Dynamic Strain of Ultrasonic Cu and Au Ball Bonding Measured In-Situ by Using Silicon Piezoresistive Sensor

Size: px
Start display at page:

Download "Dynamic Strain of Ultrasonic Cu and Au Ball Bonding Measured In-Situ by Using Silicon Piezoresistive Sensor"

Transcription

1 2017 IEEE 67th Electronic Components and Technology Conference Dynamic Strain of Ultrasonic Cu and Au Ball Bonding Measured In-Situ by Using Silicon Piezoresistive Sensor Keiichiro Iwanabe, Kenichi Nakadozono, Mamoru Sakamoto, and Tanemasa Asano Graduate School of Information Science and Electrical Engineering Kyushu University 744 Motooka, Nishi-ku, Fukuoka , Japan Abstract Dynamic changes in distribution of mechanical strain generated during wire bonding in Si under and near the bonding pad were measured by using a piezoresistive linear array sensor. The sensor was designed to be able to determine strains in the directions normal and parallel to the surface. Bonding dynamics of Cu and Au balls were investigated. We can clearly observe the oscillating strain according to the application of 150 khz ultrasonic vibration. It was also clearly observed that the position of the largest compressive strain moved from the center of the ball to the periphery according to the progress of bonding under the application of the ultrasonic vibration. Bonding of Cu was found to generate larger strain than bonding of Au. A large oscillating tensile strain generated at the periphery of Cu ball when ultrasonic amplitude is increased is found to cause fracture of Si. The largest residual strain is observed for Cu bonding at the location where the end of capillary tool was present during bonding. Keywords-wire bonding; ball bonding; ultrasonic bonding; Cu; strain; under pad damage; piezoresistance gauge I. INTRODUCTION Interest in advancement of the ultrasonic wire-bonding technology increases more and more in microelectronics packaging because it offers significant benefits to many kinds production in small quantities. Understanding of mechanical strain generated during bonding and remained after the bonding in Si under and near the bonding pad during wire bonding and remained after the bonding is a significant issue not only to produce reliable interconnection but also to develop new technology such as circuit under pad (CUP). Cu wire is being increasingly seen as a candidate to replace Au wire for fine-pitch interconnections of microelectronics packaging [1]. However, since Cu is harder than Au, high compression force and large ultrasonic energy are usually required to complete bonding. The high compression force induces under-pad damage such as pad peeling and bulk silicon cratering [2]. The large ultrasonic vibration increases under-pad splash or squeezing from the peripheries of the bonded ball [3, 4]. In-situ measurement of strain generated in the Si circuit layer during bonding will provide useful information to understand the bonding dynamics and to find a way to avoid under-pad damage. We have developed a piezoresistive liner array sensor made of Si to measure dynamic strain generated under the bonding pad during ultrasonic application. The sensor has been designed and fabricated in-house. It is able to determine the strains along the vertical and horizontal axes with respect to the Si surface. It is also able to measure insitu temperature rise during bonding. We have applied the sensor to investigation of bonding dynamics of flip-chip microbumps [5, 6] and wire bonding [7]. In this work, we investigate time evolution of dimension and distribution of strain generated in the Si layer during ultrasonic bonding of Cu and Au wires. Bonding was performed using the program composed of three steps; compression only, compression + ultrasonic at moderate amplitude, and compression + ultrasonic with an increased amplitude. We investigated how dimension and distribution of strain changes with the progress of bonding and what the critical bonding parameters are in generation of damage in the Si circuit layer. II. STRAIN SENSOR AND EXPERIMENTAL Fig. 1 shows schematic illustration of the in-situ measurement of strain and its distribution. The silicon sensor composed of an array of piezoresistance gauges was designed and fabricated in-house. The gauge array was covered with an interlayer dielectrics and a bonding pad Figure 1. Schematic illustration of measurement method and relative position between the wire ball and Si thin-film strain gauges /17 $ IEEE DOI /ECTC

2 made of Al. The interlayer dielectric was SiO 2 deposited by plasma enhanced chemical vapor deposition. A wire ball was whose diameter was 40 mm was bonded to the Al pad and change in resistance of the gauge array was measured during bonding. A single gauge was composed of a pair of n- and p- type Si thin films resisters to simultaneously measure the strain parallel to the surface along the ultrasonic vibration (horizontal direction, hereafter) and the strain perpendicular to the surface (vertical direction, hereafter). Principle and details of the strain measurement is described elsewhere [5, 8]. Fig. 2 shows a die photo (Fig. 2(a)), an enlarged view of the strain gauge array (Fig. 2(b)), and a schematic crosssection of a gauge (Fig. 2(c)). The sensor was fabricated on a SOI wafer to minimize isolation area. The size of each gauge is 10 m in pitch and 10 m in width. The layout was designed to maximize spatial resolution under the constraints of the resolution of in-house photolithography. These sensors were fabricated on silicon-on-insulator (SOI) wafer. The use of SOI provides perfect electrical isolation between the gauges and the substrate. The thickness of the Si layer of SOI was 200 nm. The sensor is covered with a 400 nm-thick SiO 2 layer and a 900 nm-thick Al pad. The gauge factors were determined from measurements of change in resistance with uniaxial strain applied by a cantilever bending tool [5, 8]. Fig. 3 shows electrical connection to measure change in resistance during wire bonding. A constant current was supplied to the gauges connected in series while voltage drop across each gauge was measured during bonding with using voltage meters with analog-to-digital converter having 12 bit resolution at 20 MHz sampling rate. Additional voltage source was applied between the low voltage end of the n- type gauge array and the ground to reversely bias the pnjunction of the gauge pairs. The in-situ measurements were carried out for the bonding programs shown in Fig. 4. Bonding tests being Figure 3. Electrical connection of the gauge array to measure the dynamic change in strain distribution. A dc voltage source was used to reverse bias the pn junctiion composed of the the n-and p-type gauges. Figure 2. (a) Die photo of the sensor fabricated. (b) Photo showing the array of piezoresitance gauges. (c) Schematic cross-section of the sensor composed of p- and n-type Si made of silicon-on-insulator. Figure 4. Load force and ultrasonic programs used in this study. (a) Loar force used for all bonding tests. (b) (d) Three ultrasonic programs. The ultrasonic vibration was applied while the load force was kept constant. 1787

3 described in this article were all carried out at room temperature. Fig. 4(a) shows compression force applied for bonding. The compression force was kept constant during the bonding. Figures from Fig. 4(b) to Fig. 4(d) shows the current applied to drive the piezoelectric element to produce ultrasonic vibration. The ultrasonic frequency was 150 khz. Application of ultrasonic vibration was started while the compression force is kept constant and the amplitude of the ultrasonic vibration was increased during the bonding action. Thus, the bonding program is composed of three steps; the first step where only the compression force is applied (step 1), the second step where the compression force and ultrasonic with a small amplitude is applied (step 2), and the third step where the compression force and ultrasonic with a large amplitude is applied (step 3). The duration each step was set at 10 ms. In Figs. 4(b) 4(c), the transducer current of 0.1 A corresponds to vibration amplitude of 1 m. In the ultrasonic program shown in Fig. 4(b), the ultrasonic with the amplitude of 1 m was firstly applied at the step 2 and it was increased to 2 m at the step 3. In the ultrasonic program shown in Fig. 4(c), the amplitude was increased from 1 m to 2 m but a large amplitude was applied only at the initial stage of step 3. In the bonding program shown in Fig, 4(d), the first and second amplitude was set at 1.6 m and 3.2 m, respectively. The ultrasonic programs shown in Figs. 4(b), 4(c) and 4(d) are designated hereafter as US condition 1, 2 and 3, respectively. The sensitivity of the Si strain gauges designed and fabricated is demonstrated by the test example shown in Fig. 5. The results were obtained for bonding of the Cu wire ball during the application of the compression force of 50 gf and ultrasonic with the amplitude of 2 m. Fig. 5(a) shows strains in the horizontal and vertical directions. The negative sign indicates compressive strain. Fig. 5(b) shows change in current to drive ultrasonic vibration. We find that the sensor is well detect the strains oscillating according to the ultrasonic drive at 150 khz. It is noteworthy that the strain signals contains noise. The signals shown in Fig. 5 was measured using the gauge at positon III which is connected to the ground. However, a largest noise was observed at the gauge connected to the ground. The electrical ground is supposed to be the noise route in the bonding machine used in this study. III. RESULTS A. Bonding Results Fig. 6 shows bonding results of Au observed with an optical microscope. Figs. 6(a) 6(c) show the results obtained from bonding under the US conditions 1-3, respectively. Fig. 6(a) indicates that bonding under the US condition 1 results in bonding failure as we find from the absence of the ball and/or wire on the bonding pad. Note that the bonding test was carried out without elevating the substrate temperature. Bonding under the US condition 2 results in bonding of the ball. Bonding under the US condition 3, on the other hand, the ball disappeared and a trace of the capillary end is clearly observed. This indicate that the US strength of the condition 3 is so strong for bonding of Au ball that the ball was punched with the capillary. Fig. 7 shows results observed for bonding of Cu wire ball. Figure 6. Oprical micrograph showing bonding results of Au wire ball. (a), (b), and (c) are the results obtained by applying the US conditions 1, 2, 3, respectively. Figure 5. (a) Example of horizontal (red line) and vertical (black line) measured using the strain sensor during bondign under application of 150 khz ultrasonic. (b) Current to drive the ultrasonic transducer. Note that signals in (a) were measured at 20 MHz sampling, while the signal in (b) was measured at 1MHz sampling due to constraint of the equipment. Figure 7. Oprical micrograph showing bonding results of Au wire ball. (a), (b), and (c) are indicates the same as above Fig

4 Figure 8. Scanning electron micrograph showing cross section of the bonded Au wire ball (a) and Cu wire ball (b) under the US condition 2 and 3, respectively. Figs. 7(a)-7(c) show the results obtained from bonding under the US conditions 1-3, respectively. Similarly to the above mentioned results, bonding under the US condition 1 resulted in failure. Bonding under the US condition 2 completed the bonding. Bonding of Cu under the condition 3 also resulted in bonding, although the Al splash took place as is observed in scanning electron micrograph shown in Fig. 8(b). B. Strain Dynamics Figs. 9 and 10 show time evolution of strain measured during bonding under the US condition 1 3 at the positions I III for Au wire ball and Cu wire ball, respectively. The positive and negative sings in strain indicate tensile and compressive strains, respectively. As was mentioned above, noise appears to be larger in the signals obtained at the position III (i.e., periphery) than in the signals obtained at the position I (i.e., center). However, the signals give well Figure 9. Time evolution of horizontal (red) and vertical (black) strain generated duding bonding of Au wire ball. (a) (c) are the results obtained by gauges at the positons I III from bondings under US conditions 1 3, respectively, as is illustrated in the inssets. 1789

5 change in strain from the landing of the ball to the release of the load and the cut of the wire. Results of bonding of Au shown in Fig. 9 reveal the followings: 1. Strains generated during bonding are mostly compressive. Tensile strain occasionally appears only in the horizontal strain in a time period during application of ultrasonic. 2. The compressive strain is much higher in the vertical direction than in the horizontal direction. 3. At the position I (center of the ball), the average strain in the vertical direction decreases with the progress of the bonding step from step 1 to step 3. On the contrary, at the position III (periphery of the ball), the average strain increases as bonding step proceeds. In other words, as shown in Fig. 11 where evolution of the average strain with the process step is plotted, the position of the maximum strain in the vertical direction moves from the middle to the periphery of the ball. This phenomenon can be explained by considering spreading deformation of the ball in accordance with the progress of bonding. 4. The strain signal indicates that the deformation in each ultrasonic steps (step 2 and step 3) is almost completed within approximately 5 ms at the initial stage of each step. A similar deformation rate was observed with a high speed camera for Au stud bump of flip-chip bonding. [9] However, the deformation rate observed in this study (approximately 5 ms) is higher than that observed in the previous study (approximately 20 ms). This difference can be accounted for by taking the difference in ultrasonic frequency into account, that is, 150 khz in this Figure 10. Time evolution of horizontal (red) and vertical (black) strain generated duding bonding of Cu wire ball. (a) (c) are the results obtained by gauges at the positons I III from bondings under US conditions 1 3, respectively. 1790

6 Figure 11. Change with process step of the average value of vertical strain during bonding of Cu wire ball. study and 48.5 khz in the previous study. [9] 5. The amplitude of the oscillating strain under the application of ultrasonic is larger at the periphery than at the center of the ball. Si in the center area is clamped by the ball compressed by the ball and, therefore, strain generated by the oscillating movement of the capillary is relatively small. Si in the peripheral area, on the other hand, becomes sensitive to the movement of capillary because the capillary end is placed near the periphery of the ball. Most of the above mentioned characteristics are common for both Au bonding and Cu bonding. Comparing the dynamic strain of Au bonding (Fig. 9) with that of Cu bonding (Fig. 10), the difference between these two wire materials is seen in the dimension of strain at each step. This is true for not only in the average strain but also for the amplitude of oscillating strain. For example, the compressive strain as large as % is generated at landing of Cu ball at the position II, above which the inner wall of the capillary end is present, while it is approximately % at landing of Au ball. The difference can be simply explained by the differences in stiffness and yield strength of Au and Cu. C. Residual Strain A significant difference between Au bonding and Cu bonding appears in residual strain. The residual strain can straightforwardly be measured by the signals after the bonding event, for example, strain values at 50 ms in Figs. 9 and 10. The fact that the time evolution data of strain for the bonding under the US condition 1 shown in Figs. 9(a) and 10(a) indicate zero strain after the bonding event at all positions is reasonable because bonding was failed under the condition and ball is absent from the surface as shown in Figs. 6(a) and 7(a). The difference between Au and Cu can be found from Fig. 9(b) and Fig. 10(b) where time evolution data for the US condition 2 are plotted. The following characteristics in residual strain distribution are commonly seen for both Au and Cu: At the position I (center), horizontal and vertical strains are tensile and compressive, respectively. At the position III (periphery), both horizontal strain and vertical strain are compressive. The maximum residual strain appears at the position II, above which the inner wall of the capillary was present, and is compressive 0.2%. This residual strain may significantly change the current drive of a MOSFET. [10] D. Time and Place of Fracture When the thickness of Al pad was reduced from 900 nm to 200 nm and Cu wire ball was bonded to the thinned Al pad, breakdown of the gauge was often observed. In order to find the location of the breakdown, output of each gauge of the gauge array was individually monitored. Bonding was carried out using the US condition 2. It has been found that breakdown takes place more likely at the position II, i.e., near the periphery of the ball. [7] The time at which breakdown takes place was always the beginning of the step 3, i.e., the transition to the largest ultrasonic amplitude. Note that, in Fig. 9(c) for Au bonding, the breakdown of the sensor is found to take place in the middle of step 3. However, this breakdown was induce by the punch through of the capillary end to the surface of the Al pad. Thus the mechanism of the breakdown is completely different from the strain induced fracture. When we look at the time evolution in strain shown in Fig. 10(b), Position III, a large oscillating tensile strain along the horizontal direction is generated at the beginning of step 3. A similar peak in tensile strain is also found in Fig. 10(c), Position III, showing the result obtained from the bonding carried out using the US condition 3 where no overshoot was applied at the beginning of the application or the amplitude change. The large tensile strain may induce fracture of Si and generate under pad damage such as crack. IV. CONCLUSION Strain generated in Si under bonding pad during wire ball bonding was in-situ measured using our originally designed and fabricated Si sensor. The Si sensor is able to determine the strain in the horizontal direction and the vertical direction. It is also able to sense the variation of strain with time according to the application of 150 khz ultrasonic. Changes in dynamic strain with position, ultrasonic condition, and 1791

7 wire ball material (Au and Cu) were extensively studied. The followings summarize and conclude this work: The position of the maximum compressive strain moves from the center of the ball to the periphery of the ball with spread out of the ball. The above phenomenon is common for both Cu and Au. However, Cu gives larger strain than Au due to the difference in stiffness and yield strength. A large tensile strain along the horizontal direction is generated at the beginning of application of ultrasonic with a large amplitude. The location where the large tensile strain is generated is periphery of the ball. The large tensile strain mentioned above may induce fracture of Si during bonding of Cu wire ball, particularly, in case that the bonding pad is made thin. Residual strain under the bonding pad is larger for Cu wire ball than Au wire ball. The largest strain is compressive and appears at the location above which the end of capillary was present. To more accurately say it is the location above which the inner wall of the capillary was present. ACKNOWLEDGMENT The authors are grateful to Shinkawa Ltd., Tokyo, Japan for the use of the ultrasonic bonding machine and useful discussion. This work is supported in part by the Matching Planner Program (No. MP ) of JST. REFERENCES [1] A. Shah, A. Rezvani, M. Mayer, Y. Zhou, J. Persic and J.T. Moon Reduction of ultrasonic pad stress and aluminum splash in copper ball bonding, Microelectronics Reliability, Vol. 51 (2011), pp [2] B. K. Appelt, A. Tseng, C. Chen and Y. Lai Fine pitch copper wire bonding in high volume production, Microelectronics Reliability, Vol. 51 (2011), pp [3] K. Toyozawa, K. Fujita, S. Minamide and T. Maeda Development of copper wire bonding application technology, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, (1990), pp [4] N. Srikanth, S. Murali, Y. M. Womg and Charles J. Vath III Critical study of thermosonic copper ball bonding, Thin Solid Films, Vol , (2004), pp [5] K. Iwanabe, K. Nakadozono, Y. Senda, and T. Asano, "Bonding dynamics of compliant microbump during ultrasonic bonding investigated by using Sistrain gauge", Jpn. J. Appl. Phys. 55, 06GP22 (2016). [6] K. Nakadozono, K. Iwanabe, Y. Senda, and T. Asano, "Sensing Local Dynamic Strain and Temperature Evolution during Ultrasonic Bonding of Microbumps", Proc. IEEE Electron. System-Integration Tech. Conf., 2016, p [7] K. Iwanabe, K. Nakadozono, Y. Senda, and T. Asano, "In-situ Strain Measurement of Ultrasonic Ball Bonding", Proc. IEEE Electron. System-Integration Tech. Conf., 2016, p [8] N. Watanabe and T. Asano, "Behavior of Plated Microbumps during Ultrasonic Flip-Chip Bonding Determined from Dynamic Strain Measurement", Jpn. J. Appl. Phys.42, 2193 (2003). [9] T. Shuto and T. Asano, In-situ observation of ultrasonic flip-chip bonding using high-speed camera, Jpn. J. Appl. Phys. 54, (2015). [10] N. Watanabe, T. Kojima, Y. Maeda, M. Nishisaka, and T. Asano, "Breakdown Voltage in Uniaxially Strained n-channel SOI MOSFET", Jpn. J. Appl. Phys.43, 2134 (2004). 1792

Effect of Direction of Ultrasonic Vibration on Flip-Chip Bonding

Effect of Direction of Ultrasonic Vibration on Flip-Chip Bonding Transactions of The Japan Institute of Electronics Packaging Vol. 6, No. 1, 13 [Technical Paper] Effect of Direction of Ultrasonic Vibration on Flip-Chip Bonding Mutsumi Masumoto*, Yoshiyuki Arai*, **,

More information

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical

More information

TCAD Modeling of Stress Impact on Performance and Reliability

TCAD Modeling of Stress Impact on Performance and Reliability TCAD Modeling of Stress Impact on Performance and Reliability Xiaopeng Xu TCAD R&D, Synopsys March 16, 2010 SEMATECH Workshop on Stress Management for 3D ICs using Through Silicon Vias 1 Outline Introduction

More information

Surface Acoustic Wave Atomizer with Pumping Effect

Surface Acoustic Wave Atomizer with Pumping Effect Surface Acoustic Wave Atomizer with Pumping Effect Minoru KUROSAWA, Takayuki WATANABE and Toshiro HIGUCHI Dept. of Precision Machinery Engineering, Faculty of Engineering, University of Tokyo 7-3-1 Hongo,

More information

1 INTRODUCTION 2 SAMPLE PREPARATIONS

1 INTRODUCTION 2 SAMPLE PREPARATIONS Chikage NORITAKE This study seeks to analyze the reliability of three-dimensional (3D) chip stacked packages under cyclic thermal loading. The critical areas of 3D chip stacked packages are defined using

More information

Characteristics of Thermosonic Anisotropic Conductive Adhesives (ACFs) Flip-Chip Bonding

Characteristics of Thermosonic Anisotropic Conductive Adhesives (ACFs) Flip-Chip Bonding Materials Transactions, Vol. 51, No. 10 (2010) pp. 1790 to 1795 Special Issue on Lead-Free and Advanced Interconnection Materials for Electronics #2010 The Japan Institute of Metals Characteristics of

More information

Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages

Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages K. N. Chiang Associate Professor e-mail: knchiang@pme.nthu.edu.tw C. W. Chang Graduate Student C. T. Lin Graduate Student

More information

SENSOR DEVICES MECHANICAL SENSORS

SENSOR DEVICES MECHANICAL SENSORS SENSOR DEVICES MECHANICAL SENSORS OUTLINE 4 Mechanical Sensors Introduction General mechanical properties Piezoresistivity Piezoresistive sensors Capacitive sensors Applications INTRODUCTION MECHANICAL

More information

Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package

Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package 2017 IEEE 67th Electronic Components and Technology Conference Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package Zhaohui Chen, Faxing Che, Mian Zhi

More information

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B PRODUCT FAMILY SPEFICIFATION SCB10H Series Pressure Elements SCB10H Series Pressure Elements Doc. No. 82 1250 00 B Table of Contents 1 General Description... 3 1.1 Introduction... 3 1.2 General Description...

More information

Effect of Surface Contamination on Solid-State Bondability of Sn-Ag-Cu Bumps in Ambient Air

Effect of Surface Contamination on Solid-State Bondability of Sn-Ag-Cu Bumps in Ambient Air Materials Transactions, Vol. 49, No. 7 (28) pp. 18 to 112 Special Issue on Lead-Free Soldering in Electronics IV #28 The Japan Institute of Metals Effect of Surface Contamination on Solid-State Bondability

More information

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs)

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs) Manuscript for Review Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs) Journal: Electronics Letters Manuscript ID: draft Manuscript Type: Letter

More information

Deformation of solder joint under current stressing and numerical simulation II

Deformation of solder joint under current stressing and numerical simulation II International Journal of Solids and Structures 41 (2004) 4959 4973 www.elsevier.com/locate/ijsolstr Deformation of solder joint under current stressing and numerical simulation II Hua Ye *, Cemal Basaran,

More information

ADVANCED BOARD LEVEL MODELING FOR WAFER LEVEL PACKAGES

ADVANCED BOARD LEVEL MODELING FOR WAFER LEVEL PACKAGES As originally published in the SMTA Proceedings ADVANCED BOARD LEVEL MODELING FOR WAFER LEVEL PACKAGES Tiao Zhou, Ph.D. Southern Methodist University Dallas, TX, USA tiaoz@smu.edu Zhenxue Han, Ph.D. University

More information

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given Supplementary Figure 1. Pressure sensor fabrication schematics. Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given in Methods section. (a) Firstly, the sacrificial

More information

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free)

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free) 1W, 1206, (Lead free / Halogen Free) 1. Scope This specification applies to 1.6mm x 3.2mm size 1W, fixed metal film chip resistors rectangular type for use in electronic equipment. 2. Type Designation

More information

Electrical Characterization of 3D Through-Silicon-Vias

Electrical Characterization of 3D Through-Silicon-Vias Electrical Characterization of 3D Through-Silicon-Vias F. Liu, X. u, K. A. Jenkins, E. A. Cartier, Y. Liu, P. Song, and S. J. Koester IBM T. J. Watson Research Center Yorktown Heights, NY 1598, USA Phone:

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 399 407 (2009) 399 Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System

More information

Technology Brief 9: Capacitive Sensors

Technology Brief 9: Capacitive Sensors 218 TEHNOLOGY BRIEF 9: APAITIVE SENSORS Technology Brief 9: apacitive Sensors To sense is to respond to a stimulus. (See Tech Brief 7 on resistive sensors.) A capacitor can function as a sensor if the

More information

Reliability analysis of different structure parameters of PCBA under drop impact

Reliability analysis of different structure parameters of PCBA under drop impact Journal of Physics: Conference Series PAPER OPEN ACCESS Reliability analysis of different structure parameters of PCBA under drop impact To cite this article: P S Liu et al 2018 J. Phys.: Conf. Ser. 986

More information

Gold wire bonding on Low-k Material A new challenge for interconnection technology

Gold wire bonding on Low-k Material A new challenge for interconnection technology Gold wire bonding on Low-k Material A new challenge for interconnection technology Ralph Binner Andreas Schopper ESEC (Asia Pacific) Pte Ltd Jimmy Castaneda SPT Asia Pte. Ltd 1. Introduction The gold wire

More information

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement Strain Measurement Prof. Yu Qiao Department of Structural Engineering, UCSD Strain Measurement The design of load-carrying components for machines and structures requires information about the distribution

More information

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by Foundations of MEMS Second Edition Chang Liu McCormick School of Engineering and Applied Science Northwestern University International Edition Contributions by Vaishali B. Mungurwadi B. V. Bhoomaraddi

More information

Asymmetrical heating behavior of doped Si channels in bulk silicon and in silicon-on-insulator under high current stress

Asymmetrical heating behavior of doped Si channels in bulk silicon and in silicon-on-insulator under high current stress JOURNAL OF APPLIED PHYSICS VOLUME 86, NUMBER 12 15 DECEMBER 1999 Asymmetrical heating behavior of doped Si channels in bulk silicon and in silicon-on-insulator under high current stress C. N. Liao, a)

More information

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4 Issued: Wednesday, Mar. 5, 2014 PROBLEM SET #4 Due (at 9 a.m.): Tuesday Mar. 18, 2014, in the EE C247B HW box near 125 Cory. 1. Suppose you would like to fabricate the suspended cross beam structure below

More information

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer 3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer Makoto Takamiya 1, Koichi Ishida 1, Koichi Takemura 2,3, and Takayasu Sakurai 1 1 University of Tokyo, Japan 2 NEC Corporation,

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Mechanics of wafer bonding: Effect of clamping

Mechanics of wafer bonding: Effect of clamping JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 1 1 JANUARY 2004 Mechanics of wafer bonding: Effect of clamping K. T. Turner a) Massachusetts Institute of Technology, Cambridge, Massachusetts 0219 M. D. Thouless

More information

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr Stress in Flip-Chip Bumps due to Package Warpage -- Matt Pharr Introduction As the size of microelectronic devices continues to decrease, interconnects in the devices are scaling down correspondingly.

More information

Multilayer Wiring Technology with Grinding Planarization of Dielectric Layer and Via Posts

Multilayer Wiring Technology with Grinding Planarization of Dielectric Layer and Via Posts Tani et al.: Multilayer Wiring Technology with Grinding Planarization (1/6) [Technical Paper] Multilayer Wiring Technology with Grinding Planarization of Dielectric Layer and Via Posts Motoaki Tani, Kanae

More information

Peak Strain and Displacement Sensors for Structural Health Monitoring

Peak Strain and Displacement Sensors for Structural Health Monitoring Peak Strain and Displacement Sensors for Structural Health Monitoring AKIRA MITA and SHINPEI TAKAHIRA ABSTRACT Simple and inexpensive passive sensors that can monitor the peak strain or displacement of

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

Cyclic Bend Fatigue Reliability Investigation for Sn-Ag-Cu Solder Joints

Cyclic Bend Fatigue Reliability Investigation for Sn-Ag-Cu Solder Joints Cyclic Bend Fatigue Reliability Investigation for Sn-Ag-Cu Solder Joints F.X. Che* 1, H.L.J. Pang 2, W.H. Zhu 1 and Anthony Y. S. Sun 1 1 United Test & Assembly Center Ltd. (UTAC) Packaging Analysis &

More information

Reliability assessment for Cu/Low-k structure based on bump shear modeling and simulation method

Reliability assessment for Cu/Low-k structure based on bump shear modeling and simulation method Reliability assessment for Cu/Low-k structure based on bump shear modeling and simulation method Abstract Bump shear is widely used to characterize interface strength of Cu/low-k structure. In this work,

More information

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES Abstract A. Lonsdale Technical Director Sensor Technology Ltd The subject of torque measurement has previously been addressed extensively.

More information

Alternative deposition solution for cost reduction of TSV integration

Alternative deposition solution for cost reduction of TSV integration Alternative deposition solution for cost reduction of TSV integration J. Vitiello, F. Piallat, L. Bonnet KOBUS 611 rue Aristide Bergès, Z.A. de Pré Millet, Montbonnot-Saint-Martin, 38330 France Ph: +33

More information

Low Inductance Ceramic Capacitor (LICC)

Low Inductance Ceramic Capacitor (LICC) Low Inductance Ceramic Capacitor (LICC) LICC(Low Inductance Ceramic Capacitor) is a kind of MLCC that is used for decoupling in High Speed IC. The termination shape of LICC is different from that of MLCC.

More information

Chip Inductors. LCCM Series Chip Common Mode Filter FEATURES CONSTRUCTION

Chip Inductors. LCCM Series Chip Common Mode Filter FEATURES CONSTRUCTION FEATURES Small wire wound chip inductor with ferrite core and 2 common mode lines. Highly effective in noise suppression High common-mode impedance at noise band an low differential mode impedance at signal

More information

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function.

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function. using structure function. (1) Page 1/5 Test mode and failure There are two modes in a power cycle test: Tj Power cycle that changes the junction temperature (Tj Temperature) inside of the power semiconductor

More information

Study of Electromigration of flip-chip solder joints using Kelvin probes

Study of Electromigration of flip-chip solder joints using Kelvin probes Study of Electromigration of flip-chip solder joints using Kelvin probes Y. W. Chang and Chih Chen National Chiao Tung University, Department of Material Science & Engineering, Hsin-chu 30010, Taiwan,

More information

MLCC APPLICATION GUIDE

MLCC APPLICATION GUIDE MLCC APPLICATION GUIDE 1/11 No. Process Condition 1 Operating Condition (Storage) 1) The capacitor must be stored in an ambient temperature between 5 ~ 40 with a relative humidity of 20 ~ 70%. The products

More information

Design of Power Electronics Reliability: A New, Interdisciplinary Approach. M.C. Shaw. September 5, 2002

Design of Power Electronics Reliability: A New, Interdisciplinary Approach. M.C. Shaw. September 5, 2002 Design of Power Electronics Reliability: A New, Interdisciplinary Approach M.C. Shaw September 5, 2002 Physics Department California Lutheran University 60 W. Olsen Rd, #3750 Thousand Oaks, CA 91360 (805)

More information

FEM Analysis on Mechanical Stress of 2.5D Package Interposers

FEM Analysis on Mechanical Stress of 2.5D Package Interposers Hisada et al.: FEM Analysis on Mechanical Stress of 2.5D Package Interposers (1/8) [Technical Paper] FEM Analysis on Mechanical Stress of 2.5D Package Interposers Takashi Hisada, Toyohiro Aoki, Junko Asai,

More information

Micro/nano and precision manufacturing technologies and applications

Micro/nano and precision manufacturing technologies and applications The 4th China-American Frontiers of Engineering Symposium Micro/nano and precision manufacturing technologies and applications Dazhi Wang School of Mechanical Engineering Dalian University of Technology

More information

Friction Drive Simulation of a SAW Motor with Slider Surface Texture Variation

Friction Drive Simulation of a SAW Motor with Slider Surface Texture Variation Advances in Science and Technology Vol. 54 (28) pp 366-371 online at http://www.scientific.net (28) Trans Tech Publications, Switzerland Online available since 28/Sep/2 Friction Drive Simulation of a SAW

More information

2.76/2.760 Multiscale Systems Design & Manufacturing

2.76/2.760 Multiscale Systems Design & Manufacturing 2.76/2.760 Multiscale Systems Design & Manufacturing Fall 2004 MOEMS Devices for Optical communications system Switches and micromirror for Add/drops Diagrams removed for copyright reasons. MOEMS MEMS

More information

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance Steven Brinser IBM Microelectronics Abstract Thermal characterization of a semiconductor device is

More information

TTC-1001 Thermal Test Chip Application Information

TTC-1001 Thermal Test Chip Application Information TTC-1001 Thermal Test Chip Application Information Thermal Engineeringa Associates 3287 Kifer Road Santa Clara, CA 95051 Tel: 650-961-5900 Email: info@thermenger.com www.thermengr.com Rev. 4 160125 TTC-1001

More information

DEPFET sensors development for the Pixel Detector of BELLE II

DEPFET sensors development for the Pixel Detector of BELLE II DEPFET sensors development for the Pixel Detector of BELLE II 13 th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD13) 7 10 October 2013, Siena, Italy Paola Avella for the DEPFET collaboration

More information

314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY Wei Tan, I. Charles Ume, Ying Hung, and C. F. Jeff Wu

314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY Wei Tan, I. Charles Ume, Ying Hung, and C. F. Jeff Wu 314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY 2010 Effects of Warpage on Fatigue Reliability of Solder Bumps: Experimental and Analytical Studies Wei Tan, I. Charles Ume, Ying Hung,

More information

Low-temperature Ultrasonic Bonding of Cu/Sn Microbumps with Au layer for High Density Interconnection Applications

Low-temperature Ultrasonic Bonding of Cu/Sn Microbumps with Au layer for High Density Interconnection Applications 2017 IEEE 67th Electronic Components and Technology Conference Low-temperature Ultrasonic Bonding of Cu/Sn Microbumps with Au layer for High Density Interconnection Applications Qinghua Zeng, Yong Guan,

More information

Modal and Harmonic Response Analysis of PBGA and S-N Curve Creation of Solder Joints

Modal and Harmonic Response Analysis of PBGA and S-N Curve Creation of Solder Joints Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Modal and Harmonic Response Analysis of PBGA and S-N Curve Creation of Solder Joints 1 Yu Guo, 1 Kailin Pan, 1, 2 Xin Wang, 1, 2 Tao Lu and

More information

Assessment of Current Density Singularity in Electromigration of Solder Bumps

Assessment of Current Density Singularity in Electromigration of Solder Bumps Assessment of Current Density Singularity in Electromigration of Solder Bumps Pridhvi Dandu and Xuejun Fan Department of Mechanical Engineering Lamar University PO Box 10028, Beaumont, TX 77710, USA Tel:

More information

Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter

Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter Journal of Physics: Conference Series PAPER OPEN ACCESS Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter To cite this article: Sonia Bradai et al 2015 J. Phys.:

More information

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications D. Tsoukalas, S. Kolliopoulou, P. Dimitrakis, P. Normand Institute of Microelectronics, NCSR Demokritos, Athens, Greece S. Paul,

More information

3.22 Mechanical Properties of Materials Spring 2008

3.22 Mechanical Properties of Materials Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Example

More information

Control of the fabrication process for the sensors of the CMS Silicon Strip Tracker. Anna Macchiolo. CMS Collaboration

Control of the fabrication process for the sensors of the CMS Silicon Strip Tracker. Anna Macchiolo. CMS Collaboration Control of the fabrication process for the sensors of the CMS Silicon Strip Tracker Anna Macchiolo Universita di Firenze- INFN Firenze on behalf of the CMS Collaboration 6 th International Conference on

More information

Adhesion Improvement on Smooth Cu Wiring Surfaces of Printed Circuit Boards

Adhesion Improvement on Smooth Cu Wiring Surfaces of Printed Circuit Boards [Technical Paper] Adhesion Improvement on Smooth Cu Wiring Surfaces of Printed Circuit Boards Motoaki Tani*, Shinya Sasaki*, and Keisuke Uenishi** *Next-Generation Manufacturing Technologies Research Center,

More information

PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION

PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION Minoru Kuribayashi Kurosawa*, Hidehiko Yasui**, Takefumi Kanda** and Toshiro Higuchi** *Tokyo Institute of Technology, Dept. of Advanced

More information

Ultrasonic Anisotropic Conductive Films (ACFs) Bonding of Flexible Substrates on Organic Rigid Boards at Room Temperature

Ultrasonic Anisotropic Conductive Films (ACFs) Bonding of Flexible Substrates on Organic Rigid Boards at Room Temperature Ultrasonic Anisotropic Conductive Films (ACFs) Bonding of Flexible Substrates on Organic Rigid Boards at Room Temperature Kiwon Lee, Hyoung Joon Kim, Il Kim, and Kyung Wook Paik Nano Packaging and Interconnect

More information

developed piezoelectric self-excitation and selfdetection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid

developed piezoelectric self-excitation and selfdetection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid Development of a piezoelectric self-excitation and self-detection mechanism in PZT microcantilevers for dynamic scanning force microscopy in liquid Chengkuo Lee a) Tokyo 153, Japan, and Department of Manufacturing

More information

Dimension measurement. By Mr.Vuttichai Sittiarttakorn

Dimension measurement. By Mr.Vuttichai Sittiarttakorn Dimension measurement By Mr.Vuttichai Sittiarttakorn 1 LECTURE OUTLINE 1. Introduction 2. Standards and Calibration 3. Relative displacement : Translational and Rotational 4. displacement transducers Potentiometers

More information

Lecture 21: Packaging, Power, & Clock

Lecture 21: Packaging, Power, & Clock Lecture 21: Packaging, Power, & Clock Outline Packaging Power Distribution Clock Distribution 2 Packages Package functions Electrical connection of signals and power from chip to board Little delay or

More information

Especial Bump Bonding Technique for Silicon Pixel Detectors

Especial Bump Bonding Technique for Silicon Pixel Detectors Especial Bump Bonding Technique for Silicon Pixel Detectors E. Cabruja, M. Bigas, M. Ullán, G. Pellegrini, M. Lozano Centre Nacional de Microelectrònica Spain Outline Motivation Summary of bump bonding

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

December 1999 FINAL TECHNICAL REPORT 1 Mar Mar 98

December 1999 FINAL TECHNICAL REPORT 1 Mar Mar 98 REPORT DOCUMENTATION PAGE AFRL-SR- BL_TR " Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruct the collection

More information

Experimental Study on Electromechanical Performances of Two Kinds of the Integral Arrayed Cymbal Harvesters

Experimental Study on Electromechanical Performances of Two Kinds of the Integral Arrayed Cymbal Harvesters Journal of Applied Science and Engineering, Vol. 18, No. 4, pp. 339 344 (2015) DOI: 10.6180/jase.2015.18.4.04 Experimental Study on Electromechanical Performances of Two Kinds of the Integral Arrayed Cymbal

More information

The Relationship between the Applied Torque and Stresses in Post-Tension Structures

The Relationship between the Applied Torque and Stresses in Post-Tension Structures ECNDT 6 - Poster 218 The Relationship between the Applied Torque and Stresses in Post-Tension Structures Fui Kiew LIEW, Sinin HAMDAN * and Mohd. Shahril OSMAN, Faculty of Engineering, Universiti Malaysia

More information

Vacuum measurement on vacuum packaged MEMS devices

Vacuum measurement on vacuum packaged MEMS devices Journal of Physics: Conference Series Vacuum measurement on vacuum packaged MEMS devices To cite this article: Zhiyin Gan et al 007 J. Phys.: Conf. Ser. 48 149 View the article online for updates and enhancements.

More information

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary Abstract MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in commercial products like

More information

Sensor Measurements For Diagnostic Equipment

Sensor Measurements For Diagnostic Equipment Sensor Measurements For Diagnostic Equipment Mossi, K. Virginia Commonwealth University 601 West Main Street, Room 318 Richmond, VA 23284 kmmossi@vcu.edu (804) 827-5275 Scott, L.A. Dominion Energy, Inc.

More information

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing

Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing ScieTech 014 Journal of Physics: Conference Series 495 (014) 01045 doi:10.1088/174-6596/495/1/01045 Design and Analysis of Various Microcantilever Shapes for MEMS Based Sensing H. F. Hawari, Y. Wahab,

More information

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané Stresa, Italy, 5-7 April 007 MODELING OF T-SHAPED MICROCANTILEVER RESONATORS Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Centro Nacional de Microelectrónica

More information

Piezoresistive Sensors

Piezoresistive Sensors Piezoresistive Sensors Outline Piezoresistivity of metal and semiconductor Gauge factor Piezoresistors Metal, silicon and polysilicon Close view of the piezoresistivity of single crystal silicon Considerations

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING 1 YEDITEPE UNIVERSITY ENGINEERING FACULTY MECHANICAL ENGINEERING LABORATORY 1. Objective: Strain Gauges Know how the change in resistance

More information

MLCC APPLICATION GUIDE

MLCC APPLICATION GUIDE MLCC APPLICATION GUIDE 1/10 No. Process Condition 1 Operating Condition (Storage) 1) The capacitor must be stored in an ambient temperature between 5 ~ 40 with a relative humidity of 20 ~ 70%. The products

More information

3/4W, 2010 Low Resistance Chip Resistor

3/4W, 2010 Low Resistance Chip Resistor 1. Scope 3/4W, 2010 This specification applies to 2.5mm x 5.0mm size 3/4W, fixed metal film chip resistors rectangular type for use in electronic equipment. 2. Type Designation RL2550 L - Where (1) (2)

More information

Evaluation of a surface acoustic wave motor with a multi-contact-point slider

Evaluation of a surface acoustic wave motor with a multi-contact-point slider Smart Mater. Struct. 7 (1998) 305 311. Printed in the UK PII: S0964-1726(98)91230-7 Evaluation of a surface acoustic wave motor with a multi-contact-point slider Minoru Kuribayashi Kurosawa, Makoto Chiba

More information

Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes

Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 6, JUNE 2001 1065 Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang Abstract

More information

A Study of Friction Behavior in Ultrasonic Welding (Consolidation) of Aluminum

A Study of Friction Behavior in Ultrasonic Welding (Consolidation) of Aluminum A Study of Friction Behavior in Ultrasonic Welding (Consolidation) of Aluminum Abstract: C.B. Zhang 1, X.J. Zhu 2 and L.J. Li 3 Mechanical & Aerospace Engineering Utah State University In the present study,

More information

Woon-Seong Kwon Myung-Jin Yim Kyung-Wook Paik

Woon-Seong Kwon   Myung-Jin Yim Kyung-Wook Paik Woon-Seong Kwon e-mail: wskwon@kaist.ac.kr Myung-Jin Yim Kyung-Wook Paik Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology Daejon 305-701, Korea Suk-Jin

More information

TRENDS IN LEVENSDUURTESTEN VOOR MICRO-ELEKTRONICA PLOT CONFERENTIE

TRENDS IN LEVENSDUURTESTEN VOOR MICRO-ELEKTRONICA PLOT CONFERENTIE TRENDS IN LEVENSDUURTESTEN VOOR MICRO-ELEKTRONICA PLOT CONFERENTIE JEROEN JALINK 8 JUNI 2016 MICROELECTRONICS RELIABILITY 54 (2014) 1988 1994 Contents Introduction NXP Package form factor Failure mechanism

More information

1711. Analysis on vibrations and infrared absorption of uncooled microbolometer

1711. Analysis on vibrations and infrared absorption of uncooled microbolometer 1711. Analysis on vibrations and infrared absorption of uncooled microbolometer Chao Chen 1, Long Zhang 2, Yun Zhou 3, Xing Zheng 4, Jianghui Dong 5 1, 2, 3, 4 School of Optoelectronic Information, University

More information

Mechanical characterization of single crystal BaTiO 3 film and insitu. XRD observation of microstructure change due to

Mechanical characterization of single crystal BaTiO 3 film and insitu. XRD observation of microstructure change due to 76 Chapter 4 Mechanical characterization of single crystal BaTiO 3 film and insitu XRD observation of microstructure change due to mechanical loading 4.1 Introduction Ferroelectric materials have many

More information

Variable Capacitance Accelerometers: Design and Applications

Variable Capacitance Accelerometers: Design and Applications Variable Capacitance Accelerometers: Design and Applications Micromachined silicon variable-capacitance accelerometers are designed for easy manufacture and demanding applications. Tom Connolly, Endevco

More information

Basic Principle of Strain Gauge Accelerometer. Description of Strain Gauge Accelerometer

Basic Principle of Strain Gauge Accelerometer. Description of Strain Gauge Accelerometer Basic Principle of Strain Gauge Accelerometer When a cantilever beam attached with a mass at its free end is subjected to vibration, vibrational displacement of the mass takes place. Depending on the displacement

More information

Study of Solder Ball Bump Bonded Hybrid Silicon Pixel Detectors at DESY

Study of Solder Ball Bump Bonded Hybrid Silicon Pixel Detectors at DESY Study of Solder Ball Bump Bonded Hybrid Silicon Pixel Detectors at DESY S. Arab, S. Choudhury, G. Dolinska, K. Hansen, I. Korol, H. Perrey, D. Pitzl, S. Spannagel ( DESY Hamburg ) E. Garutti, M. Hoffmann,

More information

UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices

UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices 1 UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices Katsuya Watanabe

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Wire. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Wire July 30, 2002 1 The Wire transmitters receivers schematics physical 2 Interconnect Impact on

More information

Sensors and Transducers. mywbut.com

Sensors and Transducers. mywbut.com Sensors and Transducers 1 Objectives At the end of this chapter, the students should be able to: describe the principle of operation of various sensors and transducers; namely.. Resistive Position Transducers.

More information

Friction and Elongation of Al Electrodes due to Micro-Sliding between the Inner Mo Electrode and the Al Electrodes in High-Power Devices

Friction and Elongation of Al Electrodes due to Micro-Sliding between the Inner Mo Electrode and the Al Electrodes in High-Power Devices Materials Transactions, Vol. 43, No. 9 (2002) pp. 2326 to 2330 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Friction and Elongation of Al Electrodes due to Micro-Sliding between the Inner

More information

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 003, Advances in X-ray Analysis, Volume 46. 6 DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

2W, 2816, SL Type Low Resistance Chip Resistor (Lead / Halogen Free)

2W, 2816, SL Type Low Resistance Chip Resistor (Lead / Halogen Free) 2W, 2816, SL Type (Lead / Halogen Free) 1. Scope This specification applies to 4.2mm x 7.1mm size 2W, fixed metal foil current sensing resistors used in electronic equipment. 2. Features / Applications

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

Background Statement for SEMI Draft Document #5691 New Standard: Test Method for Measurement of Chip (Die) Strength by Mean of Cantilever Bending

Background Statement for SEMI Draft Document #5691 New Standard: Test Method for Measurement of Chip (Die) Strength by Mean of Cantilever Bending Background Statement for SEMI Draft Document #5691 New Standard: Test Method for Measurement of Chip (Die) Strength by Mean of Cantilever Bending Notice: This background statement is not part of the balloted

More information

884 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO. 5, MAY 2012

884 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO. 5, MAY 2012 884 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO., MAY 212 Ultrasonic Bonding of Anisotropic Conductive Films Containing Ultrafine Solder Balls for High-Power and

More information