# Engineers Edge, LLC PDH & Professional Training

Size: px
Start display at page:

Transcription

1 510 N. Crosslane Rd. Monroe, Georgia (770) fax (678) Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC

2 Pipe Flow-Friction Factor Calculations with Excel Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction Several kinds of pipe flow calculations can be made with the Darcy- Weisbach equation and the Moody friction factor. These calculations can be conveniently carried out with an Excel spreadsheet. Many of the calculations require an iterative solution, so they are especially suitable for an Excel spreadsheet solution. This course includes discussion of the Darcy-Weisbach equation and the parameters in the equation along with the U.S. and S.I. units to be used. Example calculations and sample Excel spreadsheets for making the calculations are presented and discussed. Image Credit: Wikimedia Commons 1

3 2. Learning Objectives At the conclusion of this course, the student will Be able to calculate the Reynolds number for pipe flow with specified flow conditions Be able to determine whether a specified pipe flow is laminar or turbulent flow for specified flow conditions Be able to calculate the entrance length for pipe flow with specified flow conditions Be able to obtain a value for the friction factor using the Moody diagram for given Re and /D. Be able to calculate a value for the friction factor for specified Re and /D, using the appropriate equation for f. Be able to determine a value of the Moody friction factor from the Moody diagram, for given Re and /D. Be able to calculate a value of the Moody friction factor for given Re and /D, using the Moody friction factor equations. Be able to use the Darcy Weisbach equation and the Moody friction factor equations to calculate the frictional head loss and frictional pressure drop for a given flow rate of a specified fluid through a pipe with known diameter, length and roughness. Be able to use the Darcy Weisbach equation and the Moody friction factor equations to calculate the required diameter for a given flow rate of a specified fluid through a pipe with known length and roughness, with specified allowable head loss. Be able to use the Darcy Weisbach equation and the Moody friction factor equations to calculate the fluid flow rate through a pipe with known diameter, length and roughness, with specified frictional head loss. 2

4 3. Topics Covered in this Course I. Pipe Flow Background II. Laminar and Turbulent Flow in Pipes III. The Entrance Length and Fully Developed Flow IV. The Darcy Weisbach Equation V. Obtaining a Value for the Friction Factor VI. Calculation of Frictional Head Loss/Pressure Drop Excel Spreadsheet A. Straight Pipe Head Loss B. Minor Losses VII. Calculation of Flow Rate Excel Spreadsheet VIII. Calculation of Required Pipe Diameter Excel Spreadsheet IX. Summary X. References and Websites 4. Pipe Flow Background The term pipe flow in this course is being taken to mean flow under pressure in a pipe, piping system, or closed conduit with a non-circular cross-section. Calculations for gravity flow in a circular pipe, like a storm sewer, are done with open channel flow equations, and will not be discussed in this course. The driving force for pressure pipe flow is typically pressure generated by a pump and/or flow from an elevated tank. 3

5 5. Laminar and Turbulent Flow in Pipes It is often useful to be able to determine whether a given pipe flow is laminar or turbulent. This is necessary, because different methods of analysis or different equations are sometimes needed for the two different flow regimes. Laminar flow takes place for flow situations with low fluid velocity and high fluid viscosity. In laminar flow, all of the fluid velocity vectors line up in the direction of flow. Turbulent flow, on the other hand, is characterized by turbulence and mixing in the flow. It has point velocity vectors in all directions, but the overall flow is in one direction. Turbulent flow takes place in flow situations with high fluid velocity and low fluid viscosity. The figures below illustrate differences between laminar and turbulent flow in a pipe. The figure at the right above illustrates the classic experiments of Osborne Reynolds, in which he injected dye into fluids flowing under a variety of conditions and identified the group of parameters now known as the Reynolds Number for determining whether pipe flow will be laminar or turbulent. He observed that under laminar flow conditions, the dye flows in ing fluid. Under turbulent flow conditions, the turbulence mixes dye into all of the flowing 4

6 criteria now in widespread use is that pipe flow will be laminar for a Reynolds Number (Re) less than 2100 and it will be turbulent for a Re greater than For 2100 < Re < 4000, called the transition region, the flow may be either laminar or turbulent, depending upon factors like the entrance conditions into the pipe and the roughness of the pipe surface. The Reynolds Number for flow in pipes is defined as: Re = DV /, where D is the diameter of the pipe in ft (m for S.I.) V is the average fluid velocity in the pipe in ft/sec (m/s for S.I) (The definition of average velocity is: V = Q/A, where Q = volumetric flow rate and A = cross-sectional area of flow) is the density of the fluid in slugs/ft 3 (kg/m 3 for S.I.) is the viscosity of the fluid in lb-sec/ft 2 (N-s/m 2 for S.I.) Transport of water or air in a pipe is usually turbulent flow. Also pipe flow of other gases or liquids whose viscosity is similar to water will typically be turbulent flow. Laminar flow typically takes place with liquids of high viscosity, like lubricating oils. Example #1: Water at 50 o What is the Reynolds number of this flow? Is the flow laminar or turbulent? Solution: From the table below the density and viscosity of water at 50 o F are: = 1.94 slugs/ft 3 and = 2.73 x 10-5 lb-sec/ft 2. The water velocity, V, can be calculated from V = Q/A = Q/( D 2 /4) = 0.6/[ (1/3) 2 /4] = 6.9 ft/sec. Substituting values into Re = DV / gives: Re = (1/3)(6.9)(1.94)/(2.73 x 10-5 ), or Re = 1.6 x The Reynolds Number is greater than 4000, so the flow is turbulent. 5

7 The density and viscosity of the flowing fluid are often needed for pipe flow calculations. Values of density and viscosity of many fluids can be found in handbooks, textbooks and websites. Table 1, below gives values of density and viscosity for water over a range of temperatures from 32 to 70 o F. Table 1. Density and Viscosity of Water 6. The Entrance Length and Fully Developed Flow The Darcy Weisbach equation, which will be discussed in the next section, applies only to the fully developed portion of the pipe flow. If the pipe in question is long in comparison with its entrance length, then the entrance length effect is often neglected and the total length of the pipe is used for calculations. If the entrance length is a significant part of the total pipe length, however, then it may be necessary to make separate calculations for the entrance region. The entrance region refers to the initial portion of the pipe in which the the entrance to the pipe, the flow is often constant over the pipe crosssection. In the region near the entrance, the flow in the center of the pipe is unaffected by the friction between the pipe wall and the fluid. At the end of 6

### Pipe Flow/Friction Factor Calculations using Excel Spreadsheets

Pipe Flow/Friction Factor Calculations using Excel Spreadsheets Harlan H. Bengtson, PE, PhD Emeritus Professor of Civil Engineering Southern Illinois University Edwardsville Table of Contents Introduction

### Open Channel Flow I - The Manning Equation and Uniform Flow COURSE CONTENT

Open Channel Flow I - The Manning Equation and Uniform Flow Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction Flow of a liquid may take place either as open channel flow or pressure flow. Pressure

### Open Channel Hydraulics I - Uniform Flow

PDHonline Course H138 (2 PDH) Open Channel Hydraulics I - Uniform Flow Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax:

### Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here The flow rate of a fluid flowing in a pipe under pressure is measured for a variety of applications,

### FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

### 1-Reynold s Experiment

Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure

### Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters For Liquid and Gas Flow by Harlan H. Bengtson, PhD, P.E. 1. Introduction Orifice and Venturi Pipe Flow Meters The flow rate of a fluid flowing in a pipe under pressure

### Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

### FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE

11 ACPPA TECHNICAL SERIES FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE This paper presents formulas to assist in hydraulic design of concrete pressure pipe. There are many formulas to calculate

### Atmospheric pressure. 9 ft. 6 ft

Name CEE 4 Final Exam, Aut 00; Answer all questions; 145 points total. Some information that might be helpful is provided below. A Moody diagram is printed on the last page. For water at 0 o C (68 o F):

### Manning Equation - Open Channel Flow using Excel. Harlan H. Bengtson, PhD, P.E. COURSE CONTENT

Manning Equation - Open Channel Flow using Excel Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction The Manning equation is a widely used empirical equation for uniform open channel flow of water.

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Chapter 6. Losses due to Fluid Friction

Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the

### Review of pipe flow: Friction & Minor Losses

ENVE 204 Lecture -1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

### Flow Measurement in Pipes and Ducts COURSE CONTENT

Flow Measurement in Pipes and Ducts Dr. Harlan H. Bengtson, P.E. COURSE CONTENT 1. Introduction This course is about measurement of the flow rate of a fluid flowing under pressure in a closed conduit.

### FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes

### Chapter 6. Losses due to Fluid Friction

Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

### Water Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:

Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure

### Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

### FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10

Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity

### STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience

### PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1.

PIPE FLOW General Characteristic of Pipe Flow Figure 1 Some of the basic components of a typical pipe system are shown in Figure 1. They include the pipes, the various fitting used to connect the individual

### Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

### ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey

### Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

### FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

### Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

### Hydraulics and hydrology

Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

### FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

### Fluid Flow Analysis Penn State Chemical Engineering

Fluid Flow Analysis Penn State Chemical Engineering Revised Spring 2015 Table of Contents LEARNING OBJECTIVES... 1 EXPERIMENTAL OBJECTIVES AND OVERVIEW... 1 PRE-LAB STUDY... 2 EXPERIMENTS IN THE LAB...

### Only if handing in. Name: Student No.: Page 2 of 7

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 10, 2014 2:00 PM 2.5 HOURS CHE 211F FLUID MECHANICS EXAMINER: PROFESSOR D.G. ALLEN ANSWER ALL SEVEN (7) QUESTIONS

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Pipe Flow. Lecture 17

Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### Learning Objectives. Lesson 6: Mathematical Models of Fluid Flow Components. ET 438a Automatic Control Systems Technology 8/27/2015

Lesson 6: Mathematical Models of Fluid Flow Components ET 438a Automatic Control Systems Technology lesson6et438a.pptx 1 Learning Objectives After this presentation you will be able to: Define the characteristics

### Calculation of Pipe Friction Loss

Doc.No. 6122-F3T071 rev.2 Calculation of Pipe Friction Loss Engineering Management Group Development Planning Department Standard Pump Business Division EBARA corporation October 16th, 2013 1 / 33 2 /

### EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

### Flow Measurement in Pipes and Ducts

Flow Measurement in Pipes and Ducts Course No: M04-040 Credit: 4 PDH Harlan H. Bengtson, Ph.D., P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800

### Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh

Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar

### Major and Minor Losses

Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops

### When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).

PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:

### Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

### Open Channel Hydraulics III - Sharpcrested

PDHonline Course H140 (2 PDH) Open Channel Hydraulics III - Sharpcrested Weirs Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone

### LOSSES DUE TO PIPE FITTINGS

LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall

### S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

### PIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number.

PIPING SYSTEMS In this chapter we will review some of the basic concepts associated with piping systems. Topics that will be considered in this chapter are - Pipe and tubing standards - Effective and hydraulic

### Introduction to Fluid Flow

Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

### An overview of the Hydraulics of Water Distribution Networks

An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline

### OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

### F L U I D S Y S T E M D Y N A M I C S

F L U I D S Y S T E M D Y N A M I C S T he proper design, construction, operation, and maintenance of fluid systems requires understanding of the principles which govern them. These principles include

### Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

### Department of Civil Engineering Hydraulics and Water Resources Division Application and Solution I

Question 1: The Specific weight of water is 1000 /. Using this given value, find the specific mass of water in SI units (g= m/s ). Solution 1: The specific mass of water in SI units: 1 N 1000 m 9810 Nm

### LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a

### INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

### 150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

### UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow

UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons

### Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

### Darcy s Law. Darcy s Law

Darcy s Law Last time Groundwater flow is in response to gradients of mechanical energy Three types Potential Kinetic Kinetic energy is usually not important in groundwater Elastic (compressional) Fluid

### Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

### Viscous Flow in Ducts

Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

### Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 -by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity

### Non Newtonian Fluid Dynamics

PDHonline Course M417 (3 PDH) Non Newtonian Fluid Dynamics Instructor: Paul G. Conley, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

### Hydroelectric Design

INTERAMERICAN UNIVERSITY OF BAYAMON PUERTO RICO Hydroelectric Design Dr. Eduardo G. Pérez Díaz Erik T. Rosado González 5/14/2012 Hydroelectric design project for fluid class. TABLE OF CONTENTS TABLE OF

### Basic Fluid Mechanics

Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

### Study fluid dynamics. Understanding Bernoulli s Equation.

Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that

### Fluid Mechanics Testbank By David Admiraal

Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on

### Q1 Give answers to all of the following questions (5 marks each):

FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

### V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

### Flow Measurement in Pipes and Ducts COURSE CONTENT

Flow Measurement in Pipes and Ducts Dr. Harlan H. Bengtson, P.E. COURSE CONTENT 1. Introduction This course is about measurement of the flow rate of a fluid flowing under pressure in a closed conduit.

### Lecture 2 Flow classifications and continuity

Lecture 2 Flow classifications and continuity Dr Tim Gough: t.gough@bradford.ac.uk General information 1 No tutorial week 3 3 rd October 2013 this Thursday. Attempt tutorial based on examples from today

### CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

### PIPING SYSTEMS FOR INDUSTRIAL PLANTS, Part I: Fluid Mechanics, Materials, Piping Systems, Piping Layout

Proyectos Consultoría Formación PIPING SYSTEMS FOR INDUSTRIAL PLANTS, Part I: Fluid Mechanics, Materials, Piping Systems, Piping Layout STUDY NOTES Instructor: Javier Tirenti training@arvengconsulting.com

### PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +

The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into

### FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

### Experiment- To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.

SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment- To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s

### FLOW MEASUREMENT IN PIPES EXPERIMENT

University of Leicester Engineering Department FLOW MEASUREMENT IN PIPES EXPERIMENT Page 1 FORMAL LABORATORY REPORT Name of the experiment: FLOW MEASUREMENT IN PIPES Author: Apollin nana chaazou Partner

### FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

### Chapter 8: Flow in Pipes

8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

### Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture

### REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

### Chapter 3 Water Flow in Pipes

The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics - ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution

### The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,

### Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

### Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow:

Two-Fluid Model 41 If I have seen further it is by standing on the shoulders of giants. Isaac Newton, 1675 3 Two-Fluid Model Simple isothermal two-fluid two-phase models for stratified flow: Mass and momentum

### PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

### Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid Dynamics

International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 12 [December. 2014] PP: 77-81 Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid

### A Model Answer for. Problem Set #7

A Model Answer for Problem Set #7 Pipe Flow and Applications Problem.1 A pipeline 70 m long connects two reservoirs having a difference in water level of 6.0 m. The pipe rises to a height of 3.0 m above

### FLOW IN PIPES. Mark J McCready University of Notre Dame July 24, chemeprof.com

FLOW IN PIPES Mark J McCready University of Notre Dame July 24, 2017 OVERVIEW This lecture will provide the simplest framework to explain The three forces at that are important to fluid flow in pipes The

### Lecture 30 Review of Fluid Flow and Heat Transfer

Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

### ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for

### Properties and Definitions Useful constants, properties, and conversions

Properties and Definitions Useful constants, properties, and conversions gc = 32.2 ft/sec 2 [lbm-ft/lbf-sec 2 ] ρwater = 1.96 slugs/ft 3 γwater = 62.4 lb/ft 3 1 ft 3 /sec = 449 gpm 1 mgd = 1.547 ft 3 /sec

### Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

### ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website

### FRIDAYS 14:00 to 15:40. FRIDAYS 16:10 to 17:50

Brad Peterson, P.E. FRIDAYS 14:00 to 15:40 FRIDAYS 16:10 to 17:50 BRAD PETERSON, P.E., PTOE Brigham Young University, 1975 Highway and Bridge Design Montana, Utah, Idaho, Wyoming Worked 27 Years in Helena,

### CVE 372 HYDROMECHANICS EXERCISE PROBLEMS

VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take

### S. Ahmed, M. Q. Islam and A. S. M. Jonayat. Department of Mechanical Engineering, BUET, Dhaka, Bangladesh

Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11- DETERMINATION OF LOSS COEFFICIENT FOR FLOW THROUGH FLEXIBLE PIPES AND

### Bernoulli and Pipe Flow

Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems