LOWELL WEEKLY JOURNAL
|
|
- Phoebe Daniella Dorsey
- 3 years ago
- Views:
Transcription
1 Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q Q q - - Q _»»/Q Y )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q ? 7» -? #»»» 7 - / Q - ) X - / ) - - x X - X \ X 33?? / - - X X X / q - _ / Y -» \ - -» Y Q?»» /-» x x 7 \ - X? -» Y x - Y Y 5 7 Y X - X QX / Y Z X Z - 5 X Y - - -?» X ) x Y Y Y - xz Y - Y Y? - Y 9 x x YY [-- )? - - -? ) - /»» x -» - 5 ) - - Y x } x » x \ z ) ) -?
2 \ q z X Y Q x x x q x q?» - Y x q ) -- z q Q Y )? q Z ) - - Y x x q» - - x x x x x - q» ] x x - z x _ Y x- - x - - q z ) - Y # x x- x - x Q - - x x - x q x -z» - x -? ] q - z ) x X q - z - _ q Y -» $ - x x - - z x {» 7 x ) ) z q x Y _ [ x # » / -» ? 5 - Y» Y x Q- q Y - X - ) /» \\? - - Y $ - q- - $ )» -) \ - z Y / - - Y z ? - - z \?- Q - X Y -» q Y )- - Y Y $ q - $??? - Y -» 5 q $ - x - x x» $9 ) -»? - - q - q z - Y - Y 7 ) x» - - x -» - -x - - Y - -x -? - q - - x x - q x - q x q - z x ) x - q x - _? 9 ) -»» x Y - x -? - z X Y Y q - Y Y x $ 39 Y 395 / 75 - x - )/ ? » ) X / - x x x - X q z x x - q ) q x x q X Y Y q x - z x - - q z - -? { z Y - 5) - q -»» x - z x x x x x- - Z - 7)7 x 5 z z x- z x - z - q x Y - - ] \ - q [ - z - - x x - - q [ - - x / - x x - - q z q - x? - ) - x - - x x {? ? - - x z - x z x q z - q x - - z x- z - 3 x / \ x x - x - / \ - ) - - x Q x \ - \ \ x - ) x - / - { ) - x x» x» q - - z _ x x-» - - ) x» x - - ) Y q x » - 5 -? - ) 3 ) 5 x x? ? - q \ - - )) x z x ZZ -z x - Y Y - ) - x -x q Y Y Y Y) Y x 9 x ) 9X) $5 Y 7 Y -- - x q - x x - x q x x - q
3 - Y 7 Y Y Y X z X Y - - x )» - \» -» ) x X -- x - 7 ) \ $7 - Y» X - - Y ) - X \ 3 x - -» ) X Q x » » X x » x 7 ) z Y q Y Y -» q» Y»» x q x Y Y YQ x - $ - Y 53 Y Y? 7-9) Q» Q 3 x - Y z x 3» ) - -» - - Y - $59) -- - $7 Q» Y q» - / x- 7» Y z )) z -? - z - x »» -? x - /- 9 7? ) x z x 7 x \?/ - Q - Z X? - z -? $7 z #» ? 3 -? -» - # Y Y - x 3 3 z x / x -- -x - ) - -q - X - Q q - x / \\- \ \ \ Y» - - Y \ x - ) - - ) Q -» - ] X» 7 - -? 5-7 $3 q x Q - q q q - q 9 -? q 7 ) Q» x x - ) Y?) ] - q - $ X q 3 7 ) -» - ) -» [ [] - - -»»» ) -» q» - - q -» ]» »»»»» -»»»»»»» ) ) X - X- # ) - ) - -»»-» - \»- } ZX - - x» -» - - -»»»» - X )» x X»»»» - [ x -» \ )» - ) Q» --» ) /»- - [3]» [] -» ) -»»» - )» - -x - X 3 - q ---» X x { 7 x / 3 x - - x X - -»» Y # Y x $ - q» - - x X ) x x 3-3 5» z»» ) - ) # 5 7 3»»» - / x - - z ) q 7 3 z x - X x )» - - -»» 7 -»»» 9 3» 7? Q? 3-»»» - Q Y - X X Y -» ] 7» »-» - -» -? -» x q»» - q x - - Y Y» )» - - -x ) - q q 7 7 X\7Z?X3? z z 5 -» Y - x - - \ 3? - // - Y X x q Y
4 z» x - x ) q - - x - - q q x» - z x / - - q q x - $ ) - x q q x - q - z? q? [ Y - x - - -» X ) X - q x q x- x? x q - x q - x Y - x x - x - Y ) x $ x Z - x»» - z x x z x - - x - - x x - - x - - x - ) -_ x _ x ) x z ) x x x x x x» x 39 - ) ) - - -» = Q x / Y ) # x -- z / - - x»» - \\ -- - z \ \ x Y? -- -? » - Y? - X - _ } - - Y?? Y Y? } ) » - - -» » -/ - -- / / $ Z / \ - x - Y x 5 - Y » ) ) » - - X ) ) X - [) / ]»»» ) x ) } Z ) 3 - q - z $ / -) \ --» x - q ) x $ X - - ) -) - $ - / - x { ) - -» ) - \- - x - - X -» $ ) - Q 9 $5 ) - _ ? x Q )) / 9 x x q - - ) - q-)) \ / x x - -» - / -» - - [ _ - q x» -» x q# 9» Y $5 - $5) q z - Y q x x- Y _ ) - - Y z q $5 x q # - $ $359 x $3533 x 7 $ $ $ z $95 - $ 9 5 $ q - $ ) Y X / - x _ Y X - [ -? x - --? - - x 5» - ) Q 3-7?? - - \ - -- x - -# ) q X - x - - -» - { q Y # x X X - x - )» - - ) - / x x - \ z - x - / -» z - x -? - x _ _ - x -? » - } - q - - [ ) Y - - q - - 3» \\ q X» Y X } q _ -» - q / Q Q Q - - x \ ) - ) - x- x»» - \ - \ ) -» -? 3 9 -? z z X - -- x _ - - \» q x } - - -»»- z _ x » q? x q / - - _ ) - 5 -» - x - x 7 - {? )? } - )? q 3 ) Q Q \ / \ x )» X? 7 z» q? -? ) ) x - z - x \ / 5 - [ 3 Y $ Z 7 7 7» -_ -? »» -» » ) 5-5» » x 3 5 5» Y x » \ / -- / / 3 - _ 9 Y Y - X» -)» /// -- ) / - Y Y Q Y -
5 /» Y x _ Y $5 - x» - 7 Y xx x - x /» X { -x -» - -x \){ { » - ) x \ » - -»» -»» Y # - 3 Y Z» X X )» Z QX - Y X Q? Q 3 9 -» 9 x - { - / - q - Q - - X X» q Y $ 5 Q / - $ - / 3 X $» Q - x / {/ x - - Y -») { ) ) ) / X Q 5 $ 7 - Y Y» Y X?» - -»» $» 5 7 ) 9 /- /»/ x / - 7»\\ / - - { ] } Y - X -z 5 7 -x X - x x- x -- X 5 - ZZ » x X - ) Y - q x - 7 X 7 7 Y $ - Y 7 Z X - ) q x x - - -»» - - X \ / / - ) -x x) Y q q q Y ) Y -
' Liberty and Umou Ono and Inseparablo "
3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <
A. H. Hall, 33, 35 &37, Lendoi
7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9
P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.
? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>
Two Posts to Fill On School Board
Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83
Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.
» ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z
II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa
382 4 7 q X
A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
MANY BILLS OF CONCERN TO PUBLIC
- 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -
Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.
- - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-
LOWELL WEEKLY JOURNAL
G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G
oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our
x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2
Q SON,' (ESTABLISHED 1879L
( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0
1871. twadaa t, 30 cta. pat Haa;fe,ttaw Spiritism. From Uis luport of tie vision, and in U e n i e h t i a d i W A C h r f i
V < > X Q x X > >! 5> V3 23 3 - - - : -- { - -- (!! - - - -! :- 4 -- : -- -5--4 X -
OWELL WEEKLY JOURNAL
Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --
LOWELL WEEKI.Y JOURINAL
/ $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»
LOWHLL #WEEKLY JOURNAL.
# F 7 F --) 2 9 Q - Q - - F - x $ 2 F? F \ F q - x q - - - - )< - -? - F - - Q z 2 Q - x -- - - - 3 - % 3 3 - - ) F x - \ - - - - - q - q - - - - -z- < F 7-7- - Q F 2 F - F \x -? - - - - - z - x z F -
W i n t e r r e m e m b e r t h e W O O L L E N S. W rite to the M anageress RIDGE LAUNDRY, ST. H E LE N S. A uction Sale.
> 7? 8 «> ««0? [ -! ««! > - ««>« ------------ - 7 7 7 = - Q9 8 7 ) [ } Q ««
r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.
$ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -
PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >
5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X
LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort
- 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [
a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?
? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (
M E M P H I S, T E N N., S A T U E D A Y, OCTOBER 8, 1870.
5 L V 8 5 x - L : L Q ) L - \ \ Q Q - V 84 z < L L 4 Y z ( (
LOWELL WEEKLY JOURNAL.
Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >
ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday
$ j < < < > XXX Y 928 23 Y Y 4% Y 6 -- Q 5 9 2 5 Z 48 25 )»-- [ Y Y Y & 4 j q - Y & Y 7 - -- - j \ -2 -- j j -2 - - - - [ - - / - ) ) - - / j Y 72 - ) 85 88 - / X - j ) \ 7 9 Y Y 2 3» - ««> Y 2 5 35 Y
LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital.
G GG Y G 9 Y- Y 77 8 Q / x -! -} 77 - - # - - - - 0 G? x? x - - V - x - -? : : - q -8 : : - 8 - q x V - - - )?- X - - 87 X - ::! x - - -- - - x -- - - - )0 0 0 7 - - 0 q - V -
" W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ; " * Jm MVERSEO IT.
P Y V V 9 G G G -PP - P V P- P P G P -- P P P Y Y? P P < PG! P3 ZZ P? P? G X VP P P X G - V G & X V P P P V P» Y & V Q V V Y G G G? Y P P Y P V3»! V G G G G G # G G G - G V- G - +- - G G - G - G - - G
E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk
K q X k K 5 ) ) 5 / K K x x) )? //? q? k X z K 8 5 5? K K K / / $8 ± K K K 8 K / 8 K K X k k X ) k k /» / K / / / k / ] 5 % k / / k k? Z k K ] 8 K K K )» 5 ) # 8 q»)kk q»» )88{ k k k k / k K X 8 8 8 ]
Governor Green Triumphs Over Mudslinging
; XXX 6 928 - x 22 5 Q 0 x 2- Q- & & x 30 - x 93000000 95000000 50 000 x 0:30 7 7 2 x q 9 0 0:30 2;00 7:30 9 ( 9 & ( ( - ( - 225000 x ( ( 800 ) - 70000 200000 - x ; 200-0: 3333 0850; 778: 5-38 090; 002;
LOWELL WEEKLY JOURNAL
W WY R G «( 5 R 5 Y q YG R ««W G WY Y 7 W \(\ 5 R ( W R R W ) W «W W W W< W ) W 53 R R Y 4 RR \ \ ( q ) W W X R R RY \ 73 «\ 2 «W R RG ( «q ) )[ 5 7 G ««R q ] 6 ) X 5 5 x / ( 2 3 4 W «(«\Y W Q RY G G )
i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER
N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X
LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES
? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5
Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI
Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still
Homework 1/Solutions. Graded Exercises
MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both
d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation
) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q
LOWELL WEEKLY JOURNAL.
Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F
County Council Named for Kent
\ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V
Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:
Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a
14 EE 2402 Engineering Mathematics III Solutions to Tutorial 3 1. For n =0; 1; 2; 3; 4; 5 verify that P n (x) is a solution of Legendre's equation wit
EE 0 Engineering Mathematics III Solutions to Tutorial. For n =0; ; ; ; ; verify that P n (x) is a solution of Legendre's equation with ff = n. Solution: Recall the Legendre's equation from your text or
. ^e Traveler in taesnok. i the IHilty.-^ifStiiart. BbUaaoa aad WalL.""ras 'crossing a mountain»h ch w e are A«ply inteiwted. Add
x 8[ x [qqq xq F x & R FX G NR F XN R X ( F R Y
.1 "patedl-righl" timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal,
J 2 X Y J Y 3 : > Y 6? ) Q Y x J Y Y // 6 : : \ x J 2 J Q J Z 3 Y 7 2 > 3 [6 2 : x z (7 :J 7 > J : 7 (J 2 J < ( q / 3 6 q J $3 2 6:J : 3 q 2 6 3 2 2 J > 2 :2 : J J 2 2 J 7 J 7 J \ : q 2 J J Y q x ( ) 3:
LOWELL WEEKLY JOURNAL
: Y J G V $ 5 V V G Y 2 25 Y 2» 5 X # VG q q q 6 6 X J 6 $3 ( 6 2 6 2 6 25 3 2 6 Y q 2 25: JJ JJ < X Q V J J Y J Q V (» Y V X Y? G # V Y J J J G J»Y ) J J / J Y Y X ({ G #? J Y ~» 9? ) < ( J VY Y J G (
MATH 19520/51 Class 5
MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential
A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding
- G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8
Closed-Form Solution Of Absolute Orientation Using Unit Quaternions
Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding
1. A polynomial p(x) in one variable x is an algebraic expression in x of the form
POLYNOMIALS Important Points 1. A polynomial p(x) in one variable x is an algebraic expression in x of the form p(x) = a nx n +a n-1x n-1 + a 2x 2 +a 1x 1 +a 0x 0 where a 0, a 1, a 2 a n are constants
LOWELL WEEKLY JOURNAL
Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G
LOWELL WEEKLY JOURNAL
KY Y 872 K & q $ < 9 2 q 4 8 «7 K K K «> 2 26 8 5 4 4 7»» 2 & K q 4 [«5 «$6 q X «K «8K K88 K 7 ««$25 K Q ««q 8 K K Y & 7K /> Y 8«#»«Y 87 8 Y 4 KY «7««X & Y» K ) K K 5 KK K > K» Y Y 8 «KK > /» >» 8 K X
Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht
G G QQ K K Z z U K z q Z 22 x z - z 97 Z x z j K K 33 G - 72 92 33 3% 98 K 924 4 G G K 2 G x G K 2 z K j x x 2 G Z 22 j K K x q j - K 72 G 43-2 2 G G z G - -G G U q - z q - G x) z q 3 26 7 x Zz - G U-
Unit IV State of stress in Three Dimensions
Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength
IOAN ŞERDEAN, DANIEL SITARU
Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access. TRIGONOMETRIC SUBSTITUTIONS IN PROBLEM SOLVING PART IOAN ŞERDEAN, DANIEL SITARU Abstract.
Exercise 1: Inertia moment of a simple pendulum
Exercise : Inertia moment of a simple pendulum A simple pendulum is represented in Figure. Three reference frames are introduced: R is the fixed/inertial RF, with origin in the rotation center and i along
2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.
Numerical Methods II UNIT.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS.1.1 Runge-Kutta Method of Fourth Order 1. Let = f x,y,z, = gx,y,z be the simultaneous first order
Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt
Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain
Department of mathematics MA201 Mathematics III
Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i
Math512 PDE Homework 2
Math51 PDE Homework October 11, 009 Exercise 1.3. Solve u = xu x +yu y +(u x+y y/ = 0 with initial conditon u(x, 0 = 1 x. Proof. In this case, we have F = xp + yq + (p + q / z = 0 and Γ parameterized as
AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1
AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01
Additional Practice Lessons 2.02 and 2.03
Additional Practice Lessons 2.02 and 2.03 1. There are two numbers n that satisfy the following equations. Find both numbers. a. n(n 1) 306 b. n(n 1) 462 c. (n 1)(n) 182 2. The following function is defined
..«W- tn^zmxmmrrx/- NEW STORE. Popular Goods at Popular D. E. SPRING, Mas just opened a large fdo.k of DRY GOODS & GROCERIES,
B y «X }() z zxx/ X y y y y )3 y «y
HIGHER-ORDER THEORIES
HIGHER-ORDER THEORIES THIRD-ORDER SHEAR DEFORMATION PLATE THEORY LAYERWISE LAMINATE THEORY J.N. Reddy 1 Third-Order Shear Deformation Plate Theory Assumed Displacement Field µ u(x y z t) u 0 (x y t) +
Stress transformation and Mohr s circle for stresses
Stress transformation and Mohr s circle for stresses 1.1 General State of stress Consider a certain body, subjected to external force. The force F is acting on the surface over an area da of the surface.
CHAPTER 2 BOOLEAN ALGEBRA
CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,
Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES
Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES Before going into the demonstration we need to point out two limitations: a. It assumes I=1/2 for
Section 3.5 The Implicit Function Theorem
Section 3.5 The Implicit Function Theorem THEOREM 11 (Special Implicit Function Theorem): Suppose that F : R n+1 R has continuous partial derivatives. Denoting points in R n+1 by (x, z), where x R n and
and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in
5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\
MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso
MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium
1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n
T : 99 9 \ E \ : \ 4 7 8 \ \ \ \ - \ \ T \ \ \ : \ 99 9 T : 99-9 9 E : 4 7 8 / T V 9 \ E \ \ : 4 \ 7 8 / T \ V \ 9 T - w - - V w w - T w w \ T \ \ \ w \ w \ - \ w \ \ w \ \ \ T \ w \ w \ w \ w \ \ w \
GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS
GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why
? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x
PartialsandVectorCalclulus.nb? D D f, x gives the partial derivative f x. D f, x, n gives the multiple derivative n f x n. D f, x, y, differentiates f successively with respect to x, y,. D f, x, x 2, for
L O W Z L L, M Z C B., W S D I T X S D J L T, JT7ITZ 2 6, O n # D o l l a r a T m t. L Cuiiveuiluu. BASEBALL.
# Z Z B X 7Z 6 8 9 0 # F Y BB F x B- B B BV 5 G - V 84 B F x - G 6 x - F - 500000 Bx > -- z : V Y B / «- Q - 4«7 6 890 6 578 0 00 8: B! 0 677 F 574 BB 4 - V 0 B 8 5 5 0 5 Z G F Q 4 50 G B - 5 5-7 B z 7
Basic Equations of Elasticity
A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ
MEMORIAL UNIVERSITY OF NEWFOUNDLAND
MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x
Chapter 2: Heat Conduction Equation
-1 General Relation for Fourier s Law of Heat Conduction - Heat Conduction Equation -3 Boundary Conditions and Initial Conditions -1 General Relation for Fourier s Law of Heat Conduction (1) The rate of
12. Stresses and Strains
12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)
AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.
AE/ME 339 Computational Fluid Dynamics (CFD) 9//005 Topic7_NS_ F0 1 Momentum equation 9//005 Topic7_NS_ F0 1 Consider the moving fluid element model shown in Figure.b Basis is Newton s nd Law which says
Lecture 4: Least Squares (LS) Estimation
ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 4: Least Squares (LS) Estimation Background and general solution Solution in the Gaussian case Properties Example Big picture general least squares estimation:
CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer
CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Monday October 3: Discussion Assignment
DIPOLES III. q const. The voltage produced by such a charge distribution is given by. r r'
DIPOLES III We now consider a particularly important charge configuration a dipole. This consists of two equal but opposite charges separated by a small distance. We define the dipole moment as p lim q
Applications of Eigenvalues & Eigenvectors
Applications of Eigenvalues & Eigenvectors Louie L. Yaw Walla Walla University Engineering Department For Linear Algebra Class November 17, 214 Outline 1 The eigenvalue/eigenvector problem 2 Principal
PARTIAL DERIVATIVES AND THE MULTIVARIABLE CHAIN RULE
PARTIAL DERIVATIVES AND THE MULTIVARIABLE CHAIN RULE ADRIAN PĂCURAR LAST TIME We saw that for a function z = f(x, y) of two variables, we can take the partial derivatives with respect to x or y. For the
M5 Simple Beam Theory (continued)
M5 Simple Beam Theory (continued) Reading: Crandall, Dahl and Lardner 7.-7.6 In the previous lecture we had reached the point of obtaining 5 equations, 5 unknowns by application of equations of elasticity
Lesson 24: Using the Quadratic Formula,
, b ± b 4ac x = a Opening Exercise 1. Examine the two equation below and discuss what is the most efficient way to solve each one. A. 4xx + 5xx + 3 = xx 3xx B. cc 14 = 5cc. Solve each equation with the
AMC Lecture Notes. Justin Stevens. Cybermath Academy
AMC Lecture Notes Justin Stevens Cybermath Academy Contents 1 Systems of Equations 1 1 Systems of Equations 1.1 Substitution Example 1.1. Solve the system below for x and y: x y = 4, 2x + y = 29. Solution.
M E 320 Professor John M. Cimbala Lecture 10
M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT
Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations
Course BA1: Hilary Term 007 Section 8: Quaternions and Rotations David R. Wilkins Copyright c David R. Wilkins 005 Contents 8 Quaternions and Rotations 1 8.1 Quaternions............................ 1 8.
CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer
CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 1 due next Friday at
Unit 13 Review of Simple Beam Theory
MIT - 16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 10-15 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics
Chapter 6: Momentum Analysis
6-1 Introduction 6-2Newton s Law and Conservation of Momentum 6-3 Choosing a Control Volume 6-4 Forces Acting on a Control Volume 6-5Linear Momentum Equation 6-6 Angular Momentum 6-7 The Second Law of
Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1
Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate
2 The Linear Quadratic Regulator (LQR)
2 The Linear Quadratic Regulator (LQR) Problem: Compute a state feedback controller u(t) = Kx(t) that stabilizes the closed loop system and minimizes J := 0 x(t) T Qx(t)+u(t) T Ru(t)dt where x and u are
( ) R kj. = y k y j. y A ( ) z A. y a. z a. Derivatives of the second order electrostatic tensor with respect to the translation of ( ) δ yβ.
Supporting information Derivatives of R with respect to the translation of fragment along the y and z axis: y = y k y j (S1) z ( = z z k j) (S2) Derivatives of S with respect to the translation of fragment
AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT
FLÁIO SILESTRE DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT LECTURE NOTES LAGRANGIAN MECHANICS APPLIED TO RIGID-BODY DYNAMICS IMAGE CREDITS: BOEING FLÁIO SILESTRE Introduction Lagrangian Mechanics shall be
HIGHER-ORDER THEORIES
HIGHER-ORDER THEORIES Third-order Shear Deformation Plate Theory Displacement and strain fields Equations of motion Navier s solution for bending Layerwise Laminate Theory Interlaminar stress and strain
Numerical Implementation of Transformation Optics
ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #16b Numerical Implementation of Transformation Optics Lecture
Chem8028(1314) - Spin Dynamics: Spin Interactions
Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear