske izgube zaradi viskoznega trenja 1 1 P1 v1 gh1 P v gh P P Trenje tekočine ob steni je sorazmerno z dinamičnim tlakom. P F A tr 1 ' 1 v F tr. sila trenja tekočine ob steno cevi A 1. površina cevi c, aktor trenja riction actor A 1 =rl A=r Teoretično in eksperimentalno je dokazano, da so energetske izgube zaradi trenja tekočine ob steno cevi odvisne od Re števila 17

18 Laminaren tok aktor trenja riction actor Viskozni vplivi: Važnejši vplivi: padec tlaka v smeri roka pri enakem preseku cevi Energijska bilanca: Ravnotežje elementa tekočine na dolžini cevi dl tok tekočine P+dP F P tok tekočine dl Sila zaradi padca tlaka: Sila zaradi trenja ob površino cevi: dp x A = F = dp x /4 F tr. 1 v ' dl A 1 = dl A=r 4 dp dp 4 ' ' 1 1 v v dl dl P 4 ' v L 18

19 Laminaren tok in aktor trenja riction actor Viskozni vplivi: Važnejši vplivi: padec tlaka v smeri roka pri enakem preseku cevi P 4 ' v L Padec tlaka zaradi trenja na dolžini cevi L.. aktor trenja (Fanning), označeno tudi C V literaturi so različni podatki za vrednosti aktorja trenja pogosto najdemo naslednjo zvezo: 4 = P v L Padec tlaka zaradi trenja na dolžini cevi L.. aktor trenja (Moody - arcy) Energetske izgube zaradi trenja tekočine ob steno cevi so odvisne od Re števila Za majhna Re števila laminarni tok 0 < Re < 300, (in prehodno območje) velja linearna zveza med Re številom in aktorjem trenja Laminarni tok 64 Re 64 v Mejna plast tekočine ob steni cevi je stacionarna, zato hrapavost cevi ne vpliva na aktor trenja 19

20 Laminarni turbulenti tok Padec tlaka zaradi trenja lahko izrazimo tudi z dinamično višino tekočine h : v L h = P/. g, pri čemer je P h h L v g arcy-weisbach-ova enačba v L V laminarnem toku hrapavost cevi (e) ne vpliva na padec tlaka, oz. na vrednost aktorja trenja, ker je mejna plast tekočine ob steni cevi je stacionarna. = (Re). Turbulentni tok: ni analitičnih rešitev za izračun padca tlaka zaradi zapletene hidrodinamske situacije. Rešitev so empirične enačbe, določene na osnovi eksperimentalnih podatkov. = (Re,,L,e,v,) Re 0. 5 Za popolnoma gladke cevi velja Blasius-ova enačba (1911): 3000 < Re <

21 Turbulenti tok Vpliv hrapavosti cevi na aktor trenja v turbulentnem toku. Hrapavosti cevi povzroča vrtinčast tok, ki poveča trenje tekočine med steno cevi in tekočino. Pri turbulentnem pretakanju tekočin po zaprti cevi na nastanek turbulence vpliva tudi hrapavost cevi. = (Re,e) Hrapavost e je deinirana v mm neravnih delov cevi in je navadno zelo majhna. Za različne materiale je hrapavost različna. Za določitev aktorja trenja je treba deinirati relativno hrapavost cevi: relativna hrapavost = hrapavost e premer cevi Enačbe za izračun aktorja trenja v turbulentnem toku so najpogosteje določene empirično na osnovi eksperimentov. Upoštevajo tudi hrapavost cevi. = (Re,,L,e,v,) Povprečne hrapavosti e komercialnih cevi Steel tube Wrought iron tube Copper tubing Glass tubing Polythene Flexible P.V.C. Rigid P.V.C. Cast iron tube Concrete tube Galvanised iron Wood stave mm mm mm mm mm mm mm mm.0000 mm (0.3-3) mm mm 1

22 Lewis Moody, 1944 Vpliv hrapavosti cevi na aktor trenja v turbulentnem toku. V turbulentnem področju so bile določene različne krivulje (na osnovi dimenzijske analize in z uporabo brezbimenzijskih števil), ki prikazujejo odvisnost aktorja trenja od Re števila in relativne hrapavosti (e/). Colebrookova enačba 64 Re

23 Moody, diagram 64 Re Re 0.5 3

24 Turbulenti tok Enačbe za izračun aktorja trenja v turbulentnem toku, ki so določene empirično na osnovi eksperimentov: Faktor trenja se najpogosteje določa iz diagramov, (Moody-jev diagram). V turbulentnem področju krivulje predstavljajo Colebrookovo enačbo. Za odčitek vrednosti aktorja trenja je treba izračunati Re število in poznati relativno hrapavost V laminarnem področj je = 64/Re Za popolnoma gladke cevi v turbulentnem področju velja Blasinusova zveza: = Re -0.5 Moddyjev diagram sta v logaritemskih koordinatah,treba je znati odčitati vrednosti 4

25 Primer: Izračun aktorja trenja: Po jekleni cevi premera 0.4 m in je dolga 10 m se pretaka voda s pretokom L/s. Temperatura vode je 10 C. oloči aktor trenja in padec tlaka zaradi trenja tekočine ob stene cevi! Snovne lastnosti vode določimo iz priročnika: = 1000 kg/m 3 =1.3 x 10-3 Pa.s Relativna hrapavost odčitamo iz tabele: e/ = /0.4 = Povprečne hrapavosti e komercialnih cevi Steel tube Wrought iron tube Copper tubing Glass tubing Polythene Flexible P.V.C. Rigid P.V.C. Cast iron tube Concrete tube Galvanised iron Wood stave mm mm mm mm mm mm mm mm.0000 mm (0.3-3) mm mm Povprečna hitrost toka: v = F v /A = x 4/ x 0.4 =.778 m/s Temp. Viscosity Speciic heat ensity ( C) (N s m - ) (kj kg -1 C -1 ) (kg m -3 ) x x x x x x x x A= x 0.4 /4 = m Re = x v x / = (1000 x.778 x 0.4) / =

26 Graična določitev aktorja trenja: P v L P P 1350 Pa =0.014 e/ = Re = h h L v g m 9.81 v 6

27 Primer: Izračunaj padec tlaka v cevi Po cevovodu s premerom 5 cm teče olivno olje spretokom 0.1m 3 /min. Izračunaj padec tlaka zaradi tekočinskega trenja, če je dolžina cevovoda 170 m in temperatura olivnega olja 0 C. 170 m A = x 0.05 /4 = x 10-3 m Iz priročnika odčitamo snovne lastnosti olivnega olja pri 0 C =910 kg/m 3 = Pa.s (N.s/m) Povprečna hitrost toka: v = F v /A = [0.1/60 (m3/s)] / m = 0.85 m/s Re = x v x / = (910 x 0.85 x 0.05) / = 460 Laminaren tok: = 64/Re = (Moddy-jev diagram- ne obsega tega območja) v L P P Pa

28 = 64/Re = (Moddy-jev diagram- ne obsega tega območja) 8

29 Primer: črpanje mleka Ocenite potrebno moč črpalke za črpanje mleka pri 0 C po 130 m dolgi horizontalni jekleni cevi premera 4 cm, če je povprečna hitrost toka v cevi.7 m/s.pri tem upoštevajte energetske izgube zaradi viskoznega trenja mleka ob steno cevi, energetske izgube na zaradi kolen in ventilov na cevovodu pa zanemari! L = 130m = 0.04m presek cevi: A = x 0.04 /4 = 1.6 x10-3 m Povprečna hitrost: v =.7 m/s volumski pretok F v = v x A =1.6x10-3 x.7 = m 3 /s Re = x v x / = (1030 x.7 x 0.04) /.1 x10-3 = x 10 4 Turbulentni tok Kinetična energija P k : Izgube zaradi viskoznega trenja: odčitamo hrapavost e= m e/ = /0.04 = Frikcijski aktor, aktor trenj, določimo iz Moodyjevega diagrama v Pa Steel tube Wrought iron tube Copper tubing Glass tubing Polythene Flexible P.V.C. Rigid P.V.C. Cast iron tube Concrete tube Galvanised iron Wood stave Iz priročnika poiščemo snovne lastnosti mleka: =.1 x 10-3 Pa.s = 1030 kg/m mm mm mm mm mm mm mm mm.0000 mm (0.3-3) mm mm

30 P v L Moč potrebna zaradi viskoznih izgub: P tr x F v = 3.05 x10 5 N/m x 3.4 x10-3 m 3 /s = 1038 J/s = W Moč potrošena zaradi kinetične energije: x 10 3 x3.4x10-3 = 1.76 w Celokupna moč: U + K = = W 5 Pa = 0.05 e/ = x

31 Viskozni vplivi: Važnejši vplivi: padec tlaka v smeri roka pri enakem preseku cevi aktor trenja h P v L h L v g arcy-weisbach-ova enačba L v Manjši vplivi: padec tlaka pri toku skozi ventile, razcepe, kolena in drugih sprememb preseka cevi. Če tok tekočine spremeni smer (kolena) ali je oviran zaradi vstavljenih ventilov v cevovode, se razcepi ali pa pride do zožitve cevi, pride do dodatnih energetskih izgub. Ta energija se porablja zaradi dodatnega vrtinčenja ali turbulence, oz. se sprošča v obliki toplote. Če želimo obdržat želeni pretok, moramo to energijo nadomestiti. Tudi ti, t.i. manjši viskozni vplivi na energetske izgube so sorazmerni dinamičnemu tlaku. P m 1 v High pressure R Low pressure 31

32 Viskozni vplivi: Manjši vplivi: padec tlaka pri toku skozi ventile, razcepe, kolena in drugih sprememb preseka cevi. Energetske izgube splošno: P / V : enota tlak Pa = N/m volumen: m 3 P / V = Nm = J Energetske izgube zaradi prej naštetih elementov lahko izrazimo z tlačno razliko, ali hodrostatsko višino. Pri tem smo uporabili prej izpeljane zveze za aktor trenja, in dodali aktor k. P m v k h m = P m /.g h m v k g P Faktor k je odvisen od tipa ventila, razcepa kolena in je za navedeno opremo določen eksperimentalno. Ker imamo v tehnološkem procesu več elementov, na primer več ventilov, kolen, razcepov, je za treba energetske izgube na posameznih elementih sešteti: v hm k g Celotne energetske izgube zaradi viskoznega trenja lahko izrazimo: L v h k g h v L 3 v g L

33 Faktor k za različne elemente v procesu: v hm k g Valves, ully open: k gate 0.13 globe 6.0 angle 3.0 Elbows: 90 standard 0.74 medium sweep 0.5 long radius 0.5 square 1.5 Tee, used as elbow 1.5 Tee, straight through 0.5 Entrance, large tank to pipe**: sharp 0.5 rounded

34 Entrance, large tank to pipe**: sharp 0.5 rounded 0.05 h m v k g a b c d Entrance low conditions and loss coeicient. (a) Re-entrant, k = 0.8, (b) sharp-edged, k = 0.5, (c) slightly rounded, k = 0., (d) well-rounded, k = Source: Munson et al (1998) p

35 v hm k g Energetske izgube nastopijo tudi zaradi zožitve ali razširitve cevi. Pri povečanju premera cevi so energetske izgube: P =. (v 1 - v ) / Pri čemer je v 1 je hitrost toka v nasprotni smeri spremembe premera cevi ( 1 ) in v hitrost toka v smeri spremembe premera cevi ( ) Pri trenutni zožitvi cevi pa: P= k. v / Faktor trenja k je odvisen od razmerja premerov ( / 1 ): Koeiicient k v primeru zožitve cevi v odvisnosti od razmerja premerov / k Loss coeicient or a sudden contraction. 35 Source: Munson et al (1998) p. 500

Hydraulics and hydrology

Hydraulics and hydrology Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

More information

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: 7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

More information

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses). PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:

More information

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO SEMINAR 2008/2009 HLAJENJE PLOŠČE S TURBULENTNIM CURKOM. Martin Draksler

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO SEMINAR 2008/2009 HLAJENJE PLOŠČE S TURBULENTNIM CURKOM. Martin Draksler UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO SEMINAR 2008/2009 HLAJENJE PLOŠČE S TURBULENTNIM CURKOM Martin Draksler Mentor: dr. Boštjan Končar Somentor: dr. Primož Ziherl Povzetek Hlajenje s

More information

TOPLJENEC ASOCIIRA LE V VODNI FAZI

TOPLJENEC ASOCIIRA LE V VODNI FAZI TOPLJENEC ASOCIIRA LE V VODNI FAZI V primeru asociacij molekul topljenca v vodni ali organski fazi eksperimentalno določeni navidezni porazdelitveni koeficient (P n ) v odvisnosti od koncentracije ni konstanten.

More information

Water Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:

Water Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations: Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure

More information

Chapter 3 Water Flow in Pipes

Chapter 3 Water Flow in Pipes The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics - ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

More information

HEADLOSS ESTIMATION. Mekanika Fluida 1 HST

HEADLOSS ESTIMATION. Mekanika Fluida 1 HST HEADLOSS ESTIMATION Mekanika Fluida HST Friction Factor : Major losses Laminar low Hagen-Poiseuille Turbulent (Smoot, Transition, Roug) Colebrook Formula Moody diagram Swamee-Jain 3 Laminar Flow Friction

More information

ENAČBA STANJA VODE IN VODNE PARE

ENAČBA STANJA VODE IN VODNE PARE ENAČBA STANJA VODE IN VODNE PARE SEMINARSKA NALOGA PRI PREDMETU JEDRSKA TEHNIKA IN ENERGETIKA TAMARA STOJANOV MENTOR: IZRED. PROF. DR. IZTOK TISELJ NOVEMBER 2011 Enačba stanja idealni plin: pv = RT p tlak,

More information

Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

More information

Fluidna dinamika. Mešanje

Fluidna dinamika. Mešanje Fluidna dinamika Mešanje Mešanje Hidrodinamska operacija:je posledica relativnega gibanja delcev tekočine. ri majhnih hitrostih in veliki viskoznosti je tok laminaren Mešanje je posledica deformacije tekočine

More information

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

Laminar and turbulent flows

Laminar and turbulent flows Ventilation 0 Duct Design Vladimír Zmrhal (room no. 84) http://users.fs.cvut.cz/~zmrhavla/index.htm Dpt. Of Environmental Engineering Laminar and turbulent flos Reynolds number d Re = ν laminar flo Re

More information

Determining the Leakage Flow through Water Turbines and Inlet- Water Gate in the Doblar 2 Hydro Power Plant

Determining the Leakage Flow through Water Turbines and Inlet- Water Gate in the Doblar 2 Hydro Power Plant Elektrotehniški vestnik 77(4): 39-44, 010 Electrotechnical Review: Ljubljana, Slovenija Določanje puščanja vodnih turbin in predturbinskih zapornic v hidroelektrarni Doblar Miha Leban 1, Rajko Volk 1,

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1 Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 -by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture

More information

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey

More information

Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

More information

Tehnološko procesništvo

Tehnološko procesništvo 2 blok : ponedeljek 10-12h in četrtek od 13-15h Tehnološko procesništvo doc. dr. Andreja Zupančič Valant prof. dr. Andrej Jamnik UL FKKT 1 Literatura: Fryer P. J., Pyle D. L., Rielly C. D. (Eds.), Chemical

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the

More information

P & I Design Limited. 2 Reed Street, Gladstone Industrial Estate, Thornaby, TS17 7AF. Tel: +44 (0) Fax: +44 (0)

P & I Design Limited. 2 Reed Street, Gladstone Industrial Estate, Thornaby, TS17 7AF. Tel: +44 (0) Fax: +44 (0) ump Sizing & Rating USER MANUAL & I Design Limited Reed Street, Gladstone Industrial Estate, Thornaby, TS7 7AF. Tel: +44 (0) 64 67444 Fax: +44 (0) 64 66447 www.pidesign.co.uk Support: sales@pidesign.co.uk

More information

IZRAČUN MEMBRANSKE RAZTEZNE POSODE - "MRP" za HLADNOVODNE SISTEME (DIN 4807/2)

IZRAČUN MEMBRANSKE RAZTEZNE POSODE - MRP za HLADNOVODNE SISTEME (DIN 4807/2) IZPIS IZRAČUN MEMBRANSKE RAZTEZNE POSODE - "MRP" za HLADNOVODNE SISTEME Izhodiščni podatki: Objkt : Vrtc Kamnitnik Projkt : PZI Uporaba MRP : Črpalna vrtina Datum : 30.8.2017 Obdlal : Zupan Skupna hladilna

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

Chapter 8 Flow in Pipes. Piping Systems and Pump Selection

Chapter 8 Flow in Pipes. Piping Systems and Pump Selection Piping Systems and Pump Selection 8-6C For a piping system that involves two pipes o dierent diameters (but o identical length, material, and roughness connected in series, (a the low rate through both

More information

1-Reynold s Experiment

1-Reynold s Experiment Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure

More information

FLOW CHARACTERISTICS OF HFC-134a IN AN ADIABATIC HELICAL CAPILLARY TUBE

FLOW CHARACTERISTICS OF HFC-134a IN AN ADIABATIC HELICAL CAPILLARY TUBE E HEFAT7 5 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics Sun City, South Arica Paper number: KM1 FLOW CHARACTERISTICS OF HFC-1a IN AN ADIABATIC HELICAL CAPILLARY TUBE Khan

More information

PIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number.

PIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number. PIPING SYSTEMS In this chapter we will review some of the basic concepts associated with piping systems. Topics that will be considered in this chapter are - Pipe and tubing standards - Effective and hydraulic

More information

Acta Chim. Slov. 2003, 50,

Acta Chim. Slov. 2003, 50, 771 IMPACT OF STRUCTURED PACKING ON BUBBE COUMN MASS TRANSFER CHARACTERISTICS EVAUATION. Part 3. Sensitivity of ADM Volumetric Mass Transfer Coefficient evaluation Ana akota Faculty of Chemistry and Chemical

More information

ENERGY AND MASS SPECTROSCOPY OF IONS AND NEUTRALS IN COLD PLASMA

ENERGY AND MASS SPECTROSCOPY OF IONS AND NEUTRALS IN COLD PLASMA UDK621.3:(53+54+621 +66), ISSN0352-9045 Informaclje MIDEM 3~(~UU8)4, Ljubljana ENERGY AND MASS SPECTROSCOPY OF IONS AND NEUTRALS IN COLD PLASMA Marijan Macek 1,2* Miha Cekada 2 1 University of Ljubljana,

More information

FREE SURFACE HYDRODYNAMICS (module 2)

FREE SURFACE HYDRODYNAMICS (module 2) Introduction to FREE SURFACE HYDRODYNAMICS (module 2) Prof Arthur E Mynett Professor of Hydraulic Engineering in addition to the lecture notes by Maskey et al. Introduction to FREE SURFACE HYDRODYNAMICS

More information

LAMINAR FLOW (Reynolds < 2320, parabolic velocity profile) Name symbol formula unit gravity g L L

LAMINAR FLOW (Reynolds < 2320, parabolic velocity profile) Name symbol formula unit gravity g L L file: Fluid Flow Calculator equations 14.pdf fro: Mark van Dijk revision: DEC 01 LAMINAR FLOW (Reynolds < 30, parabolic velocity profile) Nae sybol forula unit gravity g 9. 81 pipe length L elevation change

More information

2 Internal Fluid Flow

2 Internal Fluid Flow Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

More information

Learning Objectives. Lesson 6: Mathematical Models of Fluid Flow Components. ET 438a Automatic Control Systems Technology 8/27/2015

Learning Objectives. Lesson 6: Mathematical Models of Fluid Flow Components. ET 438a Automatic Control Systems Technology 8/27/2015 Lesson 6: Mathematical Models of Fluid Flow Components ET 438a Automatic Control Systems Technology lesson6et438a.pptx 1 Learning Objectives After this presentation you will be able to: Define the characteristics

More information

Testiranje programov za račun vodnega udara in uporaba na realnem primeru derivacijske hidroelektrarne

Testiranje programov za račun vodnega udara in uporaba na realnem primeru derivacijske hidroelektrarne Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Jamova 2 1000 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si Univerzitetni program Gradbeništvo, Hidrotehniška

More information

F L U I D S Y S T E M D Y N A M I C S

F L U I D S Y S T E M D Y N A M I C S F L U I D S Y S T E M D Y N A M I C S T he proper design, construction, operation, and maintenance of fluid systems requires understanding of the principles which govern them. These principles include

More information

EXPERIMENT NO: F5. Losses in Piping Systems

EXPERIMENT NO: F5. Losses in Piping Systems SJSU ME115 - THERMAL ENGINEERING LAB EXPERIMENT NO: F5 Losses in Piping Systems Objective One of the most common problems in fluid mechanics is the estimation of pressure loss. It is the objective of this

More information

Used to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn State-Harrisburg

Used to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn State-Harrisburg Module b: Flow in Pipes Darcy-Weisbac Robert Pitt University o Alabama and Sirley Clark Penn State-Harrisburg Darcy-Weisbac can be written or low (substitute V Q/A, were A (π/4)d in te above equation):

More information

CHAPTER 3 FLUID-FLOW THEORY

CHAPTER 3 FLUID-FLOW THEORY CHAPTER 3 FLUID-FLOW THEORY Many raw materials for foods and many finished foods are in the form of fluids. These fluids have to be transported and processed in the factory. Food technologists must be

More information

OA07 ANNEX 4: SCOPE OF ACCREDITATION IN CALIBRATION

OA07 ANNEX 4: SCOPE OF ACCREDITATION IN CALIBRATION OA07 ANNEX 4: SCOPE OF ACCREDITATION IN CALIBRATION Table of contents 1 TECHNICAL FIELDS... 2 2 PRESENTING THE SCOPE OF A CALIBRATION LABOORATORY... 2 3 CONSIDERING CHANGES TO SCOPES... 6 4 CHANGES WITH

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

Study fluid dynamics. Understanding Bernoulli s Equation.

Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi

Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi 1 Universität Duisburg-Essen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

Izkoriščanje energije morja

Izkoriščanje energije morja Oddelek za fiziko Seminar Ia - 1. letnik, II. stopnja Izkoriščanje energije morja Avtor: Saša Hrka Mentor: prof. dr. Boštjan Golob Ljubljana, januar 2015 Povzetek V seminarju so predstavljeni različni

More information

Distribucija pare v proizvodnem obratu

Distribucija pare v proizvodnem obratu UNIVERZA V LJUBLJANI Fakulteta za strojništvo Distribucija pare v proizvodnem obratu Diplomsko delo Visokošolskega strokovnega študijskega programa I. stopnje STROJNIŠTVA Uroš Orehek Ljubljana, september

More information

SKM DRILLING ENGINEERING. Chapter 3 - Drilling Hydraulics

SKM DRILLING ENGINEERING. Chapter 3 - Drilling Hydraulics 1 SKM 3413 - DRILLING ENGINEERING Chapter 3 - Drilling Hydraulics Assoc. Prof. Abdul Razak Ismail Petroleum Engineering Dept. Faculty of Petroleum & Renewable Energy Eng. Universiti Teknologi Malaysia

More information

Friction Factors and Drag Coefficients

Friction Factors and Drag Coefficients Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

More information

Introduction to Fluid Flow

Introduction to Fluid Flow Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

More information

AIR CURTAINS VAZDU[NE ZAVESE V H

AIR CURTAINS VAZDU[NE ZAVESE V H AIR CURTAINS V 15.000 H 21.000 KLIMA Co. 2 KLIMA Co. Flow and system stress should be known factors in air flow. The flow is gas quantity flowing through the system during given time unit and is measured

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Computer Applications in Hydraulic Engineering

Computer Applications in Hydraulic Engineering Computer Applications in Hydraulic Engineering www.haestad.com Academic CD Aplikácie výpočtovej techniky v hydraulike pre inžinierov Flow Master General Flow Characteristic Všeobecná charakteristika prúdenia

More information

TOPLOTNO OKOLJE IN UGODJE V PROSTORU II

TOPLOTNO OKOLJE IN UGODJE V PROSTORU II TOPLOTNO OKOLJE IN UGODJE V PROSTORU II LOKALNO NEUGODJE (SIST EN ISO 7730:006 Ergonomija toplotnega okolja Analitično ugotavljanje in interpretacija toplotnega ugodja z izračunom indeksov PMV in PPD ter

More information

Numeriœna analiza kroænega cevnega loka kot merilnika prostorninskega pretoka

Numeriœna analiza kroænega cevnega loka kot merilnika prostorninskega pretoka Numeriœna analiza kroænega cevnega loka kot merilnika prostorninskega pretoka Mitja MORI, Ivan BAJSIÅ Izvleœek: V prispevku je obravnavana potencialna moænost uporabe kroænega cevnega loka (KCL) kot merilnika

More information

Experiment (4): Flow measurement

Experiment (4): Flow measurement Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics o 3-D Wings D-2: Boundary Layer and Viscous Eects D-3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I : List o Subjects

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

What we know about Fluid Mechanics. What we know about Fluid Mechanics

What we know about Fluid Mechanics. What we know about Fluid Mechanics What we know about Fluid Mechanics 1. Survey says. 3. Image from: www.axs.com 4. 5. 6. 1 What we know about Fluid Mechanics 1. MEB (single input, single output, steady, incompressible, no rxn, no phase

More information

Viscous Flow in Ducts

Viscous Flow in Ducts Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

More information

Laboratory work No 2: Calibration of Orifice Flow Meter

Laboratory work No 2: Calibration of Orifice Flow Meter Laboratory work No : Calibration of Orifice Flow Meter 1. Objective Calibrate the orifice flow meter and draw the graphs p = f 1 (Q) and C d = f (Re ).. Necessary equipment 1. Orifice flow meter. Measuring

More information

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar

More information

Engineers Edge, LLC PDH & Professional Training

Engineers Edge, LLC PDH & Professional Training 510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 266-6915 fax (678) 643-1758 Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC Pipe Flow-Friction Factor

More information

LOSSES DUE TO PIPE FITTINGS

LOSSES DUE TO PIPE FITTINGS LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall

More information

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of

More information

Pipe Flow. Lecture 17

Pipe Flow. Lecture 17 Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners

More information

Real Flows (continued)

Real Flows (continued) al Flows (continued) So ar we have talked about internal lows ideal lows (Poiseuille low in a tube) real lows (turbulent low in a tube) Strategy or handling real lows: How did we arrive at correlations?

More information

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C. Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

Multipla korelacija in regresija. Multipla regresija, multipla korelacija, statistično zaključevanje o multiplem R

Multipla korelacija in regresija. Multipla regresija, multipla korelacija, statistično zaključevanje o multiplem R Multipla koelacia in egesia Multipla egesia, multipla koelacia, statistično zaklučevane o multiplem Multipla egesia osnovni model in ačunane paametov Z multiplo egesio napoveduemo vednost kiteia (odvisne

More information

CHAPTER THREE FLUID MECHANICS

CHAPTER THREE FLUID MECHANICS CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under

More information

MODULE CODE: ENGG08021 INTRODUCTION TO THERMOFLUIDS. Date: 15 January 2016 Time: 10:00 12:00

MODULE CODE: ENGG08021 INTRODUCTION TO THERMOFLUIDS. Date: 15 January 2016 Time: 10:00 12:00 School of Engineering & Computing Session 2015-16 Paisley Campus Trimester 1 MODULE CODE: ENGG08021 INTRODUCTION TO THERMOFLUIDS Date: 15 January 2016 Time: 10:00 12:00 Attempt FOUR QUESTIONS IN TOTAL

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

S. Ahmed, M. Q. Islam and A. S. M. Jonayat. Department of Mechanical Engineering, BUET, Dhaka, Bangladesh

S. Ahmed, M. Q. Islam and A. S. M. Jonayat. Department of Mechanical Engineering, BUET, Dhaka, Bangladesh Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11- DETERMINATION OF LOSS COEFFICIENT FOR FLOW THROUGH FLEXIBLE PIPES AND

More information

Chapter 8 Flow in Conduits

Chapter 8 Flow in Conduits 57:00 Mechanics of Fluids and Transport Processes Chapter 8 Professor Fred Stern Fall 013 1 Chapter 8 Flow in Conduits Entrance and developed flows Le = f(d, V,, ) i theorem Le/D = f(re) Laminar flow:

More information

Chapter 7 FLOW THROUGH PIPES

Chapter 7 FLOW THROUGH PIPES Chapter 7 FLOW THROUGH PIPES 7-1 Friction Losses of Head in Pipes 7-2 Secondary Losses of Head in Pipes 7-3 Flow through Pipe Systems 48 7-1 Friction Losses of Head in Pipes: There are many types of losses

More information

ρg 998(9.81) LV 50 V. d2g 0.062(9.81)

ρg 998(9.81) LV 50 V. d2g 0.062(9.81) 6.78 In Fig. P6.78 the connecting pipe is commercial steel 6 cm in diameter. Estimate the flow rate, in m 3 /h, if the fluid is water at 0 C. Which way is the flow? Solution: For water, take ρ = 998 kg/m

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

AERODINAMIKA AVTOMOBILA TESLA MODEL S. Dino Gačević

AERODINAMIKA AVTOMOBILA TESLA MODEL S. Dino Gačević AERODINAMIKA AVTOMOBILA TESLA MODEL S Diplomski seminar na študijskem programu 1. stopnje Fizika Dino Gačević Mentor: doc. dr. Mitja Slavinec Somentorica: asist. Eva Klemenčič Zunanji delovni somentor:

More information

12d Model. Civil and Surveying Software. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer.

12d Model. Civil and Surveying Software. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer. 1d Model Civil and Surveying Sotware Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 04 June 007 Revised: 3 August 007 (V8C1i) 04 February 008 (V8C1p)

More information

MECHANICAL EFFICIENCY, WORK AND HEAT OUTPUT IN RUNNING UPHILL OR DOWNHILL

MECHANICAL EFFICIENCY, WORK AND HEAT OUTPUT IN RUNNING UPHILL OR DOWNHILL original scientific article UDC: 796.4 received: 2011-05-03 MECHANICAL EFFICIENCY, WORK AND HEAT OUTPUT IN RUNNING UPHILL OR DOWNHILL Pietro Enrico DI PRAMPERO University of Udine, Department of Biomedical

More information

Fluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food

Fluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food Fluid Flow Outline Fundamentals and applications of rheology Shear stress and shear rate Viscosity and types of viscometers Rheological classification of fluids Apparent viscosity Effect of temperature

More information

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1.

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1. PIPE FLOW General Characteristic of Pipe Flow Figure 1 Some of the basic components of a typical pipe system are shown in Figure 1. They include the pipes, the various fitting used to connect the individual

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

MIKROFLUIDIKA. Fakulteta za matematiko in fiziko Univerza v Ljubljani

MIKROFLUIDIKA. Fakulteta za matematiko in fiziko Univerza v Ljubljani MIKROFLUIDIKA MATIC NOČ Fakulteta za matematiko in fiziko Univerza v Ljubljani V članku je opisano področje mikrofluidike. Najprej so opisani osnovni fizikalni zakoni, ki veljajo za tekočine majhnih volumnov,

More information

The Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz

The Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz Solid State Phenomena Vol. 113 (2006) pp 603-608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics

More information

Attempt to prepare seasonal weather outlook for Slovenia

Attempt to prepare seasonal weather outlook for Slovenia Attempt to prepare seasonal weather outlook for Slovenia Main available sources (ECMWF, EUROSIP, IRI, CPC.NCEP.NOAA,..) Two parameters (T and RR anomally) Textual information ( Met Office like ) Issued

More information

(Received )

(Received ) 79 Acta Chim. Slov. 1997, 45(1), pp. 79-84 (Received 28.1.1999) THE INFLUENCE OF THE PROTEINASE INHIBITOR EP475 ON SOME MORPHOLOGICAL CHARACTERISTICS OF POTATO PLANTS (Solanum tuberosum L. cv. Desirée)

More information