3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices?

Size: px
Start display at page:

Download "3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices?"

Transcription

1 EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by Prof. Lu (Sept. 12) EECS 498/598: Nanocircuits and Nanoarchitectures Instructor: Prof. Pinaki Mazumder Tuesday and 3:00 4:30 p.m. Lecture 1: Introduction to Nanoelectronics Lecture 4: Overview of Photonics Device; Guest Lecture by Prof. Ku (Sept. 14) Lectures 5: Quantum Device Modeling for Nano-CAD (Sept 19) Lectures 6-8: RTD-Based Digital Circuit Design (Sept 21, 26, 28) Lectures 9-12: Class Presentations (ITRS) (Sept. 30, Oct. 3, Oct. 5, Oct. 10) Lecture 13: Cellular Nonlinear Network Nanoarchitectures (Oct 12) Lecture 14: Quantum-Dot Based Logic and Local Computational Models (Oct 19) Lectures 15 & 16: Molecular Electronics Circuits (Oct 24, Oct 26) Lectures 17-21: Class Presentations (Oct. 31, Nov 2, Nov 7, Nov 9, Nov 14) Lecture 22: Nano Tube/Nano Wire Based Digital Logic Design (Nov 16) Lectures 23 & 24: Quantum Cellular Array Based Logic Circuits (Nov 21, Nov 28) Lectures 25: Miscellaneous Topics like Photonics, Plasmonics, Quantum Computing, etc. (Nov 28) Lectures 26-29: Project Presentations (Dec 1, Dec 5, Dec 7, Dec 12) Lecture #1 How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices? About the Course 1

2 x1 X0.1 Power of 10 A sense of nanoscale x.001 x.01 X1 Courtesy Mark Rattner Definition of Nanotechnology Working at the atomic, molecular, supermolecular levels, in the length scale approximately 1-10 nm range, in order to understand and create materials, devices and systems with fundamentally new properties and functions because of their small structure --- Mike Roco, National Nanotechnology Initiative (NNI). However, Intel prefers the range from nm so that conventional CMOS devices (< 90 nm) are part of Nanoelectronics Evolution. 2

3 Multiple Perspectives of Roadmap for Nanoelectronics Intel Perspective (shrinking driven) Nano-scale CMOS, Nanowire FET, Carbon Nano Tube (CNT) FET Brick Wall Perspective Post CMOS Devices in post-shrinking era Concurrent Advancements (ITRS Roadmap) Evolutionary v. Revolutionary Devices Intel Device Roadmap Intel keeps startling the Nano world by inventing yet smaller CMOS FET s 10,000 times faster than CMOS 3

4 DARPA Si Nanoelectronics Research Vision Cost (uc/device) Silicide, Local interconnect Cu Low k SOI No known solutions -SIA 97 QMOS Delay x Power (fj/device) INTEL Model 1 Feature Size Production Yr. 1 V gs = V gs = 4 V gs = 3 Change of Electronic Transport Mode V gs = 2 V gs = Brick Wall Perspective RTD 1/Size Vertical Gate Structure RTD RTD Single Electronics Molecular Switch Bulk CMOS SOI Brick-wall Model Nanotubes Today Source: TI, Denny Buss, ICECS2001 4

5 CONCURRENT ADVANCEMENTS Evolution of CMOS and Revolutionary Devices Concurrent Model of the Roadmap Intel Tri-gate FET ITRS IBM researchers use a single carbon nanotube bundle (blue) to fashion a logic circuit on a substrate patterned with three gold electrodes (yellow). By selectively removing part of a protective polymer coat (PMMA), the group is able to form the needed p-type and n-type transistors within the single nanotube bundle. 5

6 Outer Barriers Inter-dot Barriers Quantum Cellular Array (QCA) Each cell is occupied by two electrons. There are two ground-state configurations, corresponding to polarizations of +1 and 1. Cell (Square) and Quantum Dot (Circle) Quantum Cellular Array (QCA) Quantum Dots can be configured into various types of logic blocks Like the majority gate, full adder, memory, registers, etc. Majority logic of QCA is used cell 1 cell 2 cell 5 P= -1 Logic 0 P= +1 Logic 1 cell 3 cell 4 Diagram by P. Wu 6

7 7

8 EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by Prof. Lu (Sept. 12) Lecture 4: Overview of Photonics Device; Guest Lecture by Prof. Ku (Sept. 14) Lectures 5: Quantum Device Modeling for Nano-CAD (Sept 19) Lectures 6-8: RTD-Based Digital Circuit Design (Sept 21, 26, 28) Lectures 9-12: Class Presentations (ITRS) (Sept. 30, Oct. 3, Oct. 5, Oct. 10) Lecture 13: Cellular Nonlinear Network Nanoarchitectures (Oct 12) Lecture 14: Quantum-Dot Based Logic and Local Computational Models (Oct 19) Lectures 15 & 16: Molecular Electronics Circuits (Oct 24, Oct 26) Lectures 17-21: Class Presentations (Oct. 31, Nov 2, Nov 7, Nov 9, Nov 14) Lecture 22: Nano Tube/Nano Wire Based Digital Logic Design (Nov 16) Lectures 23 & 24: Quantum Cellular Array Based Logic Circuits (Nov 21, Nov 28) Lectures 25: Miscellaneous Topics like Photonics, Plasmonics, Quantum Computing, etc. (Nov 28) Lectures 26-29: Project Presentations (Dec 1, Dec 5, Dec 7, Dec 12) Evaluation Criteria: 1. In-class presentation (2) 2. Written assignment related to presentation 3. Final project To be discussed Final Report Presentation Grading: Average grade: A- (undergrad) Average grade: A A- (grad) Points Allocation: Two presentations (30%) Two assignments (20%) Final Project (50%) (distribution is subject to change) END OF LECTURE 1 EECS 498/598: Nanocircuits and Nanoarchitectures Instructor: Prof. Pinaki Mazumder Tuesday and 3:00 4:30 p.m. Lecture 2: ITRS Roadmap & Nano Devices 8

9 Nanotechnology Industry Segmentation Hybrid Materials 34% Information Technology 20% ITRS ROADMAP FOR EMERGINE MODELS & TECHNOLOGIES Other 10% Medical/Healthcare 8% Nano MEMS 11% Semiconductor 17% MEMORY ARRAYS LOGIC CIRCUITS ARCHITECTURES RISK & PAYOFF; CHALLENGES & OPPORTUNITIES ITRS 2005 Road Map 9

10 < 30 = (PC*RC) < 40 <50 >50 Performance Criterion (PC): 3 better, Prof. P. 2 Mazumder comparable, 1 worse than CMOS Risk Criterion (RC): 3 Low Risk, 2 Moderate Risk, 1 High Risk < 30 = (PC*RC) < 40 <50 >50 Evaluation Criteria for an Emergent Technology CMOS Architecture Compatibility Scalability Performance CMOS Compatibility RTD & QD Energy Efficiency Fall Performance 2006 Criteria: 3 superior Prof. to, P. 2 Mazumder comparable with, 1 inferior to CMOS Risk Criteria: 3 Low Risk, 2 Moderate Risk, 1 High Risk Room Temperature Operation Operational Reliability 10

11 Evaluation Criteria for an Emergent Technology CMOS Architecture Compatibility Scalability Performance Spin FET CMOS Compatibility RTD & QD Molecular Energy Efficiency CNT Room Temperature Operation Prof. Operational P. Mazumder Reliability SET 11

12 12

13 State 0 State 1 Silicon Nanoelectronics Nano-CMOS (nm) Gate Length Silicon Story GB (2015) 1 1.E Prof. year P. Mazumder Source: IEEE C&D Mag DRAM 1.4 Times/Year Increasing Technology difficulty 1TB1 TB (2023) (2023) Neuron Number in Brain 18 1.E E E E E E E E E E Transistor Number per chip 13

14 Silicon Nanoelectronics Nano-CMOS 100b 10b 1b 100,000 10,000 CPU with Multimedia Capability Number of transistors on a chip in thousands Moore s law prediction processors 1-billion transistors Pentium 1,000 III Xeon Pentium III 4004 Pentium II 8086 Pentium Pro 10 Pentium '70 '75 '80 '85 '90 Prof. '95 P. Mazumder '00 '05 '10 '15 Nanoelectronics and Gigascale Systems Lab. 100-billion transistors Courtesy: P. Wu Nanoarchitectures 14

15 Evaluation Criteria for an Emergent Technology CMOS Architecture Compatibility Scalability Performance Spin FET CMOS Compatibility RTD & QD Molecular Energy Efficiency CNT Room Temperature Operation Prof. Operational P. Mazumder Reliability SET 15

16 Evaluation Criteria for an Emergent Technology Monochromatic Image Processor 1.0 CMOS Architecture Compatibility Scalability Performance V(f m,f n )/I B R 0.5 Spin FET CMOS Compatibility RTD & QD Molecular Energy Efficiency V ( z m, z n ) Z-transform of a QD pair = I R cos 2 f m 2 1 cos 2 f n f n f m CNT Connecting Resistance Defines the Room Temperature Mutual Voltage between a pair of QD s Operation Prof. Operational P. Mazumder Reliability SET Nanoscale Nonlinear Circuit Theory Edge Detection by QDA Gray Binary Conversion 0 ns 2 ns 1 ns Vertical Line Detection (VLD) 0 ns 6 ns Image Processor is being 5 ns fabricated and tested 6 ns under a NIRT project 16

17 17

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler Directions for simulation of beyond-cmos devices Dmitri Nikonov, George Bourianoff, Mark Stettler Outline Challenges and responses in nanoelectronic simulation Limits for electronic devices and motivation

More information

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

RAJASTHAN TECHNICAL UNIVERSITY, KOTA RAJASTHAN TECHNICAL UNIVERSITY, KOTA (Electronics & Communication) Submitted By: LAKSHIKA SOMANI E&C II yr, IV sem. Session: 2007-08 Department of Electronics & Communication Geetanjali Institute of Technical

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Administrative Stuff

Administrative Stuff EE141- Spring 2004 Digital Integrated Circuits Lecture 30 PERSPECTIVES 1 Administrative Stuff Homework 10 posted just for practice. No need to turn in (hw 9 due today). Normal office hours next week. HKN

More information

Implementation of Quantum dot Cellular Automata based Novel Full Adder and Full Subtractor

Implementation of Quantum dot Cellular Automata based Novel Full Adder and Full Subtractor Implementation of Quantum dot Cellular Automata based Novel Full Adder and Full Subtractor Peer Zahoor Ahmad 1, Firdous Ahmad 2, b, Syed Muzaffar Ahmad 3, Dr. Rafiq Ahmad Khan 4 1 Department of Computer

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

Design of A Efficient Hybrid Adder Using Qca

Design of A Efficient Hybrid Adder Using Qca International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 PP30-34 Design of A Efficient Hybrid Adder Using Qca 1, Ravi chander, 2, PMurali Krishna 1, PG Scholar,

More information

DocumentToPDF trial version, to remove this mark, please register this software.

DocumentToPDF trial version, to remove this mark, please register this software. PAPER PRESENTATION ON Carbon Nanotube - Based Nonvolatile Random Access Memory AUTHORS M SIVARAM PRASAD Sivaram.443@gmail.com B N V PAVAN KUMAR pavankumar.bnv@gmail.com 1 Carbon Nanotube- Based Nonvolatile

More information

Challenges for Materials to Support Emerging Research Devices

Challenges for Materials to Support Emerging Research Devices Challenges for Materials to Support Emerging Research Devices C. Michael Garner*, James Hutchby +, George Bourianoff*, and Victor Zhirnov + *Intel Corporation Santa Clara, CA + Semiconductor Research Corporation

More information

Shifting towards Nanoelectronics: A device level overview

Shifting towards Nanoelectronics: A device level overview 467 J. Acad. Indus. Res. Vol. 1(8) January 2013 ISSN: 2278-5213 REVIEW ARTICLE Shifting towards Nanoelectronics: A device level overview T. D. Dongale1, S. K. Magdum2, K. Y. Goilkar2, N. A. Chougule2,

More information

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost!

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost! Two motivations to scale down CMOS Scaling Faster transistors, both digital and analog To pack more functionality per area. Lower the cost! (which makes (some) physical sense) Scale all dimensions and

More information

Moore s Law Forever?

Moore s Law Forever? NCN Nanotechnology 101 Series Moore s Law Forever? Mark Lundstrom Purdue University Network for Computational Nanotechnology West Lafayette, IN USA NCN 1) Background 2) Transistors 3) CMOS 4) Beyond CMOS

More information

Scaling of MOS Circuits. 4. International Technology Roadmap for Semiconductors (ITRS) 6. Scaling factors for device parameters

Scaling of MOS Circuits. 4. International Technology Roadmap for Semiconductors (ITRS) 6. Scaling factors for device parameters 1 Scaling of MOS Circuits CONTENTS 1. What is scaling?. Why scaling? 3. Figure(s) of Merit (FoM) for scaling 4. International Technology Roadmap for Semiconductors (ITRS) 5. Scaling models 6. Scaling factors

More information

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER Research Manuscript Title DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER R.Rathi Devi 1, PG student/ece Department, Vivekanandha College of Engineering for Women rathidevi24@gmail.com

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? Advanced Topics In Solid State Devices EE290B Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? August 28, 2007 Prof. Eli Yablonovitch Electrical Engineering & Computer Sciences

More information

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 Superconductivity Theory, The Cooper Pair Application of Superconductivity Semi-Conductor Nano-technology Graphene 1 Announcements Your presentations

More information

Design of an Optimal Decimal Adder in Quantum Dot Cellular Automata

Design of an Optimal Decimal Adder in Quantum Dot Cellular Automata International Journal of Nanotechnology and Applications ISSN 0973-631X Volume 11, Number 3 (2017), pp. 197-211 Research India Publications http://www.ripublication.com Design of an Optimal Decimal Adder

More information

Lecture 15: Scaling & Economics

Lecture 15: Scaling & Economics Lecture 15: Scaling & Economics Outline Scaling Transistors Interconnect Future Challenges Economics 2 Moore s Law Recall that Moore s Law has been driving CMOS [Moore65] Corollary: clock speeds have improved

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET

Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET 1 Emerging Research Devices: A Study of CNTFET and SET as a replacement for SiMOSFET Mahmoud Lababidi, Krishna Natarajan, Guangyu Sun Abstract Since the development of the Silicon MOSFET, it has been the

More information

Trends in Nanotechnology: Self-Assembly and Defect Tolerance

Trends in Nanotechnology: Self-Assembly and Defect Tolerance Trends in Nanotechnology: Self-Assembly and Defect Tolerance (Invited paper submitted to MSTNEWS 3 January 2001) T. I. Kamins and R. Stanley Williams Quantum Science Research, Hewlett-Packard Laboratories,

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application 2011 11th Non-Volatile Memory Technology Symposium @ Shanghai, China, Nov. 9, 20112 MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application Takahiro Hanyu 1,3, S. Matsunaga 1, D. Suzuki

More information

Chapter 1. Binary Systems 1-1. Outline. ! Introductions. ! Number Base Conversions. ! Binary Arithmetic. ! Binary Codes. ! Binary Elements 1-2

Chapter 1. Binary Systems 1-1. Outline. ! Introductions. ! Number Base Conversions. ! Binary Arithmetic. ! Binary Codes. ! Binary Elements 1-2 Chapter 1 Binary Systems 1-1 Outline! Introductions! Number Base Conversions! Binary Arithmetic! Binary Codes! Binary Elements 1-2 3C Integration 傳輸與介面 IA Connecting 聲音與影像 Consumer Screen Phone Set Top

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

I. INTRODUCTION. CMOS Technology: An Introduction to QCA Technology As an. T. Srinivasa Padmaja, C. M. Sri Priya

I. INTRODUCTION. CMOS Technology: An Introduction to QCA Technology As an. T. Srinivasa Padmaja, C. M. Sri Priya International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 5 ISSN : 2456-3307 Design and Implementation of Carry Look Ahead Adder

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 1: Introduction to Digital Electronics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Textbook

More information

1. Introduction : 1.2 New properties:

1. Introduction : 1.2 New properties: Nanodevices In Electronics Rakesh Kasaraneni(PID : 4672248) Department of Electrical Engineering EEL 5425 Introduction to Nanotechnology Florida International University Abstract : This paper describes

More information

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications D. Tsoukalas, S. Kolliopoulou, P. Dimitrakis, P. Normand Institute of Microelectronics, NCSR Demokritos, Athens, Greece S. Paul,

More information

DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA

DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA International Journal on Intelligent Electronic System, Vol.9 No.2 July 2015 1 DESIGN OF AREA-DELAY EFFICIENT ADDER BASED CIRCUITS IN QUANTUM DOT CELLULAR AUTOMATA Aruna S 1, Senthil Kumar K 2 1 PG scholar

More information

! Chris Diorio. ! Gaetano Borrielo. ! Carl Ebeling. ! Computing is in its infancy

! Chris Diorio. ! Gaetano Borrielo. ! Carl Ebeling. ! Computing is in its infancy Welcome to CSE370 Special Thanks!! Instructor: ruce Hemingway " Ts: ryan Nelson and John Hwang " Tool Specialist: Cory Crawford Lecture Materials:! Chris Diorio! Class web " http://www.cs.washington.edu/education/courses/370/currentqtr/

More information

Neuromorphic architectures: challenges and opportunites in the years to come

Neuromorphic architectures: challenges and opportunites in the years to come Neuromorphic architectures: challenges and opportunites in the years to come Andreas G. Andreou andreou@jhu.edu Electrical and Computer Engineering Center for Language and Speech Processing Johns Hopkins

More information

CMPEN 411 VLSI Digital Circuits Spring 2012

CMPEN 411 VLSI Digital Circuits Spring 2012 CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 09: Resistance & Inverter Dynamic View [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic]

More information

Discussions start next week Labs start in week 3 Homework #1 is due next Friday

Discussions start next week Labs start in week 3 Homework #1 is due next Friday EECS141 1 Discussions start next week Labs start in week 3 Homework #1 is due next Friday Everyone should have an EECS instructional account Use cory, quasar, pulsar EECS141 2 1 CMOS LEAKAGE CHARACTERIZATION

More information

Short column around Transistor. 12/22/2017 JC special topic

Short column around Transistor. 12/22/2017 JC special topic Short column around Transistor 12/22/2017 JC special topic Transistor, FET, CMOS D G S FET Transistor CMOS You can refer, such as, https://www.allaboutcircuits.com/textbook/semiconductors/ Timeline 1925:

More information

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata

Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Serial Parallel Multiplier Design in Quantum-dot Cellular Automata Heumpil Cho and Earl E. Swartzlander, Jr. Application Specific Processor Group Department of Electrical and Computer Engineering The University

More information

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA)

DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA) DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA) Rashmi Chawla 1, Priya Yadav 2 1 Assistant Professor, 2 PG Scholar, Dept of ECE, YMCA University

More information

CHAPTER 11 Semiconductor Theory and Devices

CHAPTER 11 Semiconductor Theory and Devices CHAPTER 11 Semiconductor Theory and Devices 11.1 Band Theory of Solids 11.2 Semiconductor Theory 11.3 Semiconductor Devices 11.4 Nanotechnology It is evident that many years of research by a great many

More information

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

Spintronics.  Seminar report SUBMITTED TO: SUBMITTED BY: A Seminar report On Spintronics Submitted in partial fulfillment of the requirement for the award of degree of Electronics SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface I have

More information

Overview of Spintronics and Its place in the Semiconductor Industry Roadmap

Overview of Spintronics and Its place in the Semiconductor Industry Roadmap Overview of Spintronics and Its place in the Semiconductor Industry Roadmap Dmitri Nikonov Collaborators: George Bourianoff (Intel) David Awschalom, Wayne Lau (UCSB) 04/06/2004 DENikonov, Talk at Texas

More information

Adding a New Dimension to Physical Design. Sachin Sapatnekar University of Minnesota

Adding a New Dimension to Physical Design. Sachin Sapatnekar University of Minnesota Adding a New Dimension to Physical Design Sachin Sapatnekar University of Minnesota 1 Outline What is 3D about? Why 3D? 3D-specific challenges 3D analysis and optimization 2 Planning a city: Land usage

More information

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits. CS211 Computer Architecture Digital Logic l Topics l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Figures & Tables borrowed from:! http://www.allaboutcircuits.com/vol_4/index.html!

More information

NANOELECTRONICS beyond CMOS

NANOELECTRONICS beyond CMOS NANOELECTRONICS beyond CMOS David Pulfrey 1 NNI definition of Nanotechnology 1-10 nm is better But Intel prefer... 2 Bourianoff04 1 3 Bourianoff04 4 Moravec04 2 Increasing the Integration Level functional

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Uppoju Shiva Jyothi M.Tech (ES & VLSI Design), Malla Reddy Engineering College For Women, Secunderabad. Abstract: Quantum cellular automata

More information

Carbon Nanotube Electronics

Carbon Nanotube Electronics Carbon Nanotube Electronics Jeorg Appenzeller, Phaedon Avouris, Vincent Derycke, Stefan Heinz, Richard Martel, Marko Radosavljevic, Jerry Tersoff, Shalom Wind H.-S. Philip Wong hspwong@us.ibm.com IBM T.J.

More information

materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the

materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the Nanotechnology is the creation of USEFUL/FUNCTIONAL materials, devices and systems through manipulation of matter at nanometer scale and exploitation of novel phenomena which arise because of the nanometer

More information

Multiple Gate CMOS and Beyond

Multiple Gate CMOS and Beyond Multiple CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS

More information

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M.

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M. Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M. Mominuzzaman Department of Electrical and Electronic Engineering, Bangladesh

More information

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Sou-Chi Chang, Rouhollah M. Iraei Vachan Kumar, Ahmet Ceyhan and Azad Naeemi School of Electrical & Computer Engineering Georgia Institute

More information

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials 29: Nanotechnology What is Nanotechnology? Properties Control and Understanding Nanomaterials Making nanomaterials Seeing at the nanoscale Quantum Dots Carbon Nanotubes Biology at the Nanoscale Some Applications

More information

Memory and computing beyond CMOS

Memory and computing beyond CMOS Memory and computing beyond CMOS Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano daniele.ielmini@polimi.it Outline 2 Introduction What is CMOS? What comes after CMOS? Example:

More information

Analysis And Design Of Priority Encoder Circuit Using Quantum Dot Cellular Automata

Analysis And Design Of Priority Encoder Circuit Using Quantum Dot Cellular Automata Analysis And Design Of Priority Encoder Circuit Using Quantum Dot Cellular Automata P. Ilanchezhian Associate Professor, Department of IT, Sona College of Technology, Salem Dr. R. M. S. Parvathi Principal,

More information

STUDY AND IMPLEMENTATION OF MUX BASED FPGA IN QCA TECHNOLOGY

STUDY AND IMPLEMENTATION OF MUX BASED FPGA IN QCA TECHNOLOGY STUDY AND IMPLEMENTATION OF MUX BASED FPGA IN QCA TECHNOLOGY E.N.Ganesh 1 / V.Krishnan 2 1. Professor, Rajalakshmi Engineering College 2. UG Student, Rajalakshmi Engineering College ABSTRACT This paper

More information

Physics 156: Applications of Solid State Physics

Physics 156: Applications of Solid State Physics Physics 156: Applications of Solid State Physics Instructor: Sue Carter Office NSII 349 Office Hours: Wednesdays 11:30 to 1 pm or by appointment Email: sacarter@ucsc.edu Book: http://ece-www.colorado.edu/~bart/book/book/title.htm

More information

Addressing Challenges in Neuromorphic Computing with Memristive Synapses

Addressing Challenges in Neuromorphic Computing with Memristive Synapses Addressing Challenges in Neuromorphic Computing with Memristive Synapses Vishal Saxena 1, Xinyu Wu 1 and Maria Mitkova 2 1 Analog Mixed-Signal and Photonic IC (AMPIC) Lab 2 Nanoionic Materials and Devices

More information

The Mismatch Behavior P(x,y)

The Mismatch Behavior P(x,y) The Mismatch Behavior P(x,y) x y σ 2 ( P) = f A ( WL, ) + f D ( D) f A ( W, L) Small random, transistor size dependent component, true mismatch component f D ( D) Gradient surface, transistor distance

More information

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM) Design for Manufacturability and Power Estimation Lecture 25 Alessandra Nardi Thanks to Prof. Jan Rabaey and Prof. K. Keutzer Physical issues verification (DSM) Interconnects Signal Integrity P/G integrity

More information

NRAM: High Performance, Highly Reliable Emerging Memory

NRAM: High Performance, Highly Reliable Emerging Memory NRAM: High Performance, Highly Reliable Emerging Memory Sheyang Ning,2, Tomoko Ogura Iwasaki, Darlene Viviani 2, Henry Huang 2, Monte Manning 2, Thomas Rueckes 2, Ken Takeuchi Chuo University 2 Nantero

More information

A Novel Design and Implementation of 8-3 Encoder Using Quantum-dot Cellular Automata (QCA) Technology

A Novel Design and Implementation of 8-3 Encoder Using Quantum-dot Cellular Automata (QCA) Technology A Novel Design and Implementation of 8-3 Encoder Using Quantum-dot Cellular Automata (QCA) Technology Md. Sofeoul-Al-Mamun Mohammad Badrul Alam Miah Fuyad Al Masud Department of Information and Communication

More information

Post Von Neumann Computing

Post Von Neumann Computing Post Von Neumann Computing Matthias Kaiserswerth Hasler Stiftung (formerly IBM Research) 1 2014 IBM Corporation Foundation Purpose Support information and communication technologies (ICT) to advance Switzerland

More information

14:332:231 DIGITAL LOGIC DESIGN. Organizational Matters (1)

14:332:231 DIGITAL LOGIC DESIGN. Organizational Matters (1) 4:332:23 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 23 Organizational Matters () Instructor: Ivan MARSIC Office: CoRE Building, room 7 Email: marsic@ece.rutgers.edu

More information

Designing Cellular Automata Structures using Quantum-dot Cellular Automata

Designing Cellular Automata Structures using Quantum-dot Cellular Automata Designing Cellular Automata Structures using Quantum-dot Cellular Automata Mayur Bubna, Subhra Mazumdar, Sudip Roy and Rajib Mall Department of Computer Sc. & Engineering Indian Institute of Technology,

More information

From Physics to Logic

From Physics to Logic From Physics to Logic This course aims to introduce you to the layers of abstraction of modern computer systems. We won t spend much time below the level of bits, bytes, words, and functional units, but

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

DESIGN OF AREA DELAY EFFICIENT BINARY ADDERS IN QUANTUM-DOT CELLULAR AUTOMATA

DESIGN OF AREA DELAY EFFICIENT BINARY ADDERS IN QUANTUM-DOT CELLULAR AUTOMATA DESIGN OF AREA DELAY EFFICIENT BINARY ADDERS IN QUANTUM-DOT CELLULAR AUTOMATA 1 Shrinidhi P D, 2 Vijay kumar K 1 M.Tech, VLSI&ES 2 Asst.prof. Department of Electronics and Communication 1,2 KVGCE Sullia,

More information

IH2654 Nanoelectronics, 9hp autumn 2012, period 1 and ****** Nanoelectronics, PhD course

IH2654 Nanoelectronics, 9hp autumn 2012, period 1 and ****** Nanoelectronics, PhD course IH2654 Nanoelectronics, 9hp autumn 2012, period 1 and ****** Nanoelectronics, PhD course For Master programs in Nanotechnology and E, F, ME and PhD students (Previously: 2B1234, 6p and 4H1716, 4p) https://www.kth.se/social/course/ih2654/

More information

Single Electron Devices and Circuits

Single Electron Devices and Circuits Single Electron Devices and Circuits M. F. Gonzalez-Zalba 1, S. Kaxiras 2, R.D. Levine 3, F. Remacle 4, S. Rogge 5, M. Sanquer 6 1 Hitachi Cambridge Laboratory, Cambridge, UK 2 Division of Computer Systems,

More information

N ano scale l S il ii lco i n B ased N o nvo lat l i atl ie l M em ory r Chungwoo Kim, Ph.D.

N ano scale l S il ii lco i n B ased N o nvo lat l i atl ie l M em ory r Chungwoo Kim, Ph.D. cw_kim@samsung.com Acknowledgements Collaboration Funding Outline Introduction Current research status Nano fabrication Process Nanoscale patterning SiN thin film Si Nanoparticle Nano devices Nanoscale

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

The New IMP(F) - F4 unified. Nanoscale Science and Technology

The New IMP(F) - F4 unified. Nanoscale Science and Technology IMP(F) - Nanoscale Science and Technology The New IMP(F) - F4 unified International Master s Programme in Nanoscale Science and Technology 2002/2003 Göran Wendin, MINA/MC2 What sizes are we talking about?

More information

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI Title GaAs and InGaAs Single Electron Hex Circuits Based on Binary Decision D Author(s) Kasai, Seiya; Hasegawa, Hideki Citation Physica E: Low-dimensional Systems 3(2-4): 925-929 Issue Date 2002-03 DOI

More information

We re all familiar with the silicon superhighway

We re all familiar with the silicon superhighway COVER FEATURE The Future of Nanocomputing Reviewing the lessons learned in the semiconductor industry over the past few decades can help us better understand the novel technologies that are beginning to

More information

Status. Embedded System Design and Synthesis. Power and temperature Definitions. Acoustic phonons. Optic phonons

Status. Embedded System Design and Synthesis. Power and temperature Definitions. Acoustic phonons. Optic phonons Status http://robertdick.org/esds/ Office: EECS 2417-E Department of Electrical Engineering and Computer Science University of Michigan Specification, languages, and modeling Computational complexity,

More information

DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4

DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4 DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4 1 Assistant Professor, Department of ECE, Brindavan Institute of Technology & Science, A.P, India

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT

SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 7, July 2018, pp. 345 353, Article ID: IJMET_09_07_039 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=7

More information

DESIGN OF REVERSIBLE ARITHMETIC AND LOGIC UNIT USING REVERSIBLE UNIVERSAL GATE

DESIGN OF REVERSIBLE ARITHMETIC AND LOGIC UNIT USING REVERSIBLE UNIVERSAL GATE DESIGN OF REVERSIBLE ARITHMETIC AND LOGIC UNIT USING REVERSIBLE UNIVERSAL GATE R.AARTHI, K.PRASANNA* Department of Electronics and Communication Engineering, Arasu Engineering College, Kumbakonam 612501.

More information

Interconnect s Role in Deep Submicron. Second class to first class

Interconnect s Role in Deep Submicron. Second class to first class Interconnect s Role in Deep Submicron Dennis Sylvester EE 219 November 3, 1998 Second class to first class Interconnect effects are no longer secondary # of wires # of devices More metal levels RC delay

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

CMOS scaling rules Power density issues and challenges Approaches to a solution: Dimension scaling alone Scaling voltages as well

CMOS scaling rules Power density issues and challenges Approaches to a solution: Dimension scaling alone Scaling voltages as well 6.01 - Microelectronic Devices and Circuits Lecture 16 - CMOS scaling; The Roadmap - Outline Announcements PS #9 - Will be due next week Friday; no recitation tomorrow. Postings - CMOS scaling (multiple

More information

Realization of programmable logic array using compact reversible logic gates 1

Realization of programmable logic array using compact reversible logic gates 1 Realization of programmable logic array using compact reversible logic gates 1 E. Chandini, 2 Shankarnath, 3 Madanna, 1 PG Scholar, Dept of VLSI System Design, Geethanjali college of engineering and technology,

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

Lecture 1: Circuits & Layout

Lecture 1: Circuits & Layout Lecture 1: Circuits & Layout Outline q A Brief History q CMOS Gate esign q Pass Transistors q CMOS Latches & Flip-Flops q Standard Cell Layouts q Stick iagrams 2 A Brief History q 1958: First integrated

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Lecture #39. Transistor Scaling

Lecture #39. Transistor Scaling Lecture #39 ANNOUNCEMENT Pick up graded HW assignments and exams (78 Cory) Lecture #40 will be the last formal lecture. Class on Friday will be dedicated to a course review (with sample problems). Discussion

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing The Emergence of Nanotechnology John E Savage Purpose of the Course The end of Moore s Law is in sight. Researchers are now exploring replacements for standard methods

More information

Five-Input Complex Gate with an Inverter Using QCA

Five-Input Complex Gate with an Inverter Using QCA Five-Input Complex Gate with an Inverter Using QCA Tina Suratkar 1 Assistant Professor, Department of Electronics & Telecommunication Engineering, St.Vincent Pallotti College Of Engineering and Technology,

More information

Molecular Electronics For Fun and Profit(?)

Molecular Electronics For Fun and Profit(?) Molecular Electronics For Fun and Profit(?) Prof. Geoffrey Hutchison Department of Chemistry University of Pittsburgh geoffh@pitt.edu July 22, 2009 http://hutchison.chem.pitt.edu Moore s Law: Transistor

More information

International Journal of Combined Research & Development (IJCRD) eissn: x;pissn: Volume: 7; Issue: 7; July -2018

International Journal of Combined Research & Development (IJCRD) eissn: x;pissn: Volume: 7; Issue: 7; July -2018 XOR Gate Design Using Reversible Logic in QCA and Verilog Code Yeshwanth GR BE Final Year Department of ECE, The Oxford College of Engineering Bommanahalli, Hosur Road, Bangalore -560068 yeshwath.g13@gmail.com

More information

Lecture 4: Technology Scaling

Lecture 4: Technology Scaling Digital Integrated Circuits (83-313) Lecture 4: Technology Scaling Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 2 April 2017 Disclaimer: This course was prepared, in its

More information

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects ME 4875/MTE 575 - C16 Introduction to Nanomaterials and Nanotechnology Lecture 2 - Applications of Nanomaterials + Projects 1 Project Teams of 4 students each Literature review of one application of nanotechnology

More information

Chapter 1 :: From Zero to One

Chapter 1 :: From Zero to One Chapter 1 :: From Zero to One Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Copyright 2007 Elsevier 1- Chapter 1 :: Topics Background The Game Plan The Art of Managing

More information

Toward More Accurate Scaling Estimates of CMOS Circuits from 180 nm to 22 nm

Toward More Accurate Scaling Estimates of CMOS Circuits from 180 nm to 22 nm Toward More Accurate Scaling Estimates of CMOS Circuits from 180 nm to 22 nm Aaron Stillmaker, Zhibin Xiao, and Bevan Baas VLSI Computation Lab Department of Electrical and Computer Engineering University

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW

More information

Neuromorphic computing with Memristive devices. NCM group

Neuromorphic computing with Memristive devices. NCM group Neuromorphic computing with Memristive devices NCM group Why neuromorphic? New needs for computing Recognition, Mining, Synthesis (Intel) Increase of Fault (nanoscale engineering) SEMICONDUCTOR TECHNOLOGY

More information