Si,InP, InGaP. Downloaded from jiaeee.com at 16: on Tuesday December 4th 2018 GAA. InGaP.

Size: px
Start display at page:

Download "Si,InP, InGaP. Downloaded from jiaeee.com at 16: on Tuesday December 4th 2018 GAA. InGaP."

Transcription

1 P GAA mv/v A Journal of Iranian Association of Electrical and Electronics Engineers Vol.15 No.2 ummer 2018,InP, A mv/dec

2 B1 B2 [ ) A1 P. (A1A2) (B1B2) GAA HfO2 cm3 InP In (In0.3Ga0.7P) Ga Journal of Iranian Association of Electrical and Electronics Engineers Vol.15 No.2 ummer 2018 A2 ITR ] JL ) [ ] ) InP,

3 R 1 1 r im 2 r r meff,r (r,z) r 2 meff,r 1 meff,r (r,z) r 2 2 EV Rim E im Rim meff,r Eim Rim EV T ( E) InP Tr ( )G( )G Journal of Iranian Association of Electrical and Electronics Engineers Vol.15 No.2 ummer 2018 [ ] G I q T ( E )( f ( E h ) f (E )) de f (Eµ) f (Eµ) q h,inp, (A1A2) cm3 cm3 cm3 InP

4 (A1A2) (A1A2),InP cm3 cm3 cm InP (A1A2) cm3 cm3 InP InP cm3 3 Journal of Iranian Association of Electrical and Electronics Engineers Vol.15 No.2 ummer 2018

5 IOFF(A) mv/dec IBL mv/v ION(A) ON/OFF InP InP Journal of Iranian Association of Electrical and Electronics Engineers Vol.15 No.2 ummer 2018 InP InP InP

6 (HCL) (NBTI) [3] [4] [5] [6] [7] [8] [9] [10] K. J. Kuhn, "Considerations for Ultimate CMO caling," IEEE Transactions on Electron evices, vol. 59, pp , ahay and M. J. Kumar, "A Novel GatetackEngineered Nanowire FET for caling to the ub10nm Regime," IEEE Transactions on Electron evices, vol. 63, pp , 2016 T. A. Oproglidis, A. Tsormpatzoglou,. H. Tassis, T. A. Karatsori,. Barraud, G. Ghibaudo, et al., "Analytical rain Current Compact Model in the epletion Operation Region of hortchannel TripleGate Junctionless Transistors," IEEE Transactions on Electron evices, vol. 64, pp. 6672, 2017 P. JongTae and J. P. Colinge, "Multiplegate OI MOFETs: device design guidelines," IEEE Transactions on Electron evices, vol. 49, pp , 20 J.P. Colinge, C.W. Lee, A. Afzalian, N.. Akhavan, R. Yan, I. Ferain, et al., "Nanowire transistors without junctions," Nat Nano, vol. 5, pp , 03//print 2010 R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, etal., "Comparison of Junctionless and Conventional Trigate Transistors With own to 26 nm," IEEE Electron evice Letters, vol. 32, pp , ahay and M. J. Kumar Nanotube Junctionless FET: Proposal, esign, and Investigation," IEEE Transactions on Electron evices, vol. 64, pp , 2017 V. Thirunavukkarasu, Y. R. Jhan, Y. B. Liu, and Y. C. Wu, "Performance of Inversion, Accumulation, and JunctionlessMode ntype and ptype Bulk licon FinFETs With 3nm Gate Length," IEEE Electron evice Letters, vol. 36, pp , 2015 InP,InP, GAA Journal of Iranian Association of Electrical and Electronics Engineers Vol.15 No.2 ummer 2018

7 [11] [13] [14] [15] [16] [17] Journal of Iranian Association of Electrical and Electronics Engineers Vol.15 No.2 ummer 2018 [12]. Migita, Y. Morita, T. Matsukawa, M. Masahara, and H. Ota, "Experimental emonstration of UltrashortChannel (3 nm) Junctionless FETs Utilizing Atomically harp VGrooves on OI," IEEE Transactions on Nanotechnology, vol. 13, pp , 2014 M. H. Han, C. Y. Chang, H. B. Chen, J. J. Wu, Y. C. Cheng, and Y. C. Wu, "Performance Comparison Between Bulk and OI Junctionless Transistors," IEEE Electron evice Letters, vol. 34, pp , 2013 L. Ansari, B. Feldman, G. Fagas, J.P. Colinge, and J. C. Greer, "ubthreshold behavior of junctionless silicon nanowire transistors from atomic scale simulations," olidtate Electronics, vol. 71, pp. 5862, 5// 2012 Y. R. Jhan, V. Thirunavukkarasu, C. P. Wang, and Y. C. Wu, "Performance Evaluation of licon and Germanium Ultrathin Body (1 nm) Junctionless FieldEffect Transistor With Ultrashort Gate Length (1 nm and nm)," IEEE Electron evice Letters, vol. 36, pp , 2015 A. vizhenko, M. P. Anantram, T. R. Govindan, B. Biegel, R. Venugopal, A. J., et al., "Twodimensional quantum mechanical modeling of nanotransistors," Journal of Applied Physics, vol pp , 2002 G. Fiori and G. Iannaccone, "Threeimensional mulation of Oneimensional Transport in licon Nanowire Transistors," IEEE Transactions on Nanotechnology, vol. 6, pp , 2007 M. P. Anantram and A. vizhenko Multidimensional Modeling of Nanotransistors," IEEE Transactions on Electron evices, vol. 54, pp , 2007

Investigation of the Dimension Effects of Sub-30nm Multiple-Gate SOI MOSFETs by TCAD Simulation

Investigation of the Dimension Effects of Sub-30nm Multiple-Gate SOI MOSFETs by TCAD Simulation Microelectronics and olid tate Electronics 212, 1(3): 64-68 OI: 1.5923/j.msse.21224.3 Investigation of the imension Effects of ub-3nm Multiple-ate OI MOFETs by TCA imulation Keng-Ming Liu *, Yung-Yu Hsieh

More information

THE performance of traditional single-gate MOSFETs

THE performance of traditional single-gate MOSFETs 688 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 3, MARCH 2014 Analytical Models for Electric Potential, Threshold Voltage, and Subthreshold Swing of Junctionless Surrounding-Gate Transistors Guangxi

More information

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS 98 CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS In this chapter, the effect of gate electrode work function variation on DC

More information

Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)

Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET) ORIGINAL ARTICLE Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET) Maryam Faraji; Seyed Saleh Ghoreishi * ; Reza Yousefi Department of Electrical

More information

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices Zhiping Yu and Jinyu Zhang Institute of Microelectronics Tsinghua University, Beijing, China yuzhip@tsinghua.edu.cn

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

Part 5: Quantum Effects in MOS Devices

Part 5: Quantum Effects in MOS Devices Quantum Effects Lead to Phenomena such as: Ultra Thin Oxides Observe: High Leakage Currents Through the Oxide - Tunneling Depletion in Poly-Si metal gate capacitance effect Thickness of Inversion Layer

More information

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1162 1166 A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Y. S.

More information

RECENTLY, A junctionless (JL) double-gate (DG) fieldeffect

RECENTLY, A junctionless (JL) double-gate (DG) fieldeffect 39 IEEE TRANSACTIONS ON EECTRON DEVICES, VO. 59, NO. 1, DECEMBER 1 Surface-Potential-Based Drain Current Model for ong-channel Junctionless Double-Gate MOSFETs Zhuojun Chen, Yongguang Xiao, Minghua Tang,

More information

Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions

Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions Kai Tak Lam, Gyungseon Seol and Jing Guo Department of Electrical and Computer Engineering,

More information

Fundamentals of Nanoelectronics: Basic Concepts

Fundamentals of Nanoelectronics: Basic Concepts Fundamentals of Nanoelectronics: Basic Concepts Sławomir Prucnal FWIM Page 1 Introduction Outline Electronics in nanoscale Transport Ohms law Optoelectronic properties of semiconductors Optics in nanoscale

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 9, 019 MOS Transistor Theory, MOS Model Lecture Outline CMOS Process Enhancements Semiconductor Physics Band gaps Field Effects

More information

IBM Research Report. Quantum-Based Simulation Analysis of Scaling in Ultra-Thin Body Device Structures

IBM Research Report. Quantum-Based Simulation Analysis of Scaling in Ultra-Thin Body Device Structures RC23248 (W0406-088) June 16, 2004 Electrical Engineering IBM Research Report Quantum-Based Simulation Analysis of Scaling in Ultra-Thin Body Device Structures Arvind Kumar, Jakub Kedzierski, Steven E.

More information

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis Microsystems Technology Laboratories, MIT 1 presently with Teledyne Scientific 23rd International

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs Cheng-Ying Huang 1, Sanghoon Lee 1, Evan Wilson 3, Pengyu Long 3, Michael Povolotskyi 3, Varistha Chobpattana

More information

Research Article Analyses of Short Channel Effects of Single-Gate and Double-Gate Graphene Nanoribbon Field Effect Transistors

Research Article Analyses of Short Channel Effects of Single-Gate and Double-Gate Graphene Nanoribbon Field Effect Transistors Materials Volume 6, Article ID 84469, 8 pages http://dx.doi.org/.55/6/84469 Research Article Analyses of Short Channel Effects of Single-Gate and Double-Gate Graphene Nanoribbon Field Effect Transistors

More information

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ] DrainCurrent-Id in linearscale(a/um) Id in logscale Journal of Electron Devices, Vol. 18, 2013, pp. 1582-1586 JED [ISSN: 1682-3427 ] SUITABILITY OF HIGH-k GATE DIELECTRICS ON THE DEVICE PERFORMANCE AND

More information

3rd International Conference NANOCON 014 Nanotechnology - Smart Materials, Composites, Applications and New Inventions - Date : 14th, 15th October,

3rd International Conference NANOCON 014 Nanotechnology - Smart Materials, Composites, Applications and New Inventions - Date : 14th, 15th October, insulator of JL transistor and the electrolyte varies with the specific ion activity in the electrolyte causing a shift in threshold voltage and hence the drain current of the device. Currently, research

More information

metal-oxide-semiconductor field-effect tunneling

metal-oxide-semiconductor field-effect tunneling Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon assisted tunneling Siyuranga O. Koswatta,,* Mark S. Lundstrom, and Dmitri E. Nikonov

More information

Role of gradual gate doping engineering in improving phototransistor performance for ultra-low power applications

Role of gradual gate doping engineering in improving phototransistor performance for ultra-low power applications J Comput Electron 016) 15:550 556 DOI 10.1007/s1085-015-0779-9 Role of gradual gate doping engineering in improving phototransistor performance for ultra-low power applications H. Ferhati 1 F. Djeffal

More information

Transport properties and electrical device. characteristics with the TiMeS computational. platform: application in silicon nanowires

Transport properties and electrical device. characteristics with the TiMeS computational. platform: application in silicon nanowires Transport properties and electrical device characteristics with the TiMeS computational platform: application in silicon nanowires D. Sharma 1, L. Ansari 1, B. Feldman 2, M. Iakovidis 1, J. C. Greer 1

More information

A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors

A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors Jing Guo, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering, Purdue University, West Lafayette,

More information

Junctionless ferroelectric field effect transistors based on ultrathin silicon nanomembranes

Junctionless ferroelectric field effect transistors based on ultrathin silicon nanomembranes Cao et al. Nanoscale Research Letters 2014, 9:695 NANO EXPRESS Open Access Junctionless ferroelectric field effect transistors based on ultrathin silicon nanomembranes Ronggen Cao 1, Gaoshan Huang 1, Zengfeng

More information

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures

Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures Evaluation of Electronic Characteristics of Double Gate Graphene Nanoribbon Field Effect Transistor for Wide Range of Temperatures 1 Milad Abtin, 2 Ali Naderi 1 Department of electrical engineering, Masjed

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M.

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M. Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M. Mominuzzaman Department of Electrical and Electronic Engineering, Bangladesh

More information

Non-equilibrium Green's function (NEGF) simulation of metallic carbon nanotubes including vacancy defects

Non-equilibrium Green's function (NEGF) simulation of metallic carbon nanotubes including vacancy defects Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 6-1-2007 Non-equilibrium Green's function (NEGF) simulation of metallic carbon nanotubes including vacancy

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information

Effects of Etching Variations on Ge/Si Channel Formation and Device Performance

Effects of Etching Variations on Ge/Si Channel Formation and Device Performance Chen et al. Nanoscale Research Letters (2018) 13:226 https://doi.org/10.1186/s11671-018-2631-1 NANO EXPRESS Effects of Etching Variations on Ge/Si Channel Formation and Device Performance Jiann-Lin Chen

More information

www.iue.tuwien.ac.at/wigner-wiki/ quantum r rmnh h h E a n = a E b n = b h h h n = 1 n = 1 n = 1 0.53 h h n h cos sin 1 1 N ψ = 1 N! ϕ n1 (x 1 ) ϕ n2 (x 1 ) ϕ nn (x 1 ) ϕ n1 (x 2 ) ϕ n2 (x 2

More information

FIELD EFFECT TRANSISTORS:

FIELD EFFECT TRANSISTORS: Chapter 10 FIEL EFFECT TRANITOR: MOFET The following overview gures describe important issues related to the most important electronic device. NUMBER OF ACTIVE EVICE/CHIP MOORE' LAW Gordon Moore, co-founder

More information

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies.

1. Nanotechnology & nanomaterials -- Functional nanomaterials enabled by nanotechnologies. Novel Nano-Engineered Semiconductors for Possible Photon Sources and Detectors NAI-CHANG YEH Department of Physics, California Institute of Technology 1. Nanotechnology & nanomaterials -- Functional nanomaterials

More information

Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon

Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon www.nmletters.org Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon Jingqi Li 1,, Weisheng Yue 1, Zaibing Guo 1, Yang Yang 1, Xianbin Wang 1, Ahad A. Syed 1, Yafei

More information

Ultra-Scaled InAs HEMTs

Ultra-Scaled InAs HEMTs Performance Analysis of Ultra-Scaled InAs HEMTs Neerav Kharche 1, Gerhard Klimeck 1, Dae-Hyun Kim 2,3, Jesús. A. del Alamo 2, and Mathieu Luisier 1 1 Network for Computational ti Nanotechnology and Birck

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

QUANTUM mechanical effects play an important role in

QUANTUM mechanical effects play an important role in 736 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 62, NO. 3, MARCH 2015 A Reduced-Order Method for Coherent Transport Using Green s Functions Ulrich Hetmaniuk, Dong Ji, Yunqi Zhao, and Manjeri P. Anantram

More information

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects ME 4875/MTE 575 - C16 Introduction to Nanomaterials and Nanotechnology Lecture 2 - Applications of Nanomaterials + Projects 1 Project Teams of 4 students each Literature review of one application of nanotechnology

More information

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2017

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2017 arxiv:7.864v2 [cond-mat.mes-hall] 27 Dec 27 Robust Mode Space Approach for Atomistic Modeling of Realistically Large Nanowire Transistors Jun Z. Huang,, a) Hesameddin Ilatikhameneh, Michael Povolotskyi,

More information

New Model for Drain and Gate Current of Single-Electron Transistor at High Temperature

New Model for Drain and Gate Current of Single-Electron Transistor at High Temperature World Journal of Nano Science and Engineering, 2012, 2, 171-175 http://dx.doi.org/10.4236/wjnse.2012.24022 Published Online ecember 2012 (http://www.scirp.org/journal/wjnse) New Model for rain and ate

More information

Capacitance-Voltage characteristics of nanowire trigate MOSFET considering wave functionpenetration

Capacitance-Voltage characteristics of nanowire trigate MOSFET considering wave functionpenetration Global Journal of researches in engineering Electrical and electronics engineering Volume 12 Issue 2 Version 1.0 February 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher:

More information

Performance Comparisons of III-V and strained-si in Planar FETs and Non-planar FinFETs at Ultrashort Gate Length (12nm)

Performance Comparisons of III-V and strained-si in Planar FETs and Non-planar FinFETs at Ultrashort Gate Length (12nm) Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 4-212 Performance Comparisons of III-V and strained-si in Planar and Non-planar Fin at Ultrashort Gate Length (12nm)

More information

A Verilog-A Compact Model for Negative Capacitance FET

A Verilog-A Compact Model for Negative Capacitance FET A Verilog-A Compact Model for Negative Capacitance FET Version.. Muhammad Abdul Wahab and Muhammad Ashraful Alam Purdue University West Lafayette, IN 4797 Last Updated: Oct 2, 25 Table of Contents. Introduction...

More information

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Sou-Chi Chang, Rouhollah M. Iraei Vachan Kumar, Ahmet Ceyhan and Azad Naeemi School of Electrical & Computer Engineering Georgia Institute

More information

Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits

Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits NANO LETTERS 2007 Vol. 7, No. 12 3603-3607 Zhiyong Zhang, Xuelei Liang,*, Sheng Wang, Kun Yao, Youfan Hu, Yuzhen Zhu,

More information

Characteristics Optimization of Sub-10 nm Double Gate Transistors

Characteristics Optimization of Sub-10 nm Double Gate Transistors Characteristics Optimization of Sub-10 nm Double Gate Transistors YIMING LI 1,,*, JAM-WEM Lee 1, and HONG-MU CHOU 3 1 Departmenet of Nano Device Technology, National Nano Device Laboratories Microelectronics

More information

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices?

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices? EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by

More information

SINCE MOSFETs are downscaling into nanometer regime,

SINCE MOSFETs are downscaling into nanometer regime, 3676 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 11, NOVEMBER 013 Investigations on Line-Edge Roughness (LER) and Line-Width Roughness (LWR) in Nanoscale CMOS Technology: Part II Experimental Results

More information

Simulating quantum transport in nanoscale MOSFETs: Ballistic hole transport, subband engineering and boundary conditions

Simulating quantum transport in nanoscale MOSFETs: Ballistic hole transport, subband engineering and boundary conditions Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 9-1-2003 Simulating quantum transport in nanoscale MOSFETs: Ballistic hole transport, subband engineering and

More information

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler Directions for simulation of beyond-cmos devices Dmitri Nikonov, George Bourianoff, Mark Stettler Outline Challenges and responses in nanoelectronic simulation Limits for electronic devices and motivation

More information

This is the author s final accepted version.

This is the author s final accepted version. Al-Ameri, T., Georgiev, V.P., Adamu-Lema, F. and Asenov, A. (2017) Does a Nanowire Transistor Follow the Golden Ratio? A 2D Poisson- Schrödinger/3D Monte Carlo Simulation Study. In: 2017 International

More information

Lecture 6: 2D FET Electrostatics

Lecture 6: 2D FET Electrostatics Lecture 6: 2D FET Electrostatics 2016-02-01 Lecture 6, High Speed Devices 2014 1 Lecture 6: III-V FET DC I - MESFETs Reading Guide: Liu: 323-337 (he mainly focuses on the single heterostructure FET) Jena:

More information

Electrostatics of Nanowire Transistors

Electrostatics of Nanowire Transistors Electrostatics of Nanowire Transistors Jing Guo, Jing Wang, Eric Polizzi, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering Purdue University, West Lafayette, IN, 47907 ABSTRACTS

More information

Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University

Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University Beyond Si: Opportunities and Challenges for CMOS Technology Based on High-Mobility Channel Materials T.P. Ma Yale University Acknowledgments: Abigail Lubow, Xiao Sun, Shufeng Ren Switching Speed of CMOS

More information

Graphene devices and integration: A primer on challenges

Graphene devices and integration: A primer on challenges Graphene devices and integration: A primer on challenges Archana Venugopal (TI) 8 Nov 2016 Acknowledgments: Luigi Colombo (TI) UT Dallas and UT Austin 1 Outline Where we are Issues o Contact resistance

More information

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section Announcements EE0 - Fall 00 Microelectronic evices and Circuits ecture 7 Homework, due today Homework due net week ab this week Reading: Chapter MO Transistor ecture Material ast lecture iode currents

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Quantum-size effects in sub-10 nm fin width InGaAs finfets

Quantum-size effects in sub-10 nm fin width InGaAs finfets Quantum-size effects in sub-10 nm fin width InGaAs finfets Alon Vardi, Xin Zhao, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 9, 2015 Sponsors: DTRA NSF (E3S STC) Northrop

More information

Manufacture of Nanostructures for Power Electronics Applications

Manufacture of Nanostructures for Power Electronics Applications Manufacture of Nanostructures for Power Electronics Applications Brian Hunt and Jon Lai Etamota Corporation 2672 E. Walnut St. Pasadena, CA 91107 APEC, Palm Springs Feb. 23rd, 2010 1 Background Outline

More information

Simple Theory of the Ballistic Nanotransistor

Simple Theory of the Ballistic Nanotransistor Simple Theory of the Ballistic Nanotransistor Mark Lundstrom Purdue University Network for Computational Nanoechnology outline I) Traditional MOS theory II) A bottom-up approach III) The ballistic nanotransistor

More information

On the Validity of the Parabolic Effective-Mass Approximation for the I-V Calculation of Silicon Nanowire Transistors

On the Validity of the Parabolic Effective-Mass Approximation for the I-V Calculation of Silicon Nanowire Transistors Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 7-1-2005 On the Validity of the Parabolic Effective-Mass Approximation for the I-V Calculation of Silicon Nanowire

More information

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

Available online at   ScienceDirect. Procedia Materials Science 11 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 11 (2015 ) 287 292 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15 Tunneling

More information

SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT

SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 7, July 2018, pp. 345 353, Article ID: IJMET_09_07_039 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=7

More information

CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 MAIN RESEARCH INTERESTS EDUCATION

CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 MAIN RESEARCH INTERESTS EDUCATION CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 Postdoctoral Research Associate Center for Low Energy Systems Technology (LEAST), Department of Electrical Engineering University of Notre Dame, B20

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Top Gate Planner Carbon Nanotube Field Effect Transistor using Nanohub

Top Gate Planner Carbon Nanotube Field Effect Transistor using Nanohub Top Gate Planner Carbon Nanotube Field Effect Transistor using Nanohub G. K. Pandey 1, U.N. Tripathi 2, Manish Mishra 3 1,3 Department of Electronics, DDU Gorakhpur University, Gorakhpur -273009, India.

More information

Ground plane fin-shaped field effect transistor (GP- FinFET): A FinFET for low leakage power circuits

Ground plane fin-shaped field effect transistor (GP- FinFET): A FinFET for low leakage power circuits Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 7-2012 Ground plane fin-shaped field effect transistor (GP- FinFET): A FinFET for low leakage power circuits Mehdi

More information

Novel Back-Biased UTBB Lateral SCR for FDSOI ESD Protections

Novel Back-Biased UTBB Lateral SCR for FDSOI ESD Protections Novel Back-Biased UTBB Lateral SCR for FDSOI ESD Protections Yohann Solaro 1,2,3, Pascal Fonteneau 1, Charles-Alexandre Legrand 1 Claire Fenouillet-Beranger 1,3, Philippe Ferrari 2, Sorin Cristoloveanu

More information

566 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 12, NO. 4, JULY 2013

566 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 12, NO. 4, JULY 2013 566 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 12, NO. 4, JULY 2013 RF Performance Limits and Operating Physics Arising From the Lack of a Bandgap in Graphene Transistors Kyle D. Holland, Student Member,

More information

A Ferroelectric Semiconductor Field-Effect Transistor

A Ferroelectric Semiconductor Field-Effect Transistor A Ferroelectric Semiconductor Field-Effect Transistor Mengwei Si 1,4, Shengjie Gao 2,4, Gang Qiu 1,4, Jingkai Qin 1,4, Yuqin Duan 1,4, Jie Jian 3, Haiyan Wang 3, Wenzhuo Wu 2,4 and Peide D. Ye 1,4, * 1

More information

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel Bhadrinarayana L V 17 th July 2008 Microelectronics Lab, Indian

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

A QUANTITATIVE MODEL FOR QUANTUM TRANSPORT IN NANO-TRANSISTORS

A QUANTITATIVE MODEL FOR QUANTUM TRANSPORT IN NANO-TRANSISTORS NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2013, 4 (6), P. 800 809 A QUANTITATIVE MODEL FOR QUANTUM TRANSPORT IN NANO-TRANSISTORS U. Wulf 1, M. Krahlisch 1, J. Kučera 2, H. Richter 1, J. Höntschel 3

More information

Two-Dimensional Quantum-Mechanical Modeling for Strained Silicon Channel of Double-Gate MOSFET

Two-Dimensional Quantum-Mechanical Modeling for Strained Silicon Channel of Double-Gate MOSFET Journal of the Korean Physical Society, Vol. 45, December 2004, pp. S909 S913 Two-Dimensional Quantum-Mechanical Modeling for Strained Silicon Channel of Double-Gate MOSFET Kidong Kim, Ohseob Kwon, Jihyun

More information

High Dielectric Constant (k) Materials

High Dielectric Constant (k) Materials Part 6: High Dielectric Constant (k), Gate Electrode, & Channel Materials O 2 gate ide is approaching physical limits Thickness & Current M O S poly-crystalline V Source W Source Contact Insulator n +

More information

First-principles study of spin-dependent transport through graphene/bnc/graphene structure

First-principles study of spin-dependent transport through graphene/bnc/graphene structure Ota and Ono Nanoscale Research Letters 2013, 8:199 NANO EXPRESS Open Access First-principles study of spin-dependent transport through graphene/bnc/graphene structure Tadashi Ota and Tomoya Ono * Abstract

More information

Kobe University Repository : Kernel

Kobe University Repository : Kernel Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI URL A quantum-corrected Monte Carlo study on quasiballistic

More information

TUNNEL FIELD-EFFECT TRANSISTORS (TFETs) are

TUNNEL FIELD-EFFECT TRANSISTORS (TFETs) are 902 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 4, APRIL 2012 Scaling Length Theory of Double-Gate Interband Tunnel Field-Effect Transistors Lu Liu, Student Member, IEEE, Dheeraj Mohata, Student

More information

Sub-Boltzmann Transistors with Piezoelectric Gate Barriers

Sub-Boltzmann Transistors with Piezoelectric Gate Barriers Sub-Boltzmann Transistors with Piezoelectric Gate Barriers Raj Jana, Gregory Snider, Debdeep Jena Electrical Engineering University of Notre Dame 29 Oct, 2013 rjana1@nd.edu Raj Jana, E3S 2013, Berkeley

More information

Semi-analytical model for Schottky-barrier carbon nanotube and graphene nanoribbon transistors

Semi-analytical model for Schottky-barrier carbon nanotube and graphene nanoribbon transistors Semi-analytical model for Schottky-barrier carbon nanotube and graphene nanoribbon transistors Xuebei Yang, Gianluca Fiori, Giuseppe Iannaccone, and Kartik Mohanram Department of Electrical and Computer

More information

Quantum Dots: Artificial Atoms & Molecules in the Solid-State

Quantum Dots: Artificial Atoms & Molecules in the Solid-State Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, UC Berkeley, Univ. of Illinois, UTEP Quantum Dots: Artificial Atoms & Molecules in the Solid-State Network for Computational

More information

Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors

Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors David Jiménez Departament d'enginyeria Electrònica, Escola d'enginyeria, Universitat Autònoma de Barcelona,

More information

Achieving a higher performance in bilayer graphene FET Strain Engineering

Achieving a higher performance in bilayer graphene FET Strain Engineering SISPAD 2015, September 9-11, 2015, Washington, DC, USA Achieving a higher performance in bilayer graphene FET Strain Engineering Fan W. Chen, Hesameddin Ilatikhameneh, Gerhard Klimeck and Rajib Rahman

More information

Development Software of Al-SiO 2 -Si MOS IV Characterization in Accumulation Case

Development Software of Al-SiO 2 -Si MOS IV Characterization in Accumulation Case Applied Physics Research; Vol. 7, No. ; 015 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Development Software of -SiO -Si MOS IV Characteriation in Accumulation

More information

AS MOSFETS reach nanometer dimensions, power consumption

AS MOSFETS reach nanometer dimensions, power consumption 1 Analytical Model for a Tunnel Field-Effect Transistor Abstract The tunnel field-effect transistor (TFET) is a promising candidate for the succession of the MOSFET at nanometer dimensions. Due to the

More information

Nanomaterials for breakthrough innovations

Nanomaterials for breakthrough innovations Nanomaterials for breakthrough innovations G. Fiori Dipartimento di Ingegneria dell Informazione, University of Pisa Via Caruso 16, 56122, Pisa, Italy. gfiori@mercurio.iet.unipi.it http://gianlucafiori.org

More information

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn ) The Inverted MO Capacitor (V > V Tn ) We consider the surface potential as Þxed (ÒpinnedÓ) at φ s,max = - φ p φ(x).5 V. V V ox Charge torage in the MO tructure Three regions of operation: Accumulation:

More information

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis. June 26, 2004 oal of this chapter Chapter 2 MO Transistor Theory oonchuay upmonchai Integrated esign Application Research (IAR) Laboratory June 16th, 2004; Revised June 16th, 2005 q Present intuitive understanding

More information

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI Title GaAs and InGaAs Single Electron Hex Circuits Based on Binary Decision D Author(s) Kasai, Seiya; Hasegawa, Hideki Citation Physica E: Low-dimensional Systems 3(2-4): 925-929 Issue Date 2002-03 DOI

More information

A Multi-Gate CMOS Compact Model BSIMMG

A Multi-Gate CMOS Compact Model BSIMMG A Multi-Gate CMOS Compact Model BSIMMG Darsen Lu, Sriramkumar Venugopalan, Tanvir Morshed, Yogesh Singh Chauhan, Chung-Hsun Lin, Mohan Dunga, Ali Niknejad and Chenming Hu University of California, Berkeley

More information

Computational Model of Edge Effects in Graphene Nanoribbon Transistors

Computational Model of Edge Effects in Graphene Nanoribbon Transistors Nano Res (2008) 1: 395 402 DOI 10.1007/s12274-008-8039-y Research Article 00395 Computational Model of Edge Effects in Graphene Nanoribbon Transistors Pei Zhao 1, Mihir Choudhury 2, Kartik Mohanram 2,

More information

Analysis of the Features of Hot-Carrier Degradation in FinFETs

Analysis of the Features of Hot-Carrier Degradation in FinFETs ISSN 1063-7826, Semiconductors, 2018, Vol. 52, No. 10, pp. 1298 1302. Pleiades Publishing, Ltd., 2018. Original Russian Text A.A. Makarov, S.E. Tyaginov, B. Kaczer, M. Jech, A. Chasin, A. Grill, G. Hellings,

More information

Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET

Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET Variability-Aware Compact Model Strategy for 20-nm Bulk MOSFET X. Wang 1, D. Reid 2, L. Wang 1, A. Burenkov 3, C. Millar 2, B. Cheng 2, A. Lange 4, J. Lorenz 3, E. Baer 3, A. Asenov 1,2! 1 Device Modelling

More information

Projected Performance Advantage of Multilayer Graphene Nanoribbon as Transistor Channel Material

Projected Performance Advantage of Multilayer Graphene Nanoribbon as Transistor Channel Material Projected Performance Advantage of Multilayer Graphene Nanoribbon as Transistor Channel Material Yijian Ouyang 1, Hongjie Dai 2, and Jing Guo 1 1 Department of Electrical and Computer Engineering, University

More information

Atomic basis sets for first-principle studies of Si nanowires. Electronics Theory group Tyndall National Institute, University College Cork

Atomic basis sets for first-principle studies of Si nanowires. Electronics Theory group Tyndall National Institute, University College Cork Atomic basis sets for first-principle studies of Si nanowires Dimpy Sharma, Hadi Hassanian Arefi, Lida Ansari, Giorgos Fagas Electronics Theory group Tyndall National Institute, University College Cork

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Novel metallic field-effect transistors. Ivan P. Krotnev

Novel metallic field-effect transistors. Ivan P. Krotnev Novel metallic field-effect transistors by Ivan P. Krotnev A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Electrical and Computer

More information

Ryan Hatcher and Chris Bowen. Samsung Advanced Logic Lab, Samsung Blvd Austin, Tx 78754

Ryan Hatcher and Chris Bowen. Samsung Advanced Logic Lab, Samsung Blvd Austin, Tx 78754 A comparison of the carrier density at the surface of quantum wells for different crystal orientations of silicon, gallium arsenide and indium arsenide Ryan Hatcher and Chris Bowen Samsung Advanced Logic

More information