Combinational Circuits Verification. 2. Verification by Equivalence Checking. Combinational Equivalence Checking (con t)

Size: px
Start display at page:

Download "Combinational Circuits Verification. 2. Verification by Equivalence Checking. Combinational Equivalence Checking (con t)"

Transcription

1 Comintionl Ciruits Verifition 2. Verifition y Equivlene Cheking Pge Comintionl Ciruits Verifition 2.2 Propositionl Logi (Clulus) 2.5 Propositionl Resolution 2. Stålmrk s Proedure 2.9 Redued Ordered Binry Deision Digrms (ROBDDs) 2.23 Sequentil Ciruits Verifition 2.55 Reltionl Representtion of FSMs 2.56 Reltionl Produt of FSMs 2.6 Rehility Anlysis on FSMs 2.62 Equivlene Cheking Tools 2.7 Referenes 2.73 Consist of n interonnetion of logi gtes AND, OR, NOT, NAND, NOR, XOR, XNOR, nd loks implementing more omple logi (Boolen) funtions. No logil loops, i.e., topologilly there my e loops, ut they re not sensitile under ny (vlid) input omintion, even suh loops my e prohiited / not produed y utomted nlysis / synthesis tools Gol Given two Boolen netlists, hek if the orresponding outputs of the two iruits re equl for ll possile inputs Two iruits re equivlent iff the Boolen funtion representing the outputs of the networks re logilly equivlent Identify equivlene points nd implitions etween the two iruits to simplify equivlene heking Sine typil design proeeds y series of lol hnges, in most ses there re mny implitions / equivlent suiruits in the two iruits to e ompred Vrious tutology/stisfiility heking lgorithms sed on heuristis (prolem is NPomplete, ut mny work well on rel pplitions...) In this ourse we onsider three min omintionl equivlene heking methods: - Propositionl resolution method (tutology/stisfiility heking) - Stålmrk s method (reent ptented lgorithm, very effiient nd populr) - ROBDD-sed method (Boolen funtion onverted into ROBDD s representtion) 2. (of 73) 2.2 (of 73) Comintionl Equivlene Cheking Comintionl Equivlene Cheking (on t) Epliit Proof Impliit Proof f = flg: T/F Tutology Chek d f (,,) out f2 (f = f2) = T Propositionl resolution Stålmrk s proedure y q p f2(,y,) out 2 y hek! ROBDDs ROBDDs 2.3 (of 73) 2.4 (of 73)

2 Propositionl Logi (Clulus) Propositionl Logi (ont d) Synt P, Q, R,... propositionl symols (tomi propositions) t: true; f: flse onstnts P: not P P Q: P nd Q P Q: P or Q; P Q: if P then Q (proposition equivlent to P Q) P Q: P if nd only if Q, i.e., P equivlent to Q (proposition equivlent to (P Q) P Q) ) Semntis Given through the Truth Tle: Formul F is stisfile (onsistent) iff it is true under t lest one interprettion Formul F is unstisfile (inonsistent) iff it is flse under ll interprettions Formul F is vlid iff it is true (onsistent) under ll interprettions Interprettion I stisfies formul F (I is model of F) iff F is true under I. Nottion: I F Theorem: A formul F is vlid ( tutology) iff F is unstisfile. Nottion: The reltionship etween F to F n e visulied y mirror priniple : All formuls in propositionl logi F P Q P P Q P Q P Q P Q t t f t t t t t f f f t f f f t t f t t f f f t f f t t An interprettion is funtion from the propositionl symols to {t, f} Vlid formuls G Stisfile, ut non-vlid formuls F F Unstisfile formuls To determine if F is stisfile or vlid, test finite numer (2 n ) of interprettions of the n tomi propositions ourring in F... ut it is n eponentil method... stisfiility is n NP-omplete prolem G 2.5 (of 73) 2.6 (of 73) Propositionl Logi (ont d) Proofs A proof of proposition is derived using ioms, theorems, nd inferene rules (n inferene rule permits deduing onlusions sed on the truth of ertin premises) A logi formul F is deduile from the set S of sttements if there is finite proof of F strting from elements of S. Nottion: S F Emple: A simple proof system Aioms: K: A (B A) S: (A (B C)) ((A B) (A C)) DN: A A Inferene rule (Modus Ponens): {A B, A} B A proof of A A () (2) (3) (4) (5) (A ((D A) A)) ((A (D A)) (A A)) A ((D A) A) (A (D A)) (A A) A (D A) A A y S ([B\D A], [C\A]) y K ([B\D A]) y MP, (), (2) y K y MP, (3), (4). Propositionl Logi (ont d) Reltion etween synt nd semntis Truth tles provide mens of deiding truth Propositionl logi is: - omplete: everything tht is true my e proven, i.e., if S A then S A - onsistent (sound): nothing tht is flse my e proven. i.e., if S A then S A - deidle: there is n lgorithm for deiding the truth of ny proposition, i.e., test finite (eponentil) numer of truth ssignments 2.7 (of 73) 2.8 (of 73) 2

3 Flse Negtive & Flse Positive Comintionl Equivlene Cheking Let P e proposition ( property) nd A verifition method (lgorithm). Flse Negtive: (similr to inompleteness) A(P) reports true interprettion, (P) = true A(P) reports flse ( interprettion, (P) = true)! Flse Positive: (similr to inonsisteny, unsoundness) A(P) reports flse interprettion, (P) = flse A(P) reports true ( interprettion, (P) = flse)! (, (P) = flse) (, (P) = true) Determine if two epressions f nd f2 denote the sme truth tle Applition: Determine if two omintionl logi iruit designs C nd C2 implement the sme truth tle (logi (Boolen) funtion) - Etrt representtion of logi epressions f nd f2 - Verify if (f f2) is vlid formul, i.e., f f2 is unstisfile using stisfiility lgorithms (Propositionl Resolution methods), or (f f2) nd (f2 f) hold (where f nd f2 re trnsformed to implition form using Stålmrk s proedure), or f nd f2 hve the sme nonil form using, e.g., Redued Binry Deision Digrms 2.9 (of 73) 2. (of 73) Propositionl Resolution A Literl L is n tomi proposition A or its negtion A A Cluse C is finite set of disjuntive literls (C = L L 2 L 3 C is true iff one of its elements is true. The empty luse is lwys flse. Let A, A 2,... e tomi propositions nd L i, j literls Conjuntive Norml Form (CNF): onjuntion of disjuntions of literls n m i F=( ( L i, j )), where L i, j {A,A 2,...} { A, A 2,...} i= j= Disjuntive Norml Form (DNF): disjuntion of onjuntions of literls n m i F=( ( L i, j )), where L i, j {A,A 2,...} { A, A 2,...} i= j= Eh L i, j {A,A2,...} { A, A2,...} ppers in eh disjunt (onjunt) t most one! Theorem: For every logi formul F, there is n equivlent CNF nd n equivlent DNF Cnonil Conjuntive Form (CCF): CNF in whih eh L ppers etly one Cnonil Disjuntive Form (DCF): DNF in whih eh L ppers etly one Propositionl Resolution (ont d) Resolution is proof method underlying some utomti theorem provers sed on simple syntti trnsformtion nd refuttion. Refuttion is proedure to show tht given formul is unstisfile Resolution proedure: - To prove F, we trnslte F into set of luses, eh disjuntion of tomi formule or their negtions. - Eh resolution step tkes two luses nd yields new one. - The method sueeds if it produes the empty luse ( ontrdition), thus refuting F. 2. (of 73) 2.2 (of 73) 3

4 Propositionl Resolution (ont d) Propositionl Resolution (ont d) Let F=(L,... L,n )... (L k,... L k,nk ) where literls L i, j {A,A 2,...} { A, A 2,...} F n e viewed s set of luses: F={{L,,..., L,n },..., {L k,..., L k,nk }}, where - Comm seprting two literls within luse orresponds to - Comm seprting two luses orresponds to Let L e literl in luse C (L C ) nd its omplement L in luse C 2 (L C 2 ), Cluse R is resolvent of C nd C 2 if: R = (C {L}) (C 2 {L}) Emple: F = {{p, r}, {q, r}, { q}, { p, v}, { s}, {s, v}}. {p, r} {q, r p, v {s, v {p, q} { q} { p, s { s {p} { } { p} A (resolution) dedution of C from F is finite sequene C, C 2,..., C n of luses suh tht eh C i is either in F or resolvent of C j, C k, (j, k < i) Res(F) = F R where R is resolvent of two luses in F Lemm. F nd F R re equivlent Define Res (F) = F, Res n+ (F) = Res( Res n (F) ), n Let Res * (F) = Res n (F) n Theorem. F is unstisfile iff Res * (F) Algorithm: to deide stisfiility of formul F in CNF (luse set): repet G:=F; F:=Res(F) until (( F) or (F = G); if F then F is unstisfile else F is stisfile. 2.3 (of 73) 2.4 (of 73) Summry of si ide: Propositionl Resolution (ont d) Two iruits C nd C2 Propositinl Resolution - Emple Gol: G in DNF is vlid? G is unstisfile F = G out out2 C C2 =? in CNF: F = (L,.. L,n )... (L k,... L k,nk ) F = {{L,,..., L,n },..., {L k,..., L k,nk }} Resolution Refuttion proedure F={ } (ontrdition) Propositionl Resolution C: out = C2: out2 = ( ) ( ) (Mu: out2 = ( s ) (s ) ) G = (out out2) 2.5 (of 73) 2.6 (of 73) 4

5 G = (out out 2) ( out out 2) (DNF) Theorem Proving =true? F = G = out out 2) ( out out 2)) = Flse? (unstifile!) out out2 CNF F = out out 2) (out out 2) = ( ) ) )]) ( ) ) )]) =... = ( ) ) ) out = ( s ) (s ) = ( ) ) s out2 = Literls: {{ }, { }, {, }} = ( ) = ( ) ) = ) = = { } {, {} { } derive empty luse { } { } out2 = out 2.7 (of 73) 2.8 (of 73) Stålmrk s Proedure Trnsform propositionl formul G (in liner time) in nested implition form, e.g.: G = (p (q r)) s G is now represented using set of triplets { i,, y}, mening i ( y), e.g.: (p (q r)) s eomes {(, q, r), ( 2, p, ), ( 3, 2, s)}; G = 3 To prove formul vlid, ssume tht it is flse nd try to find ontrdition (use for flse nd for true, s in swithing (Boolen) lger) Derivtion rules: (/ mens reple y ) r (, y, ) y/, / mening flse (y ) implies y = true nd = flse r2 (, y, ) / mening (y true) implies = true r3 (,, ) / mening (flse ) implies = true r4 (,, ) / mening (true ) implies = r5 (, y, ) / y mening (y ) implies = y r6 (,, ) /, / mening ( ) implies = true nd = true r7 (, y, y) / mening (y y) implies = true Emple: G = (p (q p)) : {(, q, p), ( 2, p, )}, ssume G = 2 =, i.e., (, p, ) By r : p = nd =, sustitute for nd get (, q, ) (whih is terminl triplet) Agin y r this is ontrdition sine / is derived for in r, hene 2 = G = (true) Stålmrk s Proedure (ont d) Not ll formuls n e proved with these rules, need form of rnhing: Dilemm rule T = set of triplets, D i, i =, 2, re derivtions, results U[S ] nd V[S 2 ], onlusion T[S] T T[/] D U[S ] T[S] T[/] D 2 V[S 2 ] Assume = derive result, then ssume = nd lso derive result. - If either derivtion gives ontrdition, the result is the other derivtion - If oth re ontrditions, then T ontins ontrdition - Otherwise return the intersetion of the result of the two derivtions, sine ny informtion gined from = nd = must e independent of tht vlue Emple: T = { (, p, p), (, p, p) } nnot e resolved using r - r7 T[p/] = {(,, ), (,, )} where (,, ) is ontrdition T[p/] = {(,, ), (,, )} where (,, ) is gin ontrdition Hene T[S] results in ontrdition. 2.9 (of 73) 2.2 (of 73) 5

6 Stålmrk s Proedure (ont d) Trnsformtion from nd-or-not logi to implition form: not: G = A A (, A, ), G = or: G= A B A B, y, B (y, A, ), G = nd: G= A B A B, y, (y, A, ), (, B, ), G = Emple of equivlene heking: y. C = {(y, e, ), (e,, ), (, f, ), (f,, g), (g,, )} Chek y t nd t y y t: Form C C2 {(, y, t)} whih y r yields [y/, t/] nd fter sustitution {(, e, ), (e,, ), (, f, ), (f,, g), (g,, ), (, h, s), (h,, ), (s, u, ), (u, r, v), (v,, ), (r, w, ), (w,, p), (p,, )} giving y r gin [h/, s/] nd.... r C2 = {(t, h, s), (h,, ), (s, u, ), (u, r, v), (v,, ), (r, w, ), (w,, p), (p,, )} s t Stålmrk s Proedure (ont d) Emple of equivlene heking (ont d): {(, e, ), (e,, ), (, f, ), (f,, g), (g,, ), (,, ), (, u, ), (u, r, v), (v,, ), (r, w, ), (w,, p), (p,, )} pply r nd r5 nd get [u/, e/, / f, g/, v/, r/ w, p/ ] whih yields {(,, f), (f,, ), (,, ), (, w, ), (w,, )} Applition of Dilemm rule to, sy, yields: = : {(,, f), (f,, ), (,, ), (, w, ), (w,, )} yields [f/, w/] y r2, thus {(,, ), (,, ), (,, ), (,, )} i.e., (,, ) is ontrdition = : {(,, f), (f,, ), (,, ), (, w, ), (w,, )} ontrdition gin Conlusion: y t holds. Similrly for t y The two iruits re equivlent. 2.2 (of 73) 2.22 (of 73) Binry Deision Digrms (BDDs) Clssil representtion of logi funtions: Truth Tle, Krnugh Mps, Sum-of-Produts, ritil omplees, et. Critil drwks: - My not e nonil form or is too lrge (eponentil) for useful funtions, Equivlene nd tutology heking is hrd - Opertions like omplementtion my yield representtion of eponentil sie Redued Ordered Binry Deision Digrms (ROBDDs) A nonil form for Boolen funtions Often sustntilly more ompt thn trditionl norml forms Cn e effiiently mnipulted Introdued minly y R. E. Brynt (986). Vrious etensions eist tht n e dpted to the sitution t hnd (e.g., the type of iruit to e verified) Binry Deision Trees A Binry deision Tree (BDT) is rooted, direted grph with terminl nd nonterminl verties Eh nonterminl verte v is leled y vrile vr(v) nd hs two suessors: - low(v) orresponds to the se where the vrile v is ssigned - high(v) orresponds to the se where the vrile v is ssigned Eh terminl verte v is leled y vlue(v) {, } Emple: BDT for two-it omprtor, f(, 2,, 2 ) = ( ) ( 2 2 ) Unordered 2 vriles (of 73) 2.24 (of 73) 6

7 Binry Deision Trees (ont d) We n deide if truth ssignment = (,..., n ) stisfies formul in BDT in liner time in the numer of vriles y trversing the tree from the root to terminl verte: -If vr(v) is, the net verte on the pth is low(v) -If vr(v) is, the net verte on the pth is high(v) -If v is terminl verte then f() = f v (,..., n ) = vlue(v) -If v is nonterminl verte with vr(v)= i, then the struture of the tree is otined y Shnon s epnsion f v (,..., n ) = i f low(v) (,..., n )] [ i f high(v) (,..., n )] For the omprtor, (, 2,, 2 ) leds to terminl verte leled y, i.e., f(,,, ) = Binry deision trees re redundnt: - In the omprtor, there re 6 sutrees with roots leled y 2, ut not ll re distint Merge isomorphi sutrees: - Results in direted yli grph (DAG), inry deision digrm (BDD) Cnonil Form property Redued Ordered BDD A nonil representtion for Boolen funtions is desirle: two Boolen funtions re logilly equivlent iff they hve isomorphi representtions This simplifies heking equivlene of two formuls nd deiding if formul is stisfile Two BDDs re isomorphi if there eists ijetion h etween the grphs suh tht - Terminls re mpped to terminls nd nonterminls re mpped to nonterminls - For every terminl verte v, vlue(v) = vlue(h(v)), nd - For every nonterminl verte v: vr(v) = vr(h(v)), h(low(v)) = low(h(v)), nd h(high(v)) = high(h(v)) Brynt (986) showed tht BDDs re nonil representtion for Boolen funtions under two restritions: () the vriles pper in the sme order long eh pth from the root to terminl (2) there re no isomorphi sutrees or redundnt verties Redued Ordered Binry Deision Digrms (ROBDDs) 2.25 (of 73) 2.26 (of 73) Cnonil Form Property Requirement (): Impose totl order < on the vriles in the formul: if verte u hs nonterminl suessor v, then vr(u) < vr(v) Requirement (2): repetedly pply three trnsformtion rules (or impliitly in opertions suh s disjuntion or onjuntion) Cnonil Form Property (ont d) 2. Remove duplite nonterminls: if nonterminls u nd v hve vr(u) = vr(v), low(u) = low(v) nd high(u) = high(v), eliminte one of the two verties nd rediret ll inoming rs to the other verte shre.remove duplite terminls: eliminte ll ut one terminl verte with given lel nd rediret ll rs to the eliminted verties to the remining one 3. Remove redundnt tests: if nonterminl verte v hs low(v) = high(v), eliminte v nd rediret ll inoming rs to low(v) 2.27 (of 73) 2.28 (of 73) 7

8 Creting the ROBDD for y Cnonil Form Property (ont d) () y y A nonil form is otined y pplying the trnsformtion rules until no further pplition is possile Brynt showed how this n e done y proedure lled Redue in liner time Applitions: - heking equivlene: verify isomorphism etween ROBDDs - non-stisfiility: verify if ROBDD hs only one terminl node, leled y - tutology: verify if ROBDD hs only one terminl node, leled y () eomes eomes Emple: ROBDD of 2-it Comprtor with vrile order < < 2 < 2 : () y y (of 73) 2.3 (of 73) ROBDD Emples ROBDD Emples (on t) OR out = f (,) = AND out = f (,) = out BDD ROBDD BDD ROBDD 2.3 (of 73) 2.32 (of 73) 8

9 ROBDD Emples (on t) ROBDD Emples (on t) XOR out = f(,) = NAND s out = f(,) = ( ) BDD ROBDD BDD out red T.T. ROBDD out (of 73) 2.34 (of 73) Vrile Ordering Prolem Vrile Ordering Prolem - Emple The sie of n ROBDD depends ritilly on the vrile order For order < 2 < < 2, the omprtor ROBDDeomes: y 2 y2 3 y y y y y y y y y y2 y 2 y2 y 2 For n n-it omprtor: < <... < n < n gives 3n+2 verties (linerompleity) <... < n <... < n, gives 32 n verties (eponentilompleity!) 2 y2 y2 y2 y2 y3 y3 y3 3 y (of 73) 2.36 (of 73) 9

10 Vrile Ordering Prolem (ont d) Logi Opertions on ROBDDs The prolem of finding the optiml vrile order is NP-omplete Some Boolen funtions hve eponentil sie ROBDDs for ny order (e.g., multiplier) Heuristis for Vrile Ordering Heuristis developed for finding good vrile order (if it eists) Intuition for these heuristis omes from the oservtion tht ROBDDs tend to e smller when relted vriles re lose together in the order (e.g., ripple-rry dder) Vriles ppering in suiruit re relted: they determine the suiruit s output should usully e lose together in the order Dynmi Vrile Ordering Useful if no ovious stti ordering heuristi pplies During verifition opertions (e.g., rehility nlysis) funtions hnge, hene initil order is not good lter on Good ROBDD pkges periodilly internlly reorder vriles to redue ROBDD sie Bsi pproh sed on neighoring vrile ehnge... < < <......< < <... Among numer of trils the est is tken, nd the ehnge is repeted Residul funtion (oftor): {, } f i (,..., n ) = f(,..., i-,, i+,..., n ) ROBDD of f i omputed y depth-first trversl of the ROBDD off: For ny verte v whih hs pointer to verte w suh tht vr(w) = i, reple the pointer y low(w) if is nd y high(w) if is. If not in nonil form, pply Redue to otin ROBDD of f i. All 6 two-rgument logi opertions on Boolen funtion implemented effiiently on ROBDDs in liner time in the sie of the rgument ROBDDs (of 73) 2.38 (of 73) Logi Opertions on ROBDDs (ont d) Logi Opertions on ROBDDs (ont d) Bsed on Shnnon s epnsion f = [ f ] [ f ] Brynt (986) gve uniform lgorithm, Apply, for omputing ll 6 opertions: f * f : n ritrry logi opertion on Boolen funtions f nd f v nd v : the roots of the ROBDDs for f nd f, = vr(v) nd = vr(v ) Consider severl ses depending on v nd v () v nd v re oth terminl verties: f * f = vlue(v) * vlue(v ) (2) = : use Shnnon s epnsion f * f = [ (f * f )] (f * f )] to rek the prolem into two suprolems, eh is solved reursively The root is v with vr(v) = Low(v) is (f * f ) High(v) is (f * f ) (3) < : f =f = f sine f does not depend on In this se the Shnnon s epnsion simplifies to f * f = [ (f * f )] (f * f )], similr to (2) nd ompute suprolems reursively, (4) < : similr to the se ove Improvement using the if-then-else (ITE) opertor: ITE(F, G, H) = F. G + F. H where F, G nd H re funtions Reursive lgorithm sed on the following, v is the top vrile (lowest inde): ITE(F, G, H) = = = v.(f.g + F.H) v + v.(f.g + F.H) v v.(f v.g v + F v.h v ) + v.(f v.g v +F v.h v ) (v, ITE(F v, G v, H v ), ITE(F v, G v,h v )) With terminl ses eing: F = ITE(, F, G) = ITE(, G, F) = ITE(F,, ) = ITE(G, F, F) we define NOT(F) = ITE(F,, ) OR(F, G) = ITE(F,, G) AND(F, G) = ITE(F, G, ) XOR(F, G) = ITE(F, G, G) LEQ(F, G) = ITE(F, G, ) et (of 73) 2.4 (of 73)

11 Logi Opertions on ROBDDs (ont d) By using dynmi progrmming, it is possile to mke the ITE lgorithm polynomil: () The result must e redued to ensure tht it is in nonil form; - reord onstruted nodes (unique tle); - efore reting new node, hek if it lredy eists in this unique hsh tle (2) Reord ll previously omputed funtions in hsh tle (omputed tle); - must e implemented effiiently s it my grow very quikly in sie; - efore omputing ny funtion, hek tle for solution lredy otined Complement edges n redue the sie of n ROBDD y ftor of 2 - Only one terminl node is leled - Edges hve n ttriute (dot) to indite if they re inverting or not - To mintin noniity, dot n pper only on low(v) edges - Complementtion hieved in O() Comprtor: F time y pling dot on the funtion edge - F nd F n shre entry in omputed tle 2 - Adpttion of ITE esy 2 Test for F G n e omputed y speilied ITE_CONSTANT lgorithm Tsk: ompute ROBDD for f (,) BDD Opertors - Emple y out = f (,) ) f = y = ( ) ( ) order,. out out (of 73) 2.42 (of 73) BDD Opertors - Emples (on t) 2) f = y BDD f = BDD BDD y = Conj (BDD,BDD y ) BDD BDD y = : = = : = = : = = : = = = Other Deision Digrms Multiterminl BDD (MTBDD): Pseudo-Boolen funtions B n N, terminl nodes re integers Binry Moment Digrms (BMD): for representing nd verifying rithmeti opertions, word-level representtion Ordered Kroneker Funtionl BDDs (OKFBDD): Bsed on XOR opertions nd OBDD Free BDDs (FBDD): Different vrile order long different pths in the grph Zero suppressed BDDs (ZBDD) Comintion of vrious forms of DDs integrted in DD softwre pkges: Drehsler et l (U. Freiurg, Germny), Clrke et l (Crnegie Mellon U., USA) Etension to represent systems of liner nd Boolen onstrints (DTU) Multiwy Deision Digrms (MDG): Representtion for suset of equtionl firstorder logi for modeling stte mhines with strt nd onrete dt (U. of Montrel) Well known ROBDD pkges: CMU (s used in SMV from Crnegie Mellon U.) CUDD, U. of Colordo t Boulder (s used in VIS from UC t Berkeley) Industril pkges: Intel, Luent, Cdene, Synopsys, Bull Systems, et (of 73) 2.44 (of 73)

12 Applitions of ROBDDs Comintionl Equivlene Chequing - Emple ROBDD: Constrution DD from iruit desription: - Depth-first vs. redth-first onstrution (keep only few levels in memory, rest on disk; prolem with dynmi reordering) - Prtitioning of Boolen spe, eh prtition represented y seprte grph - Bottom-up vs. top-down, introduing deomposition points Internl orrespondenes in the two iruits equivlent funtions, or omple reltions Two iruits C nd C2 out out 2 C C2 =? ATPG-sed: Comine iruits with n XOR gte on the outputs, show ineistene of test for fult s- - on the output (i.e., the output would hve to e driven to mening tht there is differene in the two iruits) Use ATPG nd lerning to determine equivlent iruit nodes Fst rndom simultion: Detet quikly esy differenes Rel tools: Use omintion of tehniques, fst nd less powerful first, slow ut et lter C: C2: if then else MUX: if then else isomorph 2.45 (of 73) 2.46 (of 73) Comintionl Equivlene Cheking Multipleor Emple Mutipleor Emple (on t) Build ROBDD for Imp: Speifition:if = then out = else out = Build ROBBD for Spe: out Implementtion: out = ( ) ( ) ROBDD: order:,, out out 2.47 (of 73) : y: y disjuntion (or) out ROBDD2 order:,, isomorph to ROBDD! 2.48 (of 73) 2

13 Multipleor Emple (on t) Comprtor Emple Alterntive wy to uild ROBDD2: out = order:,, out 2 ˆ ˆ 2 f ˆ ˆ Spe: f ˆ = ˆ if ˆ = ˆ BBD ROBBD isomorph to ROBDD Refinement: f (, 2,, 2 ) = if ( = ) 2 = 2 ) Impliit: ˆ = 2 ˆ = = = f (...) 2.49 (of 73) 2.5 (of 73) Comprtor Emple (ont d) Comprtor Emple (ont d) y y = : = y y T: T2: disj: T, T2, T2 = = 2 2 f= T T2 f ( ) T3: 2 2 T4: 2 2 disj: T3, T4, T T4 T3 2.5 (of 73) 2.52 (of 73) 3

14 Comprtor Emple (ont d) Equivlene Cheking in Prtie Usully, omintionl iruits implement rithmeti nd logi opertions, nd net-stte nd output funtions of finite-stte mhines (sequentil iruits) onj. T 2, T 34,, 2, 2 order:,, 2, 2 ) independent Isomorph to the spe Verifying the ehvior of the gte-level implementtion ginst the RTL design of digitl systems n often e redued to verifying the omintionl iruits - Equivlene omprison etween the net-stte nd output funtions (omintionl iruits) - Requires tht oth hve the sme stte spe (nd of ourse inputs nd outputs), knowing the mpping etween sttes helps... - Cn lso e used to verify gte-level implementtion ginst gte-level model etrted from lyout - This kind of verifition is useful for onfirming the orretness of mnul hnges or synthesis tools If the stte spe is not the sme, sequentil (ehviorl equivlene) of FSM must e onsidered (of 73) 2.54 (of 73) Sequentil Ciruits nd Finite Stte Mhines Reltionl Representtion of FSM Com. Logi f(, y) Com. Logi g(, y) r y y r s Clok To verify the ehvior of suh iruits we need effiient representtion for the mnipultion of net-stte nd output funtions nd sets of sttes Using hrteristi funtions of reltions nd sets r = (r,..., r s ) vetor of memory its stte vriles, memorie enoded sttes y = (y,..., y s ) vetor of present stte vlues y = (y,..., y s ) vetor of net stte vlues = (,..., m ) vetor of input its enode input symols = (,..., n ) vetor of output its enode output symols f = output funtion, f(, y) = Mely, f(y) = Moore g = net-stte funtion Here we onsider FSM synhronied on lok trnsitions synhronous sequentil iruits Representtion of Reltions nd Sets If R is n-ry reltion over {,} then R n e represented y (the ROBDD of) its hrteristi funtion: f R (v,...,v n ) = iff (v,...,v n ) R - Sme tehnique n e used to represent sets of sttes Trnsition reltion N of sequentil iruit is represented y its Boolen hrteristi funtion over inputs nd stte vriles: N(, y,..., y s,y,..., y s ) Emple: synhronous modulo 8 ounter, N(y, y ) = N (y, y ) N (y, y ) N 2 (y, y 2 ) y 2 y 2 y y Register (3 its) y y Net stte y : y = y y = y y y 2 = (y y y 2 Trnsition reltion N(y,y ): N (y,y ) = (y y ) N (y,y ) = (y y y ) N 2 (y,y ) = (y 2 (y y y 2 ) 2.55 (of 73) 2.56 (of 73) 4

15 Reltionl Representtion of FSM (ont d) Reltionl Representtion of FSM (ont d) Quntified Boolen Formuls (QBF) Needed to onstrut omple reltions nd mnipulte FSMs V={v,v 2,..., v n } = set of Boolen (propositionl) vriles QBF(V) is the smllest set of formuls suh tht - every vrile in V is formul - if f nd g re formuls, then f, f g, f g re formuls - if f is formul nd v V, then v.f nd v.f re formuls A truth ssignment for QBF(V) is funtion : V {,} If {,}, then [v ] represents [v ](w) = if v = w [v ](w) = (w) if v w f is formul in QBF(V) nd is truth ssignment: f if f is true under. Quntified Boolen Formuls (ont d) QBF formuls hve the sme epressive power s ordinry propositionl formuls; however, they my e more onise QBF Semntis: reltion is defined reursively: v iff (v)=; f iff f; f g iff f or g; f g iff f nd g; v.f iff [v ] for [v ] f; v.f iff [v ] f nd [v ] f. Every QBF formul n represent n n-ry Boolen reltion onsisting of those truth ssignments for the vriles in V tht mkes the formul true: Boolen hrteristi funtion of the reltion. f = f f,. f = f f In prtie, speil lgorithms needed to hndle quntifiers effiiently (e.g., on ROBDD) 2.57 (of 73) 2.58 (of 73) Sequentil Equivlene Cheking Reltionl Produt of FSMs Bsi Ide: To prove the equivlene of two FSMs M nd M 2 (with the sme input nd output lphet), produt mhine is formed whih tests the equlity of outputs of the two individul mhines in every stte M M 2 Produt Mhine Flg M nd M 2 re equivlent iff the produt mhine produes Flg = true output in every stte rehle from the initil stte Coudert et l. were first to reognie the dvntge of representing set of sttes with ROBDD s: Symoli Bredth-First Serh of the trnsition grph of the produtmhine Their tehnique ws initilly pplied to heking mhine equivlene nd lter etended y MMilln, et l. to symoli model heking of temporl logi formuls (in CTL) Reltionl Produts implementtion using ROBDD A typil tsk in verifition: ompute reltionl produts with strtion of vriles: v.[f(v) g(v)] Algorithm RelProd omputes it in one pss over ROBDDs f(v) nd g(v), insted of onstruting f(v) g(v) RelProd uses omputed tle (result he), nd is sed on Shnnon s epnsion Entries in the he hve the form (f, g, E, h), where E is set of vriles tht re eistentilly qulified out nd f, g nd h re (pointers to) ROBDDs If n entry indeed y f, g nd E is in the he, then previous ll to RelProd (f, g, E) hs returned h, it is not reomputed Algorithm works well in prtie, even if it hs theoretil eponentil ompleity 2.59 (of 73) 2.6 (of 73) 5

16 Reltionl Representtion of FSMs (ont d) Reltionl Produt Algorithm RelProd (f, g: ROBDD, E: set of vriles) if f=flse g=flse then return flse else if f=true g=true then return true else if (f, g, E, h) is hed then return h else let nd y e the top vriles of f nd g, respetively let e the topmost of nd y, h:=relprod(f =, g =,E) h:=relprod(f =, g =,E) if E then h:=or(h, h) {ROBDD: h h} else h:=ifthenelse(, h, h) endif insert (f, g, E, h) in he return h endif Rehility Anlysis on FSMs Computing Set of Rehle Sttes Rehle stte omputtion (stte enumertion) is needed for FSM equivlene nd model heking S = set of sttes, represented y the ROBDD S (V) Find those sttes S rehle in t most one trnsition from S : ROBDD s S (y) nd N(y, y ), ompute n ROBDD representing S: S =S { s s [s S (s, s ) N]} S (y )=S (y ) y i [S (y) N(y,y )] yi y S S S 2 S 2 = S {s s [s S (s, s ) N]} S 2 (y )=S (y ) y i [S (y) N(y,y )] yi y 2.6 (of 73) 2.62 (of 73) Rehility Anlysis on FSMs (ont d) BDD Enoding Rehility Anlysis (ont d) In generl, the sttes rehle in t most k+ steps re represented y: S k+ (y ) = S (y ) y i [ S k (y) N(y.y )] yi y As eh set of sttes is superset of the previous one, nd the totl numer of sttes is finite, t some point, we must hve S k+ = S k, k 2 s the numer of sttes Rehility omputtion n e viewed s finding lest fipoint Wht out inputs? Eistentilly quntify them out in the reltionl produt (equivlent to losing the system with non-deterministi soure of vlues for ) M M2 Bsi ide: = Flg Produt Mhine ) onnet oth mhines to equlity hek of outputs 2) ompute set of rehle sttes 2) representing set of sttes using ROBDD 2) omputing imges of BDDs of ll net sttes (using trnsition reltions) 2) rehility itertion (using imges strting from one initil stte until sequene emerges) R = initil BDD.. R i + = R i Imge R i onvergene; 2.63 (of 73) 2.64 (of 73) 6

17 ROBDD Enoding (ont d) Sequentil Equivlene Cheking Emple Representing set of sttes using ROBDDs ) Connet oth mhines to equlity hek of outputs Set {} {} {,,,,, } i i Formul ROBDD lk out i Q D lk y out mu Q D lk 2 mu y Q D lk y2 flg 2.65 (of 73) 2.66 (of 73) Sequentil Equivlene Cheking Emple (on t) Sequentil Equivlene Cheking Emple (ont d) 2) Representing set of sttes using ROBDD 2) Compute imge of set { } Initil Stte: = = 2 = {,,} set set = { } formul ROBDD 2 imge: trnsition reltion: 2 2 i = i = y= i y= i i 2 y2= i 2 i BDD BDD BDD 2.67 (of 73) 2.68 (of 73) 7

18 Sequentil Equivlene Cheking Emple (ont d) Emple (ont d) 2) Compute imges of set { } { y = i Tnsition Reltion y = i i 3 y2 = i 2 i : : 2: i= i= BDD = (i = ) i = (i = ) = (i = ) i = i = ) i = i = ) = i = ) {{,,}, {,,}} 2 2) Rehility itertion R = 2 R = 2 2 R R 2 = R In terms of sets: R = {} R = {, } R2 = {,} R2 =R BDD2 2 ROBDD disj. BDD BDD2 Converged ll sttes rehed! 2.69 (of 73) 2.7 (of 73) Equivlene Cheking Tools Equivlene Cheking Tools (ont d) Commeril tools: Chryslis: Design Verifier Synopsys: Formlity Cdene: Conforml Verysys: Torndo AHL: ChekOff-E Applition: Used to prove equivlene of two sequentil iruits tht hve the sme stte vriles (or t lest the sme stte spe nd known mpping etween sttes) y verifying tht they hve the sme net-stte nd output funtions Used in ple of gte vs. RTL verifition y simultion Reommendtions: Use modulr design, reltively smll modules, k - 2k gtes Mintin hierrhy during synthesis (not flttening) nd efore lyout: equivlene n e proven hierrhilly muh fster, espeilly for rithmeti iruits ChekOff-E Commeril produt y Astrt Hrdwre Ltd. (UK) nd Siemens AG(Germny) Performs ehviorl omprison of two Finite Stte Mhines Input EDIF netlist + lirry or VHDL VHDL suset (superset of synthesile synhronous VHDL) - no rel time luses (fter, wit for), no onditionl loop sttements Interprets VHDL simultion semntis to uild Miro FSM Converts to Mro FSM y merging trnsition until stilition t eh time t Mro FSM is strting point for ny verifition; representtion in ROBDD Produt disontinued! 2.7 (of 73) 2.72 (of 73) 8

19 Referenes. V. Spershneider, G. Antoniou. Logi: A Foundtion for Computer Siene. Addison- Wesley, S. Reeves, M. Clrke. Logi for Computer Siene. Addison-Wesley, Aln J. Hu, Forml Hrdwre Verifition with BDDs: An Introdution, IEEE Pifi Rim Conferene on Communitions, Computers, nd Signl Proessing, pp , J. Jin, A. Nryn, M. Fujit, nd A. Sngiovnni-Vinentelli, Forml Verifition of Comintionl Ciruits, VLSI Design, R.E. Brynt. Grph-Bsed Algorithms for Boolen Funtion Mnipultion. IEEE Trnstions on Computers, C-35(8), pp , August R.E. Brynt. Symoli Boolen Mnipultion with Ordered Binry Deision Digrms. ACM Computing Surveys, 24(3), 992, pp R.E. Brynt. Binry Deision Digrms nd Beyond: Enling Tehnologies for Forml Verifition. Interntionl Conferene on Computer-Aided Design, pp , S. Minto. Binry Deision Digrms nd Applitions for VLSI CAD. Kluwer Ademi Pulishers, M. Sheern, G. Stålmrk. A tutoril on Stålmrk s proof proedure for propositionl logi. Forml Methods in Systems Design, Kluwer, 999..O. Coudert nd J.C. Mdre, A Unified Frmework for the Forml Verifition of Sequentil Ciruits, Int. Conferene on Computer-Aided Design, pp , 99..H. Touti, H. Svoj, B. Lin, R.K. Bryton, nd A. Sngiovnni-Vinentelli, Impliit Stte Enumertion of Finite Stte Mhines Using BDD s, Int. Conferene on Computer-Aided Design, pp. 3-33, (of 73) 9

2. Verification by Equivalence Checking

2. Verification by Equivalence Checking 2. Verifiction by Equivlence Checking Pge Combintionl Circuits Verifiction 2.2 Propositionl Logic (Clculus) 2.5 Propositionl Resolution 2. Stålmrck s Procedure 2.9 Reduced Ordered Binry Decision Digrms

More information

1. Logic verification

1. Logic verification . Logi verifition Bsi priniples of OBDD s Vrile ordering Network of gtes => OBDD s FDD s nd OKFDD s Resoning out iruits Struturl methods Stisfiility heker Logi verifition The si prolem: prove tht two iruits

More information

Hardware Verification 2IMF20

Hardware Verification 2IMF20 Hrdwre Verifition 2IMF20 Julien Shmltz Leture 02: Boolen Funtions, ST, CEC Course ontent - Forml tools Temporl Logis (LTL, CTL) Domin Properties System Verilog ssertions demi & Industrils Proessors Networks

More information

Unit 4. Combinational Circuits

Unit 4. Combinational Circuits Unit 4. Comintionl Ciruits Digitl Eletroni Ciruits (Ciruitos Eletrónios Digitles) E.T.S.I. Informáti Universidd de Sevill 5/10/2012 Jorge Jun 2010, 2011, 2012 You re free to opy, distriute

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

Propositional models. Historical models of computation. Application: binary addition. Boolean functions. Implementation using switches.

Propositional models. Historical models of computation. Application: binary addition. Boolean functions. Implementation using switches. Propositionl models Historil models of omputtion Steven Lindell Hverford College USA 1/22/2010 ISLA 2010 1 Strt with fixed numer of oolen vriles lled the voulry: e.g.,,. Eh oolen vrile represents proposition,

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 22 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

m2 m3 m1 (a) (b) (c) n2 n3

m2 m3 m1 (a) (b) (c) n2 n3 Outline LOGIC SYNTHESIS AND TWO-LEVEL LOGIC OPTIMIZATION Giovnni De Miheli Stnford University Overview of logi synthesis. Comintionl-logi design: { Bkground. { Two-level forms. Ext minimiztion. Covering

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

Metodologie di progetto HW Technology Mapping. Last update: 19/03/09

Metodologie di progetto HW Technology Mapping. Last update: 19/03/09 Metodologie di progetto HW Tehnology Mpping Lst updte: 19/03/09 Tehnology Mpping 2 Tehnology Mpping Exmple: t 1 = + b; t 2 = d + e; t 3 = b + d; t 4 = t 1 t 2 + fg; t 5 = t 4 h + t 2 t 3 ; F = t 5 ; t

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

Boolean algebra.

Boolean algebra. http://en.wikipedi.org/wiki/elementry_boolen_lger Boolen lger www.tudorgir.com Computer science is not out computers, it is out computtion nd informtion. computtion informtion computer informtion Turing

More information

The State Explosion Problem. Symbolic Encoding using Decision Diagrams. CiteSeer Database. Overview. Boolean Functions.

The State Explosion Problem. Symbolic Encoding using Decision Diagrams. CiteSeer Database. Overview. Boolean Functions. The Stte Eplosion Prolem Smoli Enoding using Deision Digrms 6.42J/6.834J ognitive Rootis Mrtin Shenher (using mteril from Rndl rnt, ln Mishhenko, nd Geert Jnssen) Mn prolems suffer from stte spe eplosion:

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2 BOOLEAN METHODS Giovnni De Miheli Stnford University Boolen methods Exploit Boolen properties. { Don't re onditions. Minimiztion of the lol funtions. Slower lgorithms, etter qulity results. Externl don't

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

2. Binary Decision Diagrams Fachgebiet Rechnersysteme1

2. Binary Decision Diagrams Fachgebiet Rechnersysteme1 2. Binry Deision Digrms Fhgeiet Rehnersysteme 2. Binry Deision Digrms Verifition Tehnology Content 2. BDD onepts 2.22 Vrile orderings 2.3 OBDD lgorithms 2.4 FDD s nd OKFDD s 2.5 Integer vlued deision digrms

More information

Alpha Algorithm: Limitations

Alpha Algorithm: Limitations Proess Mining: Dt Siene in Ation Alph Algorithm: Limittions prof.dr.ir. Wil vn der Alst www.proessmining.org Let L e n event log over T. α(l) is defined s follows. 1. T L = { t T σ L t σ}, 2. T I = { t

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Hybrid Systems Modeling, Analysis and Control

Hybrid Systems Modeling, Analysis and Control Hyrid Systems Modeling, Anlysis nd Control Rdu Grosu Vienn University of Tehnology Leture 5 Finite Automt s Liner Systems Oservility, Rehility nd More Miniml DFA re Not Miniml NFA (Arnold, Diky nd Nivt

More information

Boolean Algebra. Boolean Algebra

Boolean Algebra. Boolean Algebra Boolen Alger Boolen Alger A Boolen lger is set B of vlues together with: - two inry opertions, commonly denoted y + nd, - unry opertion, usully denoted y ˉ or ~ or, - two elements usully clled zero nd

More information

expression simply by forming an OR of the ANDs of all input variables for which the output is

expression simply by forming an OR of the ANDs of all input variables for which the output is 2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Bisimulation, Games & Hennessy Milner logic

Bisimulation, Games & Hennessy Milner logic Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory

More information

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering Petri Nets Ree Alreht Seminr: Automt Theory Chir of Softwre Engeneering Overview 1. Motivtion: Why not just using finite utomt for everything? Wht re Petri Nets nd when do we use them? 2. Introdution:

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

Boolean Function Representation. Logic Synthesis and Verification. Boolean Space. Assumption. Reading: Logic Synthesis in a Nutshell Section 2

Boolean Function Representation. Logic Synthesis and Verification. Boolean Space. Assumption. Reading: Logic Synthesis in a Nutshell Section 2 Logi Synthesis nd Verifition Boolen Funtion Representtion Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 24 Reding: Logi Synthesis in Nutshell Setion 2 most of the

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18 Computt onl Biology Leture 18 Genome Rerrngements Finding preserved genes We hve seen before how to rerrnge genome to obtin nother one bsed on: Reversls Knowledge of preserved bloks (or genes) Now we re

More information

Fujitsu Laboratories of America. 77 Rio Robles, San Jose CA happens when one attempts to compare the functionality. inputs is neglected.

Fujitsu Laboratories of America. 77 Rio Robles, San Jose CA happens when one attempts to compare the functionality. inputs is neglected. VERIFUL : VERItion using FUntionl Lerning Rjrshi Mukherjee y Dept. of Eletril nd Computer Engineering University of Texs t Austin Austin TX 7872 Astrt It is well known tht lerning (i.e., indiret implitions)

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Finite State Automata and Determinisation

Finite State Automata and Determinisation Finite Stte Automt nd Deterministion Tim Dworn Jnury, 2016 Lnguges fs nf re df Deterministion 2 Outline 1 Lnguges 2 Finite Stte Automt (fs) 3 Non-deterministi Finite Stte Automt (nf) 4 Regulr Expressions

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation CS2N: The Coming Revolution in Computer Architecture Lortory 2 Preprtion Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

Exercise 3 Logic Control

Exercise 3 Logic Control Exerise 3 Logi Control OBJECTIVE The ojetive of this exerise is giving n introdution to pplition of Logi Control System (LCS). Tody, LCS is implemented through Progrmmle Logi Controller (PLC) whih is lled

More information

= state, a = reading and q j

= state, a = reading and q j 4 Finite Automt CHAPTER 2 Finite Automt (FA) (i) Derterministi Finite Automt (DFA) A DFA, M Q, q,, F, Where, Q = set of sttes (finite) q Q = the strt/initil stte = input lphet (finite) (use only those

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005 RLETON UNIVERSIT eprtment of Eletronis ELE 2607 Swithing iruits erury 28, 05; 0 pm.0 Prolems n Most Solutions, Set, 2005 Jn. 2, #8 n #0; Simplify, Prove Prolem. #8 Simplify + + + Reue to four letters (literls).

More information

Implication Graphs and Logic Testing

Implication Graphs and Logic Testing Implition Grphs n Logi Testing Vishwni D. Agrwl Jmes J. Dnher Professor Dept. of ECE, Auurn University Auurn, AL 36849 vgrwl@eng.uurn.eu www.eng.uurn.eu/~vgrwl Joint reserh with: K. K. Dve, ATI Reserh,

More information

Revision Sheet. (a) Give a regular expression for each of the following languages:

Revision Sheet. (a) Give a regular expression for each of the following languages: Theoreticl Computer Science (Bridging Course) Dr. G. D. Tipldi F. Bonirdi Winter Semester 2014/2015 Revision Sheet University of Freiurg Deprtment of Computer Science Question 1 (Finite Automt, 8 + 6 points)

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

TIME AND STATE IN DISTRIBUTED SYSTEMS

TIME AND STATE IN DISTRIBUTED SYSTEMS Distriuted Systems Fö 5-1 Distriuted Systems Fö 5-2 TIME ND STTE IN DISTRIUTED SYSTEMS 1. Time in Distriuted Systems Time in Distriuted Systems euse eh mhine in distriuted system hs its own lok there is

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Descriptional Complexity of Non-Unary Self-Verifying Symmetric Difference Automata

Descriptional Complexity of Non-Unary Self-Verifying Symmetric Difference Automata Desriptionl Complexity of Non-Unry Self-Verifying Symmetri Differene Automt Lurette Mris 1,2 nd Lynette vn Zijl 1 1 Deprtment of Computer Siene, Stellenosh University, South Afri 2 Merk Institute, CSIR,

More information

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh Computtionl Biology Leture 8: Genome rerrngements, finding miml mthes Sd Mneimneh We hve seen how to rerrnge genome to otin nother one sed on reversls nd the knowledge of the preserved loks or genes. Now

More information

First Midterm Examination

First Midterm Examination Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 CMSC 330 1 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All exmples so fr Nondeterministic

More information

Refutation-Complete Binary Decision Diagrams

Refutation-Complete Binary Decision Diagrams Refuttion-Complete Binry Deision Digrms Sott P. Snner Deprtment of Computer Siene University of oronto oronto, ON M5S 3G4 ssnner@s.toronto.edu Astrt Binry deision digrms (BDDs) re n pproh to enoding nd

More information

A Differential Approach to Inference in Bayesian Networks

A Differential Approach to Inference in Bayesian Networks Dierentil pproh to Inerene in Byesin Networks esented y Ynn Shen shenyn@mi.pitt.edu Outline Introdution Oeriew o lgorithms or inerene in Byesin networks (BN) oposed new pproh How to represent BN s multi-rite

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2 CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb. CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Behavior Composition in the Presence of Failure

Behavior Composition in the Presence of Failure Behvior Composition in the Presene of Filure Sestin Srdin RMIT University, Melourne, Austrli Fio Ptrizi & Giuseppe De Giomo Spienz Univ. Rom, Itly KR 08, Sept. 2008, Sydney Austrli Introdution There re

More information

Regular expressions, Finite Automata, transition graphs are all the same!!

Regular expressions, Finite Automata, transition graphs are all the same!! CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

More information

Transition systems (motivation)

Transition systems (motivation) Trnsition systems (motivtion) Course Modelling of Conurrent Systems ( Modellierung neenläufiger Systeme ) Winter Semester 2009/0 University of Duisurg-Essen Brr König Tehing ssistnt: Christoph Blume In

More information

Semantics of RTL and Validation of Synthesized RTL Designs using Formal Verification in Reconfigurable Computing Systems

Semantics of RTL and Validation of Synthesized RTL Designs using Formal Verification in Reconfigurable Computing Systems emntis of TL nd Vlidtion of ynthesized TL Designs using Forml Verifition in eonfigurle Computing ystems Phn C. Vinh nd Jonthn P. Bowen London outh Bnk University Centre for Applied Forml Methods, Institute

More information

Fast Boolean Algebra

Fast Boolean Algebra Fst Boolen Alger ELEC 267 notes with the overurden removed A fst wy to lern enough to get the prel done honorly Printed; 3//5 Slide Modified; Jnury 3, 25 John Knight Digitl Circuits p. Fst Boolen Alger

More information

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont. NFA DFA Exmple 3 CMSC 330: Orgniztion of Progrmming Lnguges NFA {B,D,E {A,E {C,D {E Finite Automt, con't. R = { {A,E, {B,D,E, {C,D, {E 2 Equivlence of DFAs nd NFAs Any string from {A to either {D or {CD

More information

Test Generation from Timed Input Output Automata

Test Generation from Timed Input Output Automata Chpter 8 Test Genertion from Timed Input Output Automt The purpose of this hpter is to introdue tehniques for the genertion of test dt from models of softwre sed on vrints of timed utomt. The tests generted

More information

ANALYSIS AND MODELLING OF RAINFALL EVENTS

ANALYSIS AND MODELLING OF RAINFALL EVENTS Proeedings of the 14 th Interntionl Conferene on Environmentl Siene nd Tehnology Athens, Greee, 3-5 Septemer 215 ANALYSIS AND MODELLING OF RAINFALL EVENTS IOANNIDIS K., KARAGRIGORIOU A. nd LEKKAS D.F.

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl systems. It dels with the cse where vriles ssume only one o two vlues: TRUE (usully represented

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

AVL Trees. D Oisín Kidney. August 2, 2018

AVL Trees. D Oisín Kidney. August 2, 2018 AVL Trees D Oisín Kidne August 2, 2018 Astrt This is verified implementtion of AVL trees in Agd, tking ides primril from Conor MBride s pper How to Keep Your Neighours in Order [2] nd the Agd stndrd lirr

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Lecture 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. PMOS Transistors in Series/Parallel Connection

Lecture 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. PMOS Transistors in Series/Parallel Connection NMOS Trnsistors in Series/Prllel onnetion Leture 6 MOS Stti & ynmi Logi Gtes Trnsistors n e thought s swith ontrolled y its gte signl NMOS swith loses when swith ontrol input is high Peter heung eprtment

More information

KNOWLEDGE-BASED AGENTS INFERENCE

KNOWLEDGE-BASED AGENTS INFERENCE AGENTS THAT REASON LOGICALLY KNOWLEDGE-BASED AGENTS Two components: knowledge bse, nd n inference engine. Declrtive pproch to building n gent. We tell it wht it needs to know, nd It cn sk itself wht to

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Nme Dte hpter 9 Mintining Mthemtil Profiieny Simplify the epression. 1. 500. 189 3. 5 4. 4 3 5. 11 5 6. 8 Solve the proportion. 9 3 14 7. = 8. = 9. 1 7 5 4 = 4 10. 0 6 = 11. 7 4 10 = 1. 5 9 15 3 = 5 +

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2 EE08A Leture 2: Comintionl Logi Design EE 08A Leture 2 () 2005-2008 W. J. Dlly n P. Levis Announements Prof. Levis will hve no offie hours on Friy, Jn 8. Ls n setions hve een ssigne - see the we pge Register

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1 ELETRIL ND OMPUTER ENGINEERING DEPRTMENT, OKLND UNIVERSIT EE-78: omputer Hrdwre Design Winter 016 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

EECS 141 Due 04/19/02, 5pm, in 558 Cory

EECS 141 Due 04/19/02, 5pm, in 558 Cory UIVERSITY OF CALIFORIA College of Engineering Deprtment of Electricl Engineering nd Computer Sciences Lst modified on April 8, 2002 y Tufn Krlr (tufn@eecs.erkeley.edu) Jn M. Rey, Andrei Vldemirescu Homework

More information