Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Size: px
Start display at page:

Download "Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1"

Transcription

1 Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 -by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity 0.08 NS/m 2 at 10 lps. a) Compute Reynolds number and state whether the flow is laminar or turbulent. b) Compute loss of head c) Compute the maximum velocity d) Compute the power required to maintain the flow. Diameter of pipe (D) = 200 mm = 0.2m Length of pipe (L) = 20 km = 20000m Density of oil (ρ) = 900 kg/m 3 Viscosity of oil (µ) = 0.08 NS/m 2 Rate of flow (Q) = 10 lps = 0.01 m 3 /s a) Reynolds no. (Re) =? Average velocity of flow = m/s As Re<2000, the flow is laminar. b) Head loss (h f ) =? c) Maximum velocity (u max ) =? Maximum velocity (u max ) = 2V = 2x0.318 = m/s d) Power required to maintain flow (P) =?

2 = 4070 W 2. A fluid of viscosity 5 poise and specific gravity 1.2 flows through a pipe of diameter 100mm. The maximum shear stress at the pipe wall is 150 N/m 2. Find (a) pressure gradient, (b) average velocity, and (c) Reynolds number. Diameter of pipe (D) = 100 mm = 0.1m Radius of pipe (R) = 0.1/2 = 0.05m Viscosity of oil (µ) = 5 poise = 5/10NS/m 2 = 0.5 NS/m 2 Specific gravity of fluid (S) = 1.2 Density of fluid (ρ) = 1.2x1000 = 1200 kg/m 3 Maximum shear stress (τ 0 ) = 150 N/m 2 (a) Pressure gradient (dp/dx) =? At r = R, shear stress, τ = τ 0 N/m 2 per m (b) Average velocity (V) =? =3.75 m/s C) Reynolds no. (Re) =? As Re<2000, the flow is laminar.

3 3. Oil of density 800 kg/m 3 and dynamic viscosity 0.2 poise flows through 50mm diameter pipe of length 500m at the rate of 0.2 lps. Determine (a) Reynolds number, (b) Centerline velocity, (c) pressure gradient, (d) loss of pressure in 500m length and (e) wall shear stress. Diameter of pipe (D) = 50 mm = 0.05m Radius of pipe (R) = 0.05/2 m = 0.025m Length of pipe (L) = 500m Density of oil (ρ) = 800 kg/m 3 Viscosity of oil (µ) = 0.2 poise = 0.2/10 NS/m 2 = 0.02 NS/m 2 Rate of flow (Q) = 0.2 lps = m 3 /s a) Reynolds no. (Re) =? Cross sectional area (A) = = m 2 Average velocity of flow = m/s b) Centerline velocity (v max ) =? v max =2V =2x0.102 = m/s c) Pressure gradient (dp/dx) =? d) Loss of pressure in 500m length =? N/m 2 per m N/m 2 per m Loss of pressure in 500m length = 26x500 = N/m 2 e) Wall shear stress (τ 0 ) =? = N/m 2

4 4. Oil ofspecific gravity 0.6 and kinematic viscosity m 2 /s flows through an inclined pipe of diameter 60mm. The angle of inclination is The pressures at 10 m apart are 360 KPa and 275 KPa respectively. Assuming steady laminar flow, find the direction and rate of flow. Justify that the flow is laminar. 2 Specific gravity of fluid (S) = 0.6 Density of fluid (ρ) = 0.6x1000 = 600 kg/m 3 Kinematic viscosity (υ) = m 2 /s Dynamic viscosity (µ) = υρ = x600 = 0.12 NS/m 2 Diameter of pipe (D) = 60 mm = 0.06m Length of pipe (L) = 10m Pressure at section 1 (P 1 ) = 360 Kpa = Pa Pressure at section 1 (P 2 ) = 275 Kpa = Pa Cross sectional area (A) = = m 2 Z 1 = 0 Z 2 = 10Sin30 = 5m Total energyat 1 (E 1 ) = = Total energy at 2 (E 2 ) = = As E 1 >E 2, the flow takes place from section 1 to section Rate of flow (Q) =? Loss of head (h f ) =E 1 E 2 = = 9.44 m Also Average velocity (V)= 5.2 m/s Q =A V = x5.2 = m 3 /s Computing Reynolds no. (Re) As Re<2000, the flow is laminar

5 5. Crude oil of dynamic viscosity 0.2 NS/m 2 and specific gravity 0.75 flows through 20mm diameter vertical pipe. Two gauges have been fixed at 20m apart. The pressure gauge fixed at higher end reads 20 N/cm 2 and that at the lower end reads 60 N/cm 2. Assuming steady laminar flow, find the direction and rate of flow. Justify that the flow is laminar. Specific gravity of fluid (S) = 0.75 Density of fluid (ρ) = 0.75x1000 = 750 kg/m 3 Dynamic viscosity (µ) = 0.2 NS/m 2 20m Diameter of pipe (D) = 20 mm = 0.02m Length of pipe (L) = 20m Pressure at section A (P a ) = 20N/cm 2 = 20x10 4 N/m 2 Pressure at section B (P b ) = 60 N/cm 2 = 60x10 4 N/m 2 Cross sectional area (A) = = m 2 Z b = 0 Z a = 20 m V = Velocity of flow Total energy ata (E a ) = = A B Total energy head B (E b ) = = As E b >E a, the flow takes place from B to A (upwards) Rate of flow (Q) =? Loss of head (h f ) = E b E a = = m Also Average velocity (V) = 0.79 m/s Q = A V = x0.79 = m 3 /s = lps Computing Reynolds no. (Re) As Re<2000, the flow is laminar

6 6. Oil ofspecific gravity 0.9 and viscosity 10 poise flows through a pipe of diameter 100mm. The velocity at the center is 2m/s. Find (a) mean velocity and the radial distance at which this occurs, (b) pressure gradient in the direction of flow, (c) shear stress at the pipe wall, (d) Reynolds number, and (e) velocity at a distance of 30mm from the wall. Specific gravity of fluid (S) = 0.9 Density of fluid (ρ) = 0.9x1000 = 900 kg/m 3 Dynamic viscosity (µ) = 10 poise = 10/10 NS/m 2 = 1 NS/m 2 Diameter of pipe (D) = 100 mm = 0.1m Cross sectional area (A) = = m 2 Velocity at the center (u max ) = 2m/s a) Mean velocity (V) =? V = 1 m/s Radial distance at which mean velocity occurs = 0.707R = 0.707x0.1/2 =0.035m b) Pressure gradient (dp/dx) N/m 2 per m c) Wall shear stress (τ 0 ) =? d) Reynolds no. (Re) =? = 80 N/m 2 e) Velocity (u) at y = 0.03m =? r= R-y = = 0.02m

7 = 1.68 m/s 7. Oil of viscosity 0.1 NS/m 2 and relative density 0.9 is flowing through a pipe of 50mm diameter. The pressure drop in a length of 300m is 680 Kpa. Assuming steady laminar flow, find the rate of flow and the shear stress at the pipe wall. Justify that the flow is laminar. Viscosity of oil (µ) = 0.1 NS/m 2 Relative density = 0.9 Density of fluid (ρ) = 0.9x1000 = 900 kg/m 3 Diameter of pipe (D) = 50mm = 0.05m Cross sectional area (A) = = m 2 Pressure drop (P1-P2) = 680 KPa = Pa Length (L) = 300m Rate of flow (Q) =? Shear stress at the pipe wall (τ 0 ) =? Computing average velocity (V) using Hagen-Poiseuille equation, V = 1.77 m/s Q = AV = x1.77 = m 3 /s = lps Computing Reynold no. (Re) As Re<2000, the flow is laminar. = N/m 2

8 8. Glycerin of viscosity 0.9 NS/m 2 and density 1260 kg/m 3 is pumped along a horizontal pipe of diameter 0.01 m and length 100m at a flow rate of 1.8 lit/min. Determine Reynolds no. and verify the nature of flow. Calculate the pressure lost in the pipe due to frictional effects and calculate the maximum flow rate for laminar conditions to prevail. Viscosity of glycerin (µ) = 0.9 NS/m 2 Density (ρ) = 1260 kg/m 3 Diameter of pipe (D) = 0.01m Length of pipe (L) = 100m Cross sectional area (A) = = m 2 Flow rate (Q) = 1.8 lit/min = (1.8x10-3 /60) = 0.03x10-3 m 3 /s Reynolds no. (Re) =? Pressure loss (P 1 -P 2 ) =? Maximum flow rate for laminar condition (Qmax)=? Average velocity of flow = m/s As Re<2000, the flow is laminar. = Pa = Kpa Upper limit of laminar flow is reached when Re max = 2000 Qmax = m 3 /s 9. Water flows through a 50mm diameter pipe sloping upwards at 45 0 to the horizontal. At a section some distance downstream of the inlet, the pressure is 700 Kpa and at a section 350m further along the pipe, the pressure is 450 Kpa. Assuming laminar flow, determine the average shear stress at the wall of the pipe and the loss of head. Take viscosity of water = 1.02x10-3 Pa-S.

9 Diameter of pipe (D) = 50mm Radius of pipe (R) = 25mm = 25x10-3 m Pressure at 1 (P 1 ) = 700 Kpa Pressure at 2 (P 2 ) = 450 Kpa Length (L) =350m Z 1 = 0 Z 2 = 35Sin45 0 = 24.75m Shear stress at pipe wall =? Head loss (h f ) =? For inclined pipe, = 2.6 N/m 2 = 1.57 m/s = 0.73m Turbulent flow 10. A pipeline carrying water has average height of irregularities projecting from the surface of the boundary of the pipe as 0.2mm. What type of boundary is it? The shear stress developed is 8 N/m 2. Take the value of kinematic viscosity of water as 0.01 stokes. Roughness height (k) = 0.2 mm = 0.2x10-3 m Shear stress (τ 0 ) = 8 N/m 2 Kinematic viscosity (υ) = 0.01 stokes = 0.01x 10-4 m 2 /s Shear velocity (V * ) = = m/s Thickness of laminar sub layer = 1.3x10-4 m = 1.5 As 0.25< <6, the boundary is transition.

10 11. A liquid of specific gravity 0.9 and absolute viscosity 6.5x10-4 NS/m 2 flow through a pipe of diameter 150mm at the rate of 40 lps. If the loss of head in 100m length of pipe is 4.5m, determine whether the pipe is rough or smooth and find the average roughness height. Use Moody chart. Specific gravity of liquid (S) = 0.9 Density of liquid (ρ) = 0.9x1000 = 900 kg/m 3 Absolute viscosity (µ) = 6.5x10-4 NS/m 2 Diameter of pipe (D) = 150mm = 0.15m Cross-sectional area (A)= = m 2 Flow rate (Q) = 40 lps = 0.04 m 3 /s Head loss (h f ) =4.5m Length (L) = 100m Velocity (V) = = 2.26 m/s As Re>4000, the flow is turbulent. f = For Re = 4.7x10 5 and f = 0.026, the Moody chart shows that the pipe behaves as rough. For Re = 4.7x10 5 and f = k/d = k/0.15 = k = m = 0.45mm 12. A 1m diameter pipe is to carry a water discharge of 1 m 3 /s at the minimum loss of energy (smooth pipe). What will be the permissible height of surface roughness? Take kinematic viscosity = 10-6 m 2 /s and use the resistance equation for smooth pipe. Diameter of pipe (d) = 1m Discharge (Q) =1 m 3 /s Cross-sectional area of pipe (A) = = m 2

11 Velocity of flow (V) = Q/A = 1/ = 1.27 m/s = 1.27x10 6 Permissible roughness height (k) =? For minimum loss of energy, pipe should act as smooth. For Re>10 5, friction factor for smooth pipe is ( ) Solving for f f = For smooth pipe, ( ) k = m = mm 13. A 150mm diameter pipe with k = 0.01mm carries water over a length of 100m with a pressure loss of 26 Kpa. State whether the pipe will act as smooth or rough pipe. Also determine maximum velocity, average velocity and discharge. Take kinematic viscosity = 10-6 m 2 /s. Diameter of pipe (d) = 0.15m Cross-sectional area of pipe (A) = = m 2 k = 0.01x10-3 m Length (L) = 100m Pressure loss (P 1 -P 2 ) = Pa Maximum velocity (V max ) =? Average velocity (V) =? Discharge (Q) =? Shear stress at the wall = 9.75 Pa Shear velocity = m/s Thickness of laminar sub layer

12 As = m = 0.01x10-3 / = 0.08, the pipe will act as hydrodynamically smooth pipe. At y = R = 0.075m, maximum velocity occurs V max = 2.7 m/s For average velocity (V), V = 2.35 m/s Q = AV = x2.35 = m 3 /s 14. A smooth brass pipeline 100mm diameter and 1km long carries water at the rate of 12lps. The friction factor is expressed by where Re is Reynolds number. Take kinematic viscosity = 0.02 Stokes and density = 1000 kg/m 3. Calculate (a) Reynolds number and verify the nature of flow, (b) loss of head, (c) wall shearing stress, (d) center line velocity, (e) shear stress and velocity at 25mm from the center line, and (f) thickness of laminar sub-layer. Diameter of pipe (D) = 100mm = 0.1m Cross-sectional area (A) = = m 2 Length (L) = 1km = 1000m Discharge (Q) = 12lps = m 3 /s Kinematic viscosity (υ) = 0.02 Stokes = 0.02X10-4 m 2 /s Density (ρ) = 1000 kg/m 3 Average velocity (V) = a) Reynolds no (Re) =? = 1.53m/s As Re>4000, the flow is turbulent. b) Loss of head (h f ) =?

13 = 23.86m c) Wall shear stress (τ 0 ) =? = 5.85 N/m 2 d) Centerline velocity (V max ) =? Shear velocity (V * ) = = m/s For turbulent flow in smooth pipes at y= D/2 = 0.1/2 = 0.05m, v= v max v max = 1.86 m/s e) r= 25mm = 0.025m Shear stress (τ) and velocity (v) at 25 mm from center line =? = N/m 2 y= R-r = = 0.025m v = 1.73 m/s (f) Thickness of laminar sub-layer (δ ) =?

14 = m = 0.3mm 15. Mean velocities at the mid-point and quarter point of 0.2m diameter pipes are 1.7m/s and 1.45m/s respectively. If the flow in the pipe is turbulent, determine the discharge, friction factor and the average height of roughness projections. Diameter of pipe (D) = 0.2m Radius of pipe (R) =0.1m Cross-sectional area (A)= = m 2 Mean velocity at mid point = V max = 1.7 m/s r = 0.2/4 = 0.05 y = R-r = = 0.05m Mean velocity at 0.05m (v) = 1.45 m/s Discharge (Q) =? Friction factor (f) =? Roughness height (k) =? From Prandtl s equation V * = 0.14 m/s Average velocity (V) = m/s Q =AV = x1.225 = m 3 /s Also f =0.1

15 K = m 16. A 30cm diameter pipe conveys water in turbulent flow regime. The friction factor is If the centerline velocity is 4m/s, estimate the discharge through the pipe. Diameter of pipe (D) = 0.3 m Cross-sectional area (A) = = 0.07 m 2 f = 0.02 Centerline velocity (v max ) = 4m/s Discharge (Q)=? (a) (b) Solving eq. (a) and (b), V = 3.37 m/s Q =AV = 0.07x3.37= 0.23 m 3 /s 17. In a 500mm diameter rough pipe carrying water, the velocity and velocity gradient at 50mm from the wall are 4.4m/s and 5.5x10-3 S -1 respectively. Determine the water discharge, roughness height, friction factor, wall shear and pressure gradient. Diameter of pipe (D) = 0.5m Cross-sectional area of pipe (A) = = m 2 y = 50mm = 0.05m At y = 0.05m, velocity (v) = 4.4m/s and velocity gradient (dv/dy) = 5.5x10-3 S -1 Discharge (Q) =? Roughness height (k) =? Friction factor (f) =? Wall shear =? Pressure gradient =? For rough pipe, (a)

16 Differentiating a w.r.t. y (b) Substituting the value of V * from b to a Solving for k k = 5x10-4 m = 0.5mm Substituting k into b V * = 0.22 m/s Average velocity (V) for rough pipe V =4.46 m/s Q = AV = x4.46 = m 3 /s f= Wall shear stress =48.5 Pa Pressure gradient = 388 Pa per m 18. A smooth pipe of 200mm diameter carries oil of density 850 kg/m 3 and kinematic viscosity 3x10-6 m 2 /s at a discharge of 30 lps. What will be the wall shear, thickness of laminar sublayer and velocity at the edge of laminar sublayer? Diameter of pipe (D) = 0.2m Cross-sectional area of pipe (A) = = m 2 Discharge (Q) = 30 lps = 0.03 m 3 /s Average Velocity (V) = Q/A = 0.03/ = m/s

17 Wall shear =? Thickness of laminar sublayer =? Velocity at the edge of laminar sublayer =? = Re 4000 to 10 5, f for smooth pipe is given by = = 1.92 N/m 2 At = m/s, velocity (v) = m v = 0.54 m/s 19. A certain 100mm diameter pipe which acts as rough pipe gave and 0.03 as its friction factor values after 5 and 10 years of operation. Estimate the friction factor after 15 years of service. Diameter of pipe = 100mm Friction factor after 5 year = Friction factor after 10 year = 0.03 Friction factor after 15 year =? For rough pipe, Finding roughness values after 5 and 10 years of service K 5 = 0.294mm K 10 = mm

18 (a) (b) Solving a and b and K 0 = 0.107mm After 15 years, = X = 0.668mm f 15 = Water flows through a 500mm diameter commercial pipe of 100m length of pipe and average roughness height 0.465mm. What is the maximum discharge at which this pipe will act as smooth pipe? What is the minimum discharge at which this pipe will act as rough pipe? Diameter of pipe (D) = 0.5m Cross-sectional area of pipe (A) = = m 2 k = 0.465x10-3 m = 0.465mm (a) When the pipe just ceases to act as smooth pipe, Also f = ( )

19 Re = V = 0.13m/s Q = AV = x0.13 = m 3 /s (b) When the pipe acts just as rough pipe, f = Re = V = 3.096m/s Q = AV = x3.096 = m 3 /s 21. A pressure drop of 11.5 Kpa is measured with gauges placed 7m apart on a pipe with 10cm diameter transporting water with kinematic viscosity of 0.6x10-6 m 2 /s. Compute wall shear stress, shear velocity, friction factor, mean velocity, maximum velocity, Reynold number and flow rate. Use exponential velocity distribution for turbulent flow. Pressure drop(p 1 -P 2 ) = Pa Length (L) = 7m Diameter of pipe (D) = 0.1m Kinematic viscosity = 0.6x10-6 m 2 /s Velocity profile Average velocity V for this type of velocity distribution is

20 a. Wall shear stress =? = 41 Pa b. shear velocity =? = 0.2m/s c. friction factor (f) =? Assuming n = 7 in the exponential equation = 0.2 d. Mean velocity (V) =? V = 1.26m/s e. Maximum velocity (V max ) =? V max = 1.54m/s f. Reynold no. (Re) =? = 2.1x10 5 g. Flow rate (Q) =? Q = AV = = m 3 /s

21 Head loss in pipes 22. At a sudden enlargement of a water main from 250mm to 500mm diameter, the hydraulic gradient rises by 10mm. Estimate the rate of flow Diameter of smaller pipe (D 1 ) = 250 mm = 0.25m Cross-sectional area (A 1 )= = m 2 Diameter of larger pipe (D 2 ) = 500 mm = 0.5m Cross-sectional area (A 2 ) = m 2 Rise of hydraulic gradient, i.e. = 10mm = 0.01m Rate of flow (Q) =? Applying Bernoulli s equation from smaller pipe to larger pipe section where h e =head loss due to sudden enlargement (a) From continuity equation A 1 V 1 = A 2 V 2

22 From a and b, (b) V 2 = m/s Q =A 2 V 2 = = x0.181 = m 3 /s 23. The rate of flow of water through a horizontal pipe of diameter 200mm is 0.3 m 3 /s. The diameter of the pipe is suddenly enlarged to 400mm. The pressure intensity in the smaller pipe is 15 N/cm 2. Determine (a) loss of head due to sudden enlargement, (b) pressure intensity in the larger pipe, and (c) power lost due to enlargement Rate of flow (Q) = 0.3 m 3 /s Diameter of smaller pipe (D 1 ) = 200 mm = 0.2m Cross-sectional area (A 1 )= = m 2 Diameter of larger pipe (D 2 ) = 400 mm = 0.4m Cross-sectional area (A 2 )= = m 2 Pressure in smaller pipe (P 1 ) = 15 N/cm 2 = 15x10 4 N/m 2 Velocity in smaller pipe (V 1 ) = Q/A 1 = 0.3/ = 9.55 m/s Velocity in larger pipe (V 2 ) = Q/A 2 = 0.3/ = 2.38 m/s a) Loss of head due to sudden enlargement (h e ) =?

23 = 2.62 m b) Pressure intensity in the larger pipe (P2) =? Applying Bernoulli s equation from smaller pipe to larger pipe section where h e =head loss due to sudden enlargement Z 1 = Z 2 P 2 = N/m 2 = 16.7 N/cm 2 (c) Power lost due to enlargement (P) =? = 7711 W = 7.71 KW 24. A horizontal pipe of diameter 500mm is suddenly contracted to a diameter of 300mm. The pressure intensities in the large and smaller pipe are given as 140 Pa and 120 Pa respectively. Find the loss of head due to contraction if C C = Also determine the rate of flow of water. 1 C 2 C 1 2 Diameter of larger pipe (D 1 ) = 500 mm = 0.5m Cross-sectional area (A 1 )= = m 2

24 Diameter of smaller pipe (D 2 ) = 300 mm = 0.3m Cross-sectional area (A 2 )= = m 2 Pressure in larger pipe (P 1 ) = 140Kpa = 140x10 3 Pa Pressure in smaller pipe (P 2 ) = 120Kpa = 120x10 3 Pa Coefficient of contraction (C c ) = 0.62 From continuity equation A 1 V 1 = A 2 V 2 Head loss due to contraction (h c ) =? Rate of flow (Q) =? (a) [ ] [ ] (b) Applying Bernoulli s equation from smaller pipe to larger pipe section Z 1 = Z 2 (c) From a and c V 2 = 5.67 m/s = m Q = A 2 V 2 = x5.67 = 0.4 m 3 /s

25 25. Two reservoirs whose water surface elevation differs by 12m are connected by the following horizontal compound pipe system starting from the high level reservoir as shown in the figure. L 1 =200m, D 1 = 0.2m, f 1 = L 2 =500m, D 2 = 0.4m, f 2 = Compute all the losses of head. Sketch EGL and HGL lines. 12m A C V 1 B V 2 D 3m D 1, L 1, f 1 D 2, L 2, f 2 Applying Bernoulli s eq. between the free surface of the first reservoir and the second reservoir Total loss = 12m From continuity equation A 1 V 1 = A 2 V 2 (a) Total loss = h i + h f1 + h e + h f2 + h o = 12 (b) h i = entry loss at A = = = = h f1 =head loss in pipe AB = = = = h e = Head loss due to sudden expansion = = = h f2 =head loss in pipe CD = = =

26 h 0 = Exit loss = = substituting above values in eq. (a) V 2 = 1.24 m/s V 1 = 4V 2 = 4.96 m/s h i = 0.408V 2 2 = x = 0.63m h f1 = V 2 2 = x = 10m h e = V 2 2 = x = 0.71m h f2 = V 2 2 = x = 0.58m h 0 = V 2 2 = 0.051x = 0.08m Position of TEL and HGL At A Elevation of EGL =15 h i = = 14.37m Elevation of HGL =Elevation of EGL V 1 2 /2g = = 13.11m at B Elevation of EGL = Elevation of EGL at A h f1 = = 4.37m Elevation of HGL = Elevation of EGL V 1 2 /2g = = 3.11m at C Elevation of EGL = Elevation of EGL at B h e = = 3.66m Elevation of HGL = Elevation of EGL V 2 2 /2g = = 3.58m at D Elevation of EGL = Elevation of EGL at C h f2 = = 3.08m Elevation of HGL = 3m EGL and HGL lines HGL TEL A C V 1 B V 2 D D 1, L 1, f 1 D 2, L 2, f 2

27 26. The following are the data for a piping system shown in the figure. Pipe l D f AP 250m 30cm 0.02 PB 150m 20cm BC 100m 15cm Take entry loss coefficient = 0.5 and bend loss coefficient = 0.5, and exit loss coefficient = 0.1 Discharge through the system = 0.2 m 3 /s Compute all losses and find the pressure head on the suction and discharge side of the pump. Plot EGL and HGL lines. If the efficiency of the pump is 75%, what is input power to the pump. B 4 C Nozzle dia = 7.5cm 1 30m Water A 3m 2 3 Datum P Discharge (Q) = 0.2 m 3 /s V = Q/A A AP = = m 2 A PB = = m 2 A BC = = m 2 C/s of nozzle = = m 2 V AP = 0.2/ = 2.83m/s V PB = 0.2/ = 6.37m/s V BC = 0.2/ = 11.32m/s Velocity through nozzle (V j ) = 0.2/ = 45.45m/s Computation of head losses

28 Head loss at entrance (hl 1 ) = = 0.2m Head loss in pipe AP (h f1 ) = = = = 6.8m Head loss in pipe PB (h f2 ) = = = = 38.8m Head loss in pipe BC (h f3 ) = = = = 108.8m Head loss at bend (hl 2 ) = = = 1.03m Head loss at exit (hl 3 ) = = 52.6m Applying Bernoulli s equation between 1 and 2 P 2 = pressure at suction end of pump = Pa Applying Bernoulli s equation between 3 and 4 P 3 = pressure at discharge end of pump = Pa Power = Q(P 3 -P 2 ) = 0.2x( ) = W = 588.8KW Input power to pump = power/efficiency = 588.8/0.75 = 785KW Position of EGL and HGL lines At A Elevation of EGL = Water surface elevation h l1 = = 2.8m Elevation of HGL = Elevation of EGL V 1 2 /2g = =2.8m at 2 (inlet of pump) Elevation of EGL = Elevation of EGL at A h f1 = = -4 Elevation of HGL = Elevation of EGL V AP 2 /2g = at 3 (outlet of pump) = -4.41m Elevation of EGL = Elevation of EGL at 2 + head supplied by pump = =296.1m Elevation of HGL = Elevation of EGL V PB 2 /2g = = 294m at bend Elevation of EGL = Elevation of EGL at 3-h f1 = = 257.3m

29 Elevation of HGL = Elevation of EGL V PB 2 /2g = = 255.2m d/s of bend Elevation of EGL = Elevation of EGL at bend h l2 = = Elevation of HGL = Elevation of EGL V BC 2 /2g = = 249.8m At nozzle Elevation of EGL = Elevation of EGL at bend h lf3 = = 147.5m Elevation of HGL = Elevation of EGL V BC 2 /2g = =141m Plot of EGL and HGL B 4 C 1 EGL HGL Water A 2 3 Datum P

30 Three types of pipe flow problems Tutorial 2 1. Determine the head (energy) loss for flow of 150 lps of oil flowing through 400m of 200mm diameter cast-iron pipe. Take υ = m 2 /s and K = 0.25mm. Use Moody s diagram. Rate of flow (Q) = 150 lps = 0.15 m 3 /s Length (L) = 400m Diameter of pipe (D) = 200 mm = 0.2m Cross-sectional area (A)= = m 2 υ = m 2 /s and K = 0.25mm Head loss (h f ) =? Average velocity (V) = Q/A = 0.15/ = 4.77 m/s Reynolds no. (Re) = = k/d = 0.25x10-3 /0.2 = For k/d = and Re = 95400, f = 0.024(from Moody s chart) = 55.6 m 2. Water flows through a 300mm diameter steel pipe with a head loss of 6m in 300m. Determine the rate of flow. Use (a) Moody s diagram and (b) Colebrook-White equation for obtaining f and compare the result. Take υ = 1.13x10-6 m 2 /s and K = 3mm. Head loss (h f ) = 6m Length (L) = 300m Diameter of pipe (D) = 300 mm = 0.3m Cross-sectional area (A)= = m 2 υ = 1.13x10-6 m 2 /s and K = 3mm k/d =3x10-3 /0.3 = 0.01 Rate of flow (Q) =?

31 a. Using Moody diagram Trial 1: For k/d = 0.01, take trial value of f = from Moody s diagram = 1.76 m/s Reynolds no. (Re) = = Trial 2: For k/d = 0.01 and Re = , f = (from Moody s diagram) As f is same for trial 1 and 2, the trial and error procedure is stopped here. f = and V = 1.76 m/s Q = AV = x1.76 = m 3 /s b. Using Colebrook-White equation Trial 1: For k/d = 0.01, take trial value of f = = 1.76 m/s Reynolds no. (Re) = = ( ) ( ) f = As f is same as assumed f value, the iteration is stopped here. f = and V = m/s Q = AV = x1.759 = m 3 /s 3. Determine the size of steel pipe required to convey 250 lps oil through 3000m with a head loss of 25m. Take υ = 1.0x10-5 m 2 /s and K = 0.046mm. Use Moody s diagram. Flow rate (Q) = 250 lps = 0.25 m3/s Length (L) = 3000m Head loss (h f ) = 25m υ = 1.0x10-5 m 2 /s and K = 0.046mm Diameter of pipe (D) =?

32 [ ] = 0.62f (a) [ ] = (b) Trial 1: Assume f = 0.02 D = (0.62x0.02) 1/5 = 0.416m Re =31830/0.416 = 7.7x10 4 k/d = 0.046x10-3 /0.416 = Trial 2: For K/D = and Re = 7.7x10 4, f = (from Moody s diagram) As the difference in f for trial 1 and 2 is very small, the trial and error procedure is stopped here. D = (0.62x0.0195) 1/5 = 0.413m Take 420mm diameter pipe. 4. A smooth pipe carries 0.3 m 3 /s of water discharge with a head loss of 3m per 100m length of pipe. Determine the diameter of the pipe. Use friction factor equation for smooth pipe as and take kinematic viscosity = 10-6 m 2 /s. Flow rate (Q) = 0.3 m 3 /s Length (L) = 100m Head loss (h f ) = 3m υ = 10-6 m 2 /s Diameter of pipe (D) =? = 0.248f [ ] (a) [ ] = (b) For first trial, assume f = 0.01 = 0.301m With this value, new f is

33 = Second trial: f = = m With this value, new f is = As the difference in f is very small, the trial and error is stopped here. = 0.308m = 308 mm Adopt 310mm diameter pipe. 5. Determine the size of steel pipe required to carry water at 30 lps if the permissible energy gradient is Will the boundary act as smooth or rough? Take dynamic viscosity of water = 10-3 Pa.S and k = 0.045mm. Flow rate (Q) = 0.03 m 3 /s Energy gradient (h f /L) = 0.05 = 10-3 Pa.S k = 0.045x10-3 m Diameter of pipe (D) =? ( ) = f [ ] (a) [ ] = (b) For first trial, assume f = 0.02 = 0.124m =3.1x10 5 k/d = 0.045x10-3 /0.124 = For above K/D and Re, f from Moody diagram = Trial2:

34 = 0.121m =3.15x10 5 k/d = 0.045x10-3 /0.121 = For above K/D and Re, f from Moody diagram = As the value of f is same for trial 2 and 3, the iteration is stopped. Diameter of pipe = 0.121m. Take 130mm dia. pipe. = 31 As is in between 17 and 400, the boundary is in transition. 6. A 2cm diameter 20km long pipeline connects two reservoirs filled with water open to the atmosphere. What is the discharge in the pipeline if the surface elevation difference of the reservoirs level is 5m? m 2 /s. 5m Diameter of pipe (D) = 2cm = 0.02m Length of pipe (L) = 20km = 20000m Surface elevation difference between two reservoirs (H) = 5m Kinematic viscosity of water =1.02x10-6 m 2 /s Discharge (Q) =? Neglecting minor loss, H = h f where h f = head loss due to friction Trial and error for determination of friction factor, f Trial 1 Assume f = 0.05 = 0.044m/s Reynold s number = 863 As Re<2000, the flow is laminar, for which f is given by f = 64/Re = 64/863 = 0.07

35 Trial 2 Computing V and Re with f = 0.07 V = 0.037m/s, Re = 725 f = 64/725 = 0.09 Trial 3 Computing V and Re with f = 0.09 V = 0.033m/s, Re = 647 f = 64/647 = 0.1 Trial 4 Computing V and Re with f = 0.1 V = m/s, Re = 614 f = 64/614 = As the difference in f is small between trial 3 and 4, the trial is stopped here. f = For f = 0.104, V = m/s Q = AV = = 9.6x10-6 m 3 /s = lps 7. A pressure drop of 600 Kpa is measured over a 400m length of 15cm diameter horizontal wrought iron pipe with absolute roughness of 0.045mm. Estimate the flow rate, if the specific gravity of the liquid is 0.9 and kinematic viscosity is 10-5 m 2 /s. Use Moody chart. Pressure drop (P 1 -P 2 ) = 600 Kpa Length (L) = 400m Head loss (h f ) = = 67.95m Diameter of pipe (D) = 150 mm = 0.15m υ = 10-5 m 2 /s and K = 0.045mm Rate of flow (Q) =? k/d =0.045x10-3 /0.15 = Trial 1: Take trial value of f = = 4.47 m/s Reynolds no. (Re) = = 6.7x10 4 Trial 2: For k/d = and Re = 6.7x10 4, f = (from Moody s diagram)

36 = 4.3 m/s Reynolds no. (Re) = = 6.45x10 4 Trial 3: For k/d = and Re = 6.45x10 4, f = (from Moody s diagram) As f is same for trial 2 and 3, the trial and error procedure is stopped here. f = and V = 4.3 m/s Q = AV = = m 3 /s

37 Siphon 8. A siphon of diameter 150mm connects two reservoirs having a difference in elevation of 15m. The length of the siphon is 400m and the summit is 4m above the water level in the upper reservoir. The length of the pipe from upper reservoir to the summit is 80m. Determine the discharge through the siphon and pressure at the summit. Consider all losses. Take f = Diameter of siphon (D) = 150mm = 0.15m Cross-sectional area (A)= = m 2 Difference in elevation (H) = 15m Length of siphon (L) = 400m Height of summit above water level in the upper reservoir (h) = 4m Length of inlet leg (l) = 80m Atmospheric pressure head(p A / and P D / )) = 0 V A = V C = 0 V B = V= Velocity of flow f = 0.02 Discharge through the siphon (Q) =? Pressure at summit (P B ) =? B h A H C Z a Z b Datum

38 Applying Bernoulli's equation between two points A and C (expressing Pressure values in terms of absolute pressure and considering all losses) V = m/s Q = AV = x2.316 = m 3 /s Applying Bernoulli's equation between the point A and summit B (expressing Pressure values in terms of absolute pressure) = 2.98m absolute (-7.32 m gauge) 9. A siphon of diameter 200mm connects two reservoirs having a difference in elevation of 20m. The length of the siphon is 800m and the summit is 5m above the water level in the upper reservoir. If the separation takes place at 2.8m of water absolute, find the maximum length of the siphon from upper reservoir to the summit. Take f = and atmospheric pressure = 10.3m of water. Neglect minor losses. Diameter of siphon (D) = 200mm = 0.2m Cross-sectional area (A)= = m 2 Difference in elevation (H) = 20m Length of siphon (L) = 800m Height of summit above water level in the upper reservoir (h) = 5m Pressure head at summit (P B / ) = 2.7 m of water absolute Atmospheric pressure head= 10.3m of water absolute f = 0.016

39 V A = V C = 0 V B = V= Velocity of flow Length of inlet leg (l) =? Applying Bernoulli's equation between two points A and C (neglecting minor losses and working in terms of absolute pressure) V = 2.48 m/s B h A H C Z a Z b Datum Applying Bernoulli's equation between the point A and summit B (expressing Pressure values in terms of absolute pressure and neglecting minor losses)

40 l =87.2m 10. A siphon of diameter 200mm connects two reservoirs having a difference in elevation of 40m. The total length of the pipe is 6000m. The pipe crosses ridge. The summit of the ridge is 7m above the level of the water in the upper reservoir. Find the minimum depth of pipe below the summit of the ridge, if the absolute pressure head at the summit of the siphon is not to fall below 2.7m of water. Take f = 0.03 and atmospheric pressure head =10.3 m of water. The length of siphon from the upper reservoir to the summit is 500m. Find the discharge also.neglect minor losses. Diameter of siphon (D) = 200mm = 0.2m Cross-sectional area (A)= = m 2 Difference in elevation (H) = 40m Length of siphon (L) = 6000m Height of summit of the ridge above water level in the upper reservoir = 7m Pressure head at summit (P b / ) = 2.7 m of water absolute Atmospheric pressure head= 10.3m of water absolute f = 0.03 Length of inlet leg (l) = 500m V A = V C = 0 V B = V= Velocity of flow Depth of pipe below the summit of the ridge (x) =? Applying Bernoulli's equation between two points A and C(expressing Pressure values in terms of absolute pressure and neglecting minor losses) Applying Bernoulli's equation between two points A and C (neglecting minor losses and working in terms of absolute pressure)

41 V = 0.933m/s Q = AV = x0.933 = 0.03 m 3 /s x B 7m A H C Z a Z b Datum Applying Bernoulli's equation between the point A and summit B (expressing Pressure values in terms of absolute pressure and neglecting minor losses)

42 x = 2.77m 11. Water from a main canal is siphoned to a branch canal over an embankment by means of a wrought iron pipe of 100mm diameter. The length of the pipeline up to the summit is 30m and the total length is 90m. Water surface elevation in the branch canal is 10m below that of main canal. Take f = and consider all losses. a) If the total quantity of water required to be conveyed is 0.05m 3 /s, how many pipelines are needed? b) What is the maximum permissible height of the summit above the water level in the main canal so that the water pressure at the summit may not fall below 20 Kpa absolute, the barometer reading being 10m of water? Diameter of siphon (D) = 100mm = 0.1m Cross-sectional area (A)= = m 2 Difference in elevation (H) = 10m Length of siphon (L) = 90m Length of inlet leg (l) = 30m f = V A = V C = 0 V B = V= Velocity of flow a) no. of pipelines for discharge of 0.05m 3 /s =? Applying Bernoulli's equation between two points A and C (working in terms of absolute pressure) V = 2.86 m/s Q = AV = x2.86 = m 3 /s Discharge through a 100mm diameter pipe = m 3 /s no. of pipelines for discharge of 0.05m 3 /s = 0.05/ = 3

43 B h A H C Z a Z b Datum b) Atmospheric pressure = 10.0 m of water absolute Pressure at summit = 20 KPa of water absolute Pressure head at summit(p b / )= 20x10 3 /9810 =2.04m of water absolute Maximum permissible height of the summit above the water level(h) =? Applying Bernoulli's equation between the point A and summit B (expressing Pressure values in terms of absolute pressure) h = 4.2m

44 12. The siphon pipe of diameter 200mm shown in the fig. below discharges 120 l/s of water to the atmosphere. Find the total loss of head from point A to C in terms of the velocity head V 2 /2g. Find also the pressure head at B if the total loss of head from A to B is two-thirds of the total loss of head. B 2m A Water 1.5m C Diameter of siphon (D) = 200mm = 0.2m Cross-sectional area (A)= = m 2 Discharge (Q) = 120lps = 0.12 m 3 /s V a = 0 V b = V c = V= Velocity of flow Head loss between A to C (hl AC ) =? Pressure at B (P B )=? Head loss between A to B Velocity of water (V) = Q/A = 0.12/ = 3.82m/s Applying Bernoulli's equation between two points A and C (neglecting minor losses and working in terms of absolute pressure)

45 k = = = 0.756m Head loss between A to B = = 0.504m Applying Bernoulli's equation between two points A and B (neglecting minor losses and working in terms of absolute pressure) =7.05m (abs) (-3.25m gauge) 13. A siphon pipe 75mm in diameter discharges oil of sp gr 0.84 from a reservoir into air as shown in the fig. The total loss of head from point 1 to 2 is 2V 2 /2g and from 2 to 3 is 3V 2 /2g where V is the velocity of oil in the pipe. Find the rate of flow in the siphon pipe and the absolute pressure at point 2. Take atmospheric pressure = 101Kpa m 1 3.5m Water 3 Diameter of siphon (D) = 75mm = 0.075m

46 Cross-sectional area (A)= = m 2 sp gr of oil = 0.84 Sp wt of oil = 0.84x9810 = N/m 3 Head loss between 1 to 2 Head loss between 2 to 3 Total head loss between 1 and 3 (hl) = Atmospheric pressure (P atom ) =101Kpa P 1 = P 3 = P atm Discharge (Q) =? Absolute pressure at 2 (P 2 ) =? V 1 = 0, V 2 = V 3 = V = Velocity of flow Applying Bernoulli's equation between two points 1 and 3 (neglecting minor losses and working in terms of absolute pressure) V = 2.55 m/s Q = AV = x2.55 = m 3 /s = 0.663m Applying Bernoulli's equation between two points 1 and 2 (neglecting minor losses and working in terms of absolute pressure) P 2 = 80445Pa 14. Water is siphoned out of a tank by means of a bent pipe ACB 24m long and 25mm in diameter. A is below the water surface and 150mm above the base of the tank. AC is vertical and 9m long and CB is 15m long with discharge end B 1.5m below the base of the tank. If the atmospheric pressure head is 10.2m of water and the siphon action of C ceases when the absolute pressure is 1.8m of water, find the limiting velocity of water in the pipe and the depth of water in the tank when the siphon action ceases. Take f =

47 C D Water h A 0.15m 1.5m B Diameter of siphon (D) = 25mm = 0.025m Cross-sectional area (A) = = m 2 Length ACB (L) = 24m length AC (l) = 9m Atmospheric pressure = 10.2m of water Absolute pressure at C = 1.8m of water Velocity (V) =? Depth of water in tank (h+0.15) =? Applying Bernoulli s equation between D and B (Taking datum through point B and working in terms of absolute pressure) (a)

48 Applying Bernoulli s equation between D and C (Taking datum through point B and working in terms of absolute pressure) (b) Solving a and b V = 1.5 m/s h = 1.78m Depth of water in the tank = = 1.93m 15. An overhead tank of 5mx10m cross-section in a village is used to supply water to another village across a hill. For the configuration shown in the figure below, calculate the discharge conveyed. Is there an upper limit on the discharge conveyed by the pipe? Given length AT = 2km and TB = 1km. 1 EGL HGL T 20m A d = 10cm l = 3km f = m B Applying Bernoulli's equation between two points 1 (water surface of tank) and B (working in terms of absolute pressure)

49 = m 3 /s V = 0.66 m/s Theoretically the pressure at summit can be reduced to absolute vacuum. However, practically the pressure can be reduced up to 2.5m of water absolute in order to avoid blockage of flow. Computing the pressure at summit with the velocity computed above Applying Bernoulli's equation between two points 1 (water surface of tank) and T (working in terms of absolute pressure) As pressure at summit is less than 2m, the upper limit of discharge should correspond to 2.5m pressure absolute) at summit. With this pressure, the limiting velocity and corresponding discharge is computed. = m 3 /s V = m/s

50 Tutorial 3 Pipes in series and parallel 1. Three pipes of lengths 800m, 600m and 300m and of diameters 400mm, 300mm and 200mm respectively are connected in series. The ends of the compound pipe are connected to two tanks, whose water surface levels are maintained at a difference of 15m. Take f = Determine the rate of flow (a) neglecting minor losses and (b) considering all losses. c) What will be the diameter of a single pipe of length 1700m and f = 0.02, which replaces three pipes? Length of pipe 1 (L 1 ) = 800m, Diameter of pipe 1 (D 1 ) = 400 mm = 0.4m Length of pipe 2 (L 2 ) = 600m, Diameter of pipe 2 (D 2 ) = 300 mm = 0.3m Length of pipe 3 (L 3 ) = 300m, Diameter of pipe 3 (D 3 ) = 200 mm = 0.2m f= f 1 = f 2 = f 3 = 0.02 Difference of water level (H) = 15m Rate of flow (Q) =? 1 H 2 3 a) Neglecting minor losses A 1, A 2, A 3 = Cross-sectional area of pipe 1, 2 and 3 V 1, V 2, V 3 = Velocity in pipe 1, 2 and 3 From continuity, A 1 V 1 = A 2 V 2 = A 3 V 3 = 1.77V 1

51 = 4V 1 For pipes in series V 1 = m/s Discharge (Q) = A 1 V 1 = = m 3 /s b) Considering all losses where = entry loss, = loss due to sudden contraction between 1 and 2, = loss due to sudden contraction between 2 and 3, and = exit loss V 1 = m/s Discharge (Q) = A 1 V 1 = = m 3 /s c) Length of single pipe (L) =1700m Diameter of equivalent single pipe (D) =? D = m = 266.5mm

52 2. Two pipes of lengths 2500m each and diameters 80cm and 60cm respectively, are connected in parallel. If the total flow is 250 lps, find the rate of flow in each pipe.take f = Length of pipe 1 (L 1 ) = 2500m, Diameter of pipe 1 (D 1 ) = 80cm = 0.8m Length of pipe 2 (L 2 ) = 2500m, Diameter of pipe 2 (D 2 ) = 60cm = 0.6m Total flow (Q) = 250 lps = 0.25 m 3 /s f = Rate of flow in pipe 1 and 2 (Q 1 and Q 2 ) =? Computing r using = = For parallel pipes h f1 = h f2 Q 1 = 2.05Q 2 (a) Q = Q 1 + Q = Q 1 + Q 2 (b) From a and b Q1= m 3 /s Q2 = m 3 /s 3. A pipe of diameter 300mm and length 1000m connects two reservoirs, having difference of water levels as 15m. Determine the discharge through the pipe. If an additional pipe of diameter 300mm and length 600m is attached to the last 600m length of the existing pipe, find the increase in discharge. Take f = 0.08 and neglect minor losses. a) Length of pipe (L) = 1000m, Diameter of pipe (D) = 300mm = 0.3m Cross- sectional area of pipe (A) = = m 2 Difference in level (H) = 15m f= 0.08 Discharge (Q) =?

53 H Q = m 3 /s b) Length of pipe CD (l1) = 400m Length of pipe DE (l2) = 600m Length of pipe DF (l3) = 600m Diameter of all pipes = D= D1 = D2 = 300mm = 0.3m Increase in discharge =? A C Q 1 D Q 2 H B E Q 3 F Since diameters and lengths of pipes DE and DF are equal, Q 2 = Q 3 Q 1 = Q 2 + Q 3 Q 2 = Q 1 /2 V 1 = Q 1 /A 1 = Q 1 / = 14.14Q 1 V 2 =Q 2 /A 2 = Q 2 / = 14.14Q 2 =14.14Q 1 /2=7.07Q 2 Applying Bernoulli s equation between A and B, taking flow through CDF Q 1 = m 3 /s

54 Increase in discharge = Q 1 -Q = = m 3 /s 4. Two sharp ended pipes of diameters 60mm and 100mm respectively, each of length 100m are connected in parallel between two reservoirs which have a difference of level of 20m. If f= 0.32 for each pipe, calculate the rate of flow for each pipe and also the diameter of single pipe 150m long which would give the same discharge if it were substituted for the original two pipes. Length of pipe 1 (L 1 ) = 100m, Diameter of pipe 1 (D 1 ) = 60mm = 0.06m Length of pipe 2 (L 2 ) = 100m, Diameter of pipe 2 (D 2 ) = 100mm = 0.1m Difference in reservoir level (H)= 20m f= H 2 a) Rate of flow (Q 1 and Q 2 ) =? Computing r using = = For parallel pipes H= h f1 =h f2 Q 1 = m 3 /s = 2.42 lps Q 1 = m 3 /s = 9 lps b) Discharge through single pipe (Q) = Q 1 + Q 2 = = m 3 /s Length of pipe (L) = 150m

55 H = h f =20m Diameter of single pipe (D) =? D = m = 120 mm 5. Two pipes have a length L each. One of them has diameter D and the other a diameter d. If the pipes are arranged in parallel, the loss of head when a total quantity of water Q flows through them is h. If the pipes are arranged in series and the same quantity Q flows through them, the loss of head is H. If d = D/2, find the ratio of H to h, neglecting minor losses and assuming same f. Length of pipe 1 (L 1 ) = L, Diameter of pipe 1 (D 1 ) = D Length of pipe 2 (L 2 ) = L, Diameter of pipe 1 (D 2 ) = d Loss of head for pipes in parallel = h Loss of head for pipes in series= H d = D/2 a) For parallel pipes, Discharge through main pipe = Q Q 1 and Q 2 = Discharge through parallel pipes h f1 = h f2 = h Q 1 2 parallel (a) (b) Equating above expressions Q 1 = Q 2 Q = Q 1 + Q 2 = Q 2 + Q 2 Q 2 = 0.15Q Q 1 = 0.85Q b) For pipes in series Discharge = Q H = h f1 +h f2 From a and b, (c) and 1 2

56 [ ] Q 1 = 0.85Q and Q 2 = 0.15Q [ ( ] ) H/h = Three pipes of same length L, diameter D and friction factor f are connected in parallel. Determine the diameter of the pipe of length L and friction factor f which will carry the same discharge for the same head loss. 1 Length of pipes 1, 2 and 3 = L 1 = L 2 = L 3 = L Diameter of pipes 1, 2 and 3 = D 1 =D 2 = D 3 = D Friction factor = f r 1 = r 2 = r 3 = r 2 3 For parallel pipes, h f = h f1 = h f2 = h f3 (a) Q = total discharge, Q 1, Q 2, Q 3 = Discharge through pipes 1, 2 and 3 Q = Q 1 + Q 2 + Q 3 h f1 = h f2 = h f3 rq 1 2 = rq 2 2 = rq 3 2 Q 1 = Q 2 = Q 3 Q = 3Q 1 = (b) where V = velocity through each pipe L, d, v For single pipe, discharge = Q, Length = L, diameter = d, velocity =v For single pipe, Q = (c) Equating b and c (d) Head loss in single pipe= (e) Equating a and e

57 (f) From d and f d =1.55D 7. For a town water supply, a main pipeline of diameter 0.3m is required. As pipes more than 0.25m diameter are not readily available, two parallel pipes of same diameter were used for water supply. If the total discharge in the parallel pipes is same as in the single main pipe, find the diameter of the parallel pipes. Assume same f for all pipes. Diameter of main pipe (D) = 0.3m Friction factor = f 1 2 D 1 = Diameter of parallel pipes 1 and 2, L 1 = Length of parallel pipes 1 and 2, V 1 = Velocity in parallel pipes 1 and 2 L= Length of single pipe, V = Velocity in single pipe Loss of head in single pipe = Loss of head in parallel pipes = Equating above expressions (a) For parallel pipes, Q = total discharge, Q 1, Q 2,= Discharge through pipes 1, 2 r 1 = r 2 = r h f1 = h f2 rq 1 2 = rq 2 2 Q 1 = Q 2 Q= Q 1 + Q 2 Q = 2Q 1 = Total flow in single pipe =sum of flow in parallel pipes From a and b (b)

58 D 1 = m = 227mm, say 230 mm Use two pipes of 230 mm diameter. 8. A pipe of diameter 0.4m and of length 2500m is connected to a reservoir at one end. The other end of the pipe is connected to a junction from which two pipes of lengths 1500m and diameters 300mm run in parallel. These parallel pipes are connected to another reservoir, which is having level of water 10m below the water level of the above reservoir. Determine the total discharge if f = Neglect minor losses. Length of pipe CD (l 1 ) = 2500m, Diameter of pipe CD (D 1 ) = 0.4m Length of pipe DE (l 2 ) = 1500m Length of pipe DF (l 3 ) = 1500m Diameter of pipes DE and DF = D 2 = D 2 = 300mm = 0.3m Cross- sectional area of pipe CD (A 1 ) = = m 2 Cross- sectional area of pipe DE and DF (A1 = A2 = = m 2 Difference of reservoir level (H) = 10m f= 0.06 Total discharge (Q) =? A C Q D Q 1 H B E Q 2 F Since diameters and lengths of pipes DE and DF are equal, Q 1 = Q 2 Q = Q 1 + Q 2 Q 1 = Q 2 = Q/2 V = Q/A 1 = Q/ = 7.961Q V 1 =Q 1 /A 1 = Q/(2x0.0707) = 7.07Q = V 2 Applying Bernoulli s equation between A and B, taking flow through CDF

59 Q = m 3 /s 9. For a piezometric head difference (Z A -Z B )=7.5m Determine the discharge in each of the three pipes lines and the total discharge for the following data. Pipe Length (m) Diameter (mm) f A B 3 D 1 = 0.2m, L 1 = 300m, f 1 = 0.02 D 2 = 0.25m, L 2 = 200m, f 2 = D 3 = 0.3m, L 3 = 300m, f 3 = Z A Z B = h f = 7.5m Q 1 =?, Q 2 =?, Q 3 =?, Total Q =? Computing r using = = =153 For parallel pipes, h f1 = h f2 = h f3 = h f

60 Q 1 = m 3 /s Q 2 = m 3 /s Q 2 = m 3 /s Total discharge (Q) = Q 1 + Q 2 + Q 3 = = m 3 /s 10. Three pipes which are laid in parallel have the following details Pipe Length (m) Diameter (mm) f If the discharge through the system is 4.0m 3 /s, determine the discharge distribution in the three pipes and heads. 1 D 1 = 1m, L 1 = 1500m, f 1 = 0.02 D 2 = 0.8m, L 2 = 1200m, f 2 = 0.02 Q Q D 3 = 1.2m, L 3 = 1600m, f 3 = Total discharge (Q) = 4.0m 3 /s Q 1 =?, Q 2 =?, Q 3 =? h f1 =?, h f2 =?, h f3 =?, 3 Computing r using = 2.48 = 6.05 =1.275 For pipes in parallel, Taking first and second

61 Taking second and third From continuity = m 3 /s = 1.56x0.844 = m 3 /s = 2.178x0.844 = m 3 /s h f1 = h f2 = h f3 = 4.31m = 4.31m 11. A flow Q of 800 lps flows through the pipe system. What is the pressure drop between A and B if the elevation of A is 100m and that of B is 200m? Neglect minor losses. Take f = 0.02 for all pipes. The diameter of all pipes is 300mm. Q C 300m A 300m E I II III 500m 500m 500m D 300m B 300m F Q Head loss Discharge through branch I = Q 1 Discharge through branch II = Q 2 Discharge through branch III = Q 3 Head loss through branch I ( )

62 Head loss through branch II Head loss through branch III For parallel connections, ( ) Expressing Q 2 and Q 3 in terms of Q 1 Taking first and second Taking first and third From continuity, = 0.23 m 3 /s = 1.48x0.23 = 0.34 m 3 /s = Q 1 = 0.23 m 3 /s = = 39.3m Applying Bernoulli s equation between A and B through branch II (Neglecting velocity head) = Pa = KPa 12. A pipeline 30m long connects two tanks which have a difference of water level of 12m. The first 10m of pipeline from the upper tank is 0f 40mm diameter and the next 20m is of 60mm diameter. At the change in section, a valve is fitted. Calculate the rate of flow when the valve is fully open assuming that its resistance is negligible and that f for both pipes is In order to restrict the flow, the valve is partially closed. If K for the valve is now 5.6, find the percentage reduction in flow.

63 1 L1 =10m, 40 mm dia. H=12m L2 = 20m, 60 mm dia. 2 f = for both pipes From continuity equation A 1 V 1 = A 2 V 2 Applying Bernoulli s equation between section 1 and 2 H = Total loss a. Neglecting loss due to valve Total loss = entry loss + friction loss in pipe 1+ loss due to sudden expansion + friction loss in pipe 2+exit loss V2 = 2.44 m/s (a) = m 3 /s Considering loss due to valve Total loss = entry loss + friction loss in pipe 1+ loss due to sudden expansion +loss due to valve+ friction loss in pipe 2+exit loss

64 V2 = 1.86 m/s = m 3 /s Percentage reduction inflow = = 23.6% 13. For a head loss of 10m between A and B, determine the flow rate of water in each of the pipes lines, made of Cast Iron. Take kinematic viscosity of water = 1x10-6 m 2 /s. (Use Moody chart to determine f). A L 1 = 300m, D 1 = 30cm L 2 = 250m, D 2 = 20cm 1 2 B D 1 = 0.3m, L 1 = 300m D 2 = 0.2m, L 2 = 250m h f = 10m Q 1 =?, Q 2 =? For parallel pipes, h f1 = h f2 = h f (a) (b) For C.I. pipe roughness height (k) = 0.25mm k/d 1 = , k/d 2 = Trial 1 Assume f 1 = and f 2 = 0.02

65 Q 1 = m 3 /s and Q 2 = m 3 /s = 8.4x10 5 = 5.6x10 5 For Re1 =8.4x10 5, k/d 1 = , f 1 = (from Moody Chart) For Re2 =5.6x10 5, k/d 1 = , f 2 = (from Moody Chart) Trial 2 With f 1 = and f 2 = Q 1 = m 3 /s and Q 2 = m 3 /s = 9x10 5 = 5x10 5 For Re1 =9x10 5, k/d 1 = , f 1 = (from Moody Chart) For Re2 =5x10 5, k/d 1 = , f 2 = (from Moody Chart) As the difference in value of f is negligible, the trial is stopped here. With f 1 = and f 2 = Q 1 = m 3 /s and Q 2 = m 3 /s Simple pipe network 14. A pipe network is shown in figure in which Q and h f represents the discharge and head loss respectively. Determine head losses and discharges indicated by question mark, for this pipe network. Q A = 20 A Q 1 = 30, h f1 = 60 B Q B =? Q 4 =?, h f4 =? Q 5 =?, h f5 =? Q 2 =?, h f2 = 40 C D Q 3 = 40, h f3 = 120 Q D = 100 Q C = 30

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

More information

Hydraulics and hydrology

Hydraulics and hydrology Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

More information

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: 7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

A Model Answer for. Problem Set #7

A Model Answer for. Problem Set #7 A Model Answer for Problem Set #7 Pipe Flow and Applications Problem.1 A pipeline 70 m long connects two reservoirs having a difference in water level of 6.0 m. The pipe rises to a height of 3.0 m above

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

Pipe Flow. Lecture 17

Pipe Flow. Lecture 17 Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

Hydraulic (Piezometric) Grade Lines (HGL) and

Hydraulic (Piezometric) Grade Lines (HGL) and Hydraulic (Piezometric) Grade Lines (HGL) and Energy Grade Lines (EGL) When the energy equation is written between two points it is expresses as in the form of: Each term has a name and all terms have

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Viscous Flow in Ducts

Viscous Flow in Ducts Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take

More information

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a

More information

2 Internal Fluid Flow

2 Internal Fluid Flow Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses). PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:

More information

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University CIVE 401 - HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems with

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

Chapter 3 Water Flow in Pipes

Chapter 3 Water Flow in Pipes The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics - ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF CIVIL ENGINEERING QUESTION BANK III SEMESTER CE 8302 FLUID MECHANICS Regulation 2017 Academic Year 2018 19 Prepared by Mrs.

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

Hydraulics Part: Open Channel Flow

Hydraulics Part: Open Channel Flow Hydraulics Part: Open Channel Flow Tutorial solutions -by Dr. K.N. Dulal Uniform flow 1. Show that discharge through a channel with steady flow is given by where A 1 and A 2 are the sectional areas of

More information

Lesson 37 Transmission Of Air In Air Conditioning Ducts

Lesson 37 Transmission Of Air In Air Conditioning Ducts Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water. Design Manual Chapter - Stormwater D - Storm Sewer Design D- Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm

More information

Mass of fluid leaving per unit time

Mass of fluid leaving per unit time 5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

More information

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey

More information

Chapter 7 FLOW THROUGH PIPES

Chapter 7 FLOW THROUGH PIPES Chapter 7 FLOW THROUGH PIPES 7-1 Friction Losses of Head in Pipes 7-2 Secondary Losses of Head in Pipes 7-3 Flow through Pipe Systems 48 7-1 Friction Losses of Head in Pipes: There are many types of losses

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

More information

Review of pipe flow: Friction & Minor Losses

Review of pipe flow: Friction & Minor Losses ENVE 204 Lecture -1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers

More information

Fluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational

Fluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler

More information

Fluid Mechanics II 3 credit hour. Fluid flow through pipes-minor losses

Fluid Mechanics II 3 credit hour. Fluid flow through pipes-minor losses COURSE NUMBER: ME 323 Fluid Mechanics II 3 credit hour Fluid flow through pipes-minor losses Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Losses in Noncircular

More information

New Website: M P E il Add. Mr. Peterson s Address:

New Website:   M P E il Add. Mr. Peterson s  Address: Brad Peterson, P.E. New Website: http://njut009fall.weebly.com M P E il Add Mr. Peterson s Email Address: bradpeterson@engineer.com If 6 m 3 of oil weighs 47 kn calculate its If 6 m 3 of oil weighs 47

More information

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10 Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes 8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +

PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = + The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into

More information

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh

Chapter 10: Flow Flow in in Conduits Conduits Dr Ali Jawarneh Chater 10: Flow in Conduits By Dr Ali Jawarneh Hashemite University 1 Outline In this chater we will: Analyse the shear stress distribution across a ie section. Discuss and analyse the case of laminar

More information

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

More information

PIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number.

PIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number. PIPING SYSTEMS In this chapter we will review some of the basic concepts associated with piping systems. Topics that will be considered in this chapter are - Pipe and tubing standards - Effective and hydraulic

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons

More information

Water Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:

Water Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations: Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure

More information

1-Reynold s Experiment

1-Reynold s Experiment Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure

More information

An overview of the Hydraulics of Water Distribution Networks

An overview of the Hydraulics of Water Distribution Networks An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline

More information

Tutorial 10. Boundary layer theory

Tutorial 10. Boundary layer theory Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0

More information

Sourabh V. Apte. 308 Rogers Hall

Sourabh V. Apte. 308 Rogers Hall Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody

More information

FLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: Darcy-Weisbach equation for flow in pipes. Major and minor losses in pipe lines.

FLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: Darcy-Weisbach equation for flow in pipes. Major and minor losses in pipe lines. FLUID MECHANICS Dynamics of iscous Fluid Flow in Closed Pipe: Darcy-Weisbach equation for flow in pipes. Major and minor losses in pipe lines. Dr. Mohsin Siddique Assistant Professor Steady Flow Through

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

Atmospheric pressure. 9 ft. 6 ft

Atmospheric pressure. 9 ft. 6 ft Name CEE 4 Final Exam, Aut 00; Answer all questions; 145 points total. Some information that might be helpful is provided below. A Moody diagram is printed on the last page. For water at 0 o C (68 o F):

More information

Consider a control volume in the form of a straight section of a streamtube ABCD.

Consider a control volume in the form of a straight section of a streamtube ABCD. 6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream

More information

Lecture 13 Flow Measurement in Pipes. I. Introduction

Lecture 13 Flow Measurement in Pipes. I. Introduction Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate

More information

Chapter 7 The Energy Equation

Chapter 7 The Energy Equation Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

More information

Exercise sheet 5 (Pipe flow)

Exercise sheet 5 (Pipe flow) Exercise sheet 5 (Pipe flow) last edited June 4, 2018 These lecture notes are based on textbooks by White [13], Çengel & al.[16], and Munson & al.[18]. Except otherwise indicated, we assume that fluids

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE. BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BEng (HONS) IN CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 GROUND AND WATER STUDIES 1 MODULE NO: CIE4009 Date: Saturday 14 January

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

Only if handing in. Name: Student No.: Page 2 of 7

Only if handing in. Name: Student No.: Page 2 of 7 UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 10, 2014 2:00 PM 2.5 HOURS CHE 211F FLUID MECHANICS EXAMINER: PROFESSOR D.G. ALLEN ANSWER ALL SEVEN (7) QUESTIONS

More information

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) No. of Printed Pages : 6 BME-028 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) Term-End Examination December, 2011 00792 BME-028 : FLUID MECHANICS Time : 3 hours

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

Bernoulli and Pipe Flow

Bernoulli and Pipe Flow Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems

More information

FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE

FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE 11 ACPPA TECHNICAL SERIES FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE This paper presents formulas to assist in hydraulic design of concrete pressure pipe. There are many formulas to calculate

More information

EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS

EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS MM 30 FLUID MECHANICS II Prof. Dr. Nuri YÜCEL Yrd. Doç. Dr. Nureddin DİNLER Arş. Gör. Dr. Salih KARAASLAN Arş. Gör. Fatih AKTAŞ EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS A. Objective:

More information

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C. Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface

More information

LOSSES DUE TO PIPE FITTINGS

LOSSES DUE TO PIPE FITTINGS LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall

More information

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,

More information

ρg 998(9.81) LV 50 V. d2g 0.062(9.81)

ρg 998(9.81) LV 50 V. d2g 0.062(9.81) 6.78 In Fig. P6.78 the connecting pipe is commercial steel 6 cm in diameter. Estimate the flow rate, in m 3 /h, if the fluid is water at 0 C. Which way is the flow? Solution: For water, take ρ = 998 kg/m

More information

Hydraulics of pipelines

Hydraulics of pipelines Hydraulics of pipelines K 4 HYAE Hydraulics of pipelines Application of Bernoulli equation BE continuity equation CE g g p h g g p h loss head (losses): friction losses t (in distance L) local losses m

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

Fluid Mechanics Answer Key of Objective & Conventional Questions

Fluid Mechanics Answer Key of Objective & Conventional Questions 019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space

More information

CE FLUID MECHANICS AND MECHINERY UNIT I

CE FLUID MECHANICS AND MECHINERY UNIT I CE 6451- FLUID MECHANICS AND MECHINERY UNIT I 1. Define specific volume of a fluid and write its unit. [N/D-14] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

More information

Major and Minor Losses

Major and Minor Losses Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

More information

Study fluid dynamics. Understanding Bernoulli s Equation.

Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that

More information

PIPING SYSTEMS FOR INDUSTRIAL PLANTS, Part I: Fluid Mechanics, Materials, Piping Systems, Piping Layout

PIPING SYSTEMS FOR INDUSTRIAL PLANTS, Part I: Fluid Mechanics, Materials, Piping Systems, Piping Layout Proyectos Consultoría Formación PIPING SYSTEMS FOR INDUSTRIAL PLANTS, Part I: Fluid Mechanics, Materials, Piping Systems, Piping Layout STUDY NOTES Instructor: Javier Tirenti training@arvengconsulting.com

More information

Reference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical

Reference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical 1 Course materials (References) Textbook: Welty J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G., Fundamentals of Momentum Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.2000 Reference : McCabe,

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information