Logic Synthesis and Verification

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Logic Synthesis and Verification"

Transcription

1 Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most of the following slides re y ourtesy of Andres Kuehlmnn 1 2 Boolen Funtion Representtion Sum of Produts A funtion n e represented y sum of ues (produts): E.g., f = + + Sine eh ue is produt of literls, this is sum of produts (SOP) representtion An SOP n e thought of s set of ues F E.g., F = {,, } A set of ues tht represents f is lled over of f E.g., F 1 ={,, } nd F 2 ={,,, } re overs of f = + +. List of Cues (Cover Mtrix) We often use mtrix nottion to represent over: Exmple F = + d = d d or d Eh row represents ue 1 mens tht the positive literl ppers in the ue 0 mens tht the negtive literl ppers in the ue 2 (or -) mens tht the vrile does not pper in the ue. It impliitly represents oth 0 nd 1 vlues. 3 4

2 PLA A PLA is (multiple-output) funtion f : B n B m represented in SOP form n=3, m=3 over mtrix PLA Eh distint ue ppers just one in the ANDplne, nd n e shred y (multiple) outputs in the OR-plne, e.g., ue () f 1 f 2 f Extensions from single-output to multiple-output minimiztion theory re strightforwrd f 1 f 2 f SOP Irredundnt Cue The over (set of SOPs) n effiiently represent mny prtil logi funtions (i.e., for mny prtil funtions, there exist smll overs) Two-level minimiztion seeks the over of minimum size (lest numer of ues) = onset minterm Note tht eh onset minterm is overed y t lest one of the ues! None of the offset minterms is overed 7 Let F = { 1, 2,, k } e over for f, i.e., f = i k =1 i A ue i F is irredundnt if F\{ i } f Exmple f = + + F\{} f Not overed 8

3 Prime Cue A literl x ( vrile or its negtion) of ue F (over of f) is prime if (F \ {}) { x } f, where x (oftor w.r.t. x) is with literl x of deleted A ue of F is prime if ll its literls re prime Exmple f = xy + xz + yz = xy; y = x (literl y deleted) F \ {} { y } = x + xz + yz z yz xz x Prime nd Irredundnt Cover Definition 1. A over is prime (resp. irredundnt) if ll its ues re prime (resp. irredundnt) Definition 2. A prime (ue) of f is essentil (essentil prime) if there is onset minterm (essentil vertex) in tht prime ut not in ny other prime. Definition 3. Two ues re orthogonl if they do not hve ny minterm in ommon E.g. 1 = x y 2 = y z re orthogonl 1 = x y 2 = y z re not orthogonl inequivlent to f sine offset vertex is overed x y 9 10 Prime nd Irredundnt Cover Exmple f = + d + d is prime nd irredundnt. is essentil sine d, ut not in d or d or d Why is d not n essentil vertex of? Wht is n essentil vertex of? Wht other ue is essentil? Wht prime is not essentil? d d d Inompletely Speified Funtion Let F = (f, d, r) : B n {0, 1, *}, where * represents don t re. f = onset funtion f(x)=1 F(x)=1 r = offset funtion r(x)=1 F(x)=0 d = don t re funtion d(x)=1 F(x)=* (f,d,r) forms prtition of B n, i.e, f + d + r = B n (f d) = (f r) = (d r) = (pirwise disjoint) (Here we don t distinguish hrteristi funtions nd the sets they represent) 11 12

4 Inompletely Speified Funtion A ompletely speified funtion g is over for F = (f,d,r) if f g f+d g r = if x d (i.e. d(x)=1), then g(x) n e 0 or 1; if x f, then g(x) = 1; if x r, then g(x) = 0 We don t re whih vlue g hs t x d Prime of Inompletely Speified Funtion Definition. A ue is prime of F = (f,d,r) if f+d (n implint of f+d), nd no other implint (of f+d) ontins (i.e., it is simply prime of f+d) Definition. Cue j of over G = { i } of F = (f,d,r) is redundnt if f G\{ j }; otherwise it is irredundnt Note tht f+d r = Prime of Inompletely Speified Funtion Exmple Consider logi minimiztion of F(,,)=(f,d,r) with f= + + nd d = + on off don t re F 1 ={,, } Expnd F 2 ={,, } is redundnt is prime F 3 = {, } Expnd Cheking of Prime nd Irredundny Let G e over of F = (f,d,r). Let D e over for d i G is redundnt iff i (G\{ i }) D (1) (Let G i G\{ i } D. Sine i G i nd f G f+d, then i i f+ i dnd i f G\{ i }. Thus f G\{ i }.) A literl l i is prime if ( i \{ l }) ( = ( i ) l ) is not n implint of F A ue i is prime of F iff ll literls l i re prime Literl l i is not prime ( i ) l f+d (2) Note: Both tests (1) nd (2) n e heked y tutology (to e explined): (G i ) i 1 (implies i redundnt) (f d) (i)l 1 (implies l not prime) The ove two oftors re with respet to ues insted of literls F 4 = {, } 15 16

5 (Literl) Coftor Let f : B n B e Boolen funtion, nd x= (x 1, x 2,, x n ) the vriles in the support of f; the oftor f of f y literl = x i or = x i is f xi (x 1, x 2,, x n ) = f (x 1,, x i-1, 1, x i+1,, x n ) f xi (x 1, x 2,, x n ) = f (x 1,, x i-1, 0, x i+1,, x n ) The omputtion of the oftor is fundmentl opertion in Boolen resoning! Exmple f = + f = 17 (Literl) Coftor The oftor Cx j of ue C (representing some Boolen funtion) with respet to literl x j is C if x j nd x j do not pper in C C\{x j } if x j ppers positively in C, i.e., x j C if x j ppers negtively in C, i.e., x j C Exmple C = x 1 x 4 x 6, Cx 2 = C (x 2 nd x 2 do not pper in C ) Cx 1 = x 4 x 6 (x 1 ppers positively in C) Cx 4 = (x 4 ppers negtively in C) 18 (Literl) Coftor Exmple F = + d + d F = + d (Just drop everywhere nd throw wy ues ontining literl ) Coftor nd disjuntion ommute! Shnnon Expnsion Let f : B n B Shnnon Expnsion: f = x i f xi + x i f xi Theorem: F is over of f. Then F = x i F xi + x i F xi We sy tht f nd F re expnded out x i, nd x i is lled the splitting vrile 19 20

6 Shnnon Expnsion Exmple F = + + F = F + F = (++)+ () = +++ Cue got split into two ues (Cue) Coftor The oftor f C of f y ue C is f with the fixed vlues indited y the literls of C E.g., if C = x i x j, then x i = 1 nd x j = 0 For C = x 1 x 4 x 6, f C is just the funtion f restrited to the suspe where x 1 = x 6 = 1 nd x 4 = 0 Note tht f C does not depend on x 1,x 4 or x 6 nymore (However, we still onsider f C s funtion of ll n vriles, it just hppens to e independent of x 1,x 4 nd x 6 ) x 1 f f x1 E.g., for f = +, f = f = nd f = (Cue) Coftor The oftor of the over F of some funtion f is the sum of the oftors of eh of the ues of F If F={ 1, 2,, k } is over of f, then F = {( 1 ), ( 2 ),, ( k ) } is over of f Continment vs. Tutology A fundmentl theorem tht onnets funtionl ontinment nd tutology: Theorem. Let e ue nd f funtion. Then f f 1. Proof. We use the ft tht xf x = xf, nd f x is independent of x. ( ) Suppose f 1. Then f = f =. Thus, f. ( ) Suppose f. Then f+=f. In ddition, (f+) = f +1=1. Thus, f =1. f 23 24

7 Cheking of Prime nd Irredundny (Revisited) Let G e over of F = (f,d,r). Let D e over for d i G is redundnt iff i (G\{ i }) D (1) (Let G i G\{ i } D. Sine i G i nd f G f+d, then i i f+ i dnd i f G\{ i }. Thus f G\{ i }.) A literl l i is prime if ( i \{ l }) ( = ( i ) l ) is not n implint of F A ue i is prime of F iff ll literls l i re prime Literl l i is not prime ( i ) l f+d (2) Note: Both tests (1) nd (2) n e heked y tutology (explined): (G i ) i 1 (implies i redundnt) (f d) (i)l 1 (implies l not prime) The ove two oftors re with respet to ues insted of literls Generlized Coftor Definition. Let f, g e ompletely speified funtions. The generlized oftor of f with respet to g is the inompletely speified funtion: o( f,g) ( f g,g, f g) Definition. Let = (f, d, r) nd g e given. Then o(,g) ( f g,d g,r g) Shnnon vs. Generlized Coftor Shnnon vs. Generlized Coftor Let g = x i. Shnnon oftor is f xi (x 1, x 2,, x n ) = f (x 1,, x i-1, 1, x i+1,, x n ) Generlized oftor with respet to g=x i is Note tht o( f, x i ) ( f x i, x i, f x i ) f on off Don t t re f x i f xi f x i x i f x i In ft f xi is the unique over of o(f, x i ) independent of the vrile x i. o( f,) ( f,, f ) f 27 28

8 Shnnon vs. Generlized Coftor Shnnon vs. Generlized Coftor o( f,) ( f,, f ) Shnnon Coftor Generlized Coftor f So f f f f f f x f x x f x f f x y f xy f g y f y g y f x f x f g o( f,g) g o( f,g) o(o( f, g),h) o( f,gh) o( f g,h) o( f,h) o(g,h) o( f,g) o( f,g) We will get k to the use of generlized oftor lter Dt Struture for SOP Mnipultion most of the following slides re y ourtesy of Andres Kuehlmnn Opertion on Cue Lists AND opertion: tke two lists of ues ompute pir-wise AND etween individul ues nd put result on new list represent ues in omputer words implement set opertions s it-vetor opertions Algorithm AND(List_of_Cues C1,List_of_Cues C2) { C = foreh 1 C1 { foreh 2 C2 { = 1 2 C = C } } return C } 31 32

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 22 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

Propositional models. Historical models of computation. Application: binary addition. Boolean functions. Implementation using switches.

Propositional models. Historical models of computation. Application: binary addition. Boolean functions. Implementation using switches. Propositionl models Historil models of omputtion Steven Lindell Hverford College USA 1/22/2010 ISLA 2010 1 Strt with fixed numer of oolen vriles lled the voulry: e.g.,,. Eh oolen vrile represents proposition,

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

Unit 4. Combinational Circuits

Unit 4. Combinational Circuits Unit 4. Comintionl Ciruits Digitl Eletroni Ciruits (Ciruitos Eletrónios Digitles) E.T.S.I. Informáti Universidd de Sevill 5/10/2012 Jorge Jun 2010, 2011, 2012 You re free to opy, distriute

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

arxiv: v1 [math.ca] 21 Aug 2018

arxiv: v1 [math.ca] 21 Aug 2018 rxiv:1808.07159v1 [mth.ca] 1 Aug 018 Clulus on Dul Rel Numbers Keqin Liu Deprtment of Mthemtis The University of British Columbi Vnouver, BC Cnd, V6T 1Z Augest, 018 Abstrt We present the bsi theory of

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Boolean Algebra. Boolean Algebra

Boolean Algebra. Boolean Algebra Boolen Alger Boolen Alger A Boolen lger is set B of vlues together with: - two inry opertions, commonly denoted y + nd, - unry opertion, usully denoted y ˉ or ~ or, - two elements usully clled zero nd

More information

Functions. mjarrar Watch this lecture and download the slides

Functions. mjarrar Watch this lecture and download the slides 9/6/7 Mustf Jrrr: Leture Notes in Disrete Mthemtis. Birzeit University Plestine 05 Funtions 7.. Introdution to Funtions 7. One-to-One Onto Inverse funtions mjrrr 05 Wth this leture nd downlod the slides

More information

7.2 Riemann Integrable Functions

7.2 Riemann Integrable Functions 7.2 Riemnn Integrble Functions Theorem 1. If f : [, b] R is step function, then f R[, b]. Theorem 2. If f : [, b] R is continuous on [, b], then f R[, b]. Theorem 3. If f : [, b] R is bounded nd continuous

More information

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 ) Neessry n suient onitions for some two vrile orthogonl esigns in orer 44 C. Koukouvinos, M. Mitrouli y, n Jennifer Seerry z Deite to Professor Anne Penfol Street Astrt We give new lgorithm whih llows us

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Boolean algebra.

Boolean algebra. http://en.wikipedi.org/wiki/elementry_boolen_lger Boolen lger www.tudorgir.com Computer science is not out computers, it is out computtion nd informtion. computtion informtion computer informtion Turing

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logic Synthesis and Verification Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 24 Two-Level Logic Minimization (/2) Reading: Logic Synthesis in a Nutshell

More information

Overview of Today s Lecture:

Overview of Today s Lecture: CPS 4 Computer Orgniztion nd Progrmming Lecture : Boolen Alger & gtes. Roert Wgner CPS4 BA. RW Fll 2 Overview of Tody s Lecture: Truth tles, Boolen functions, Gtes nd Circuits Krnugh mps for simplifying

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

1. Logic verification

1. Logic verification . Logi verifition Bsi priniples of OBDD s Vrile ordering Network of gtes => OBDD s FDD s nd OKFDD s Resoning out iruits Struturl methods Stisfiility heker Logi verifition The si prolem: prove tht two iruits

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 + Definite Integrls --5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the left-hnd

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Evaluating Definite Integrals. There are a few properties that you should remember in order to assist you in evaluating definite integrals.

Evaluating Definite Integrals. There are a few properties that you should remember in order to assist you in evaluating definite integrals. Evluting Definite Integrls There re few properties tht you should rememer in order to ssist you in evluting definite integrls. f x dx= ; where k is ny rel constnt k f x dx= k f x dx ± = ± f x g x dx f

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e Green s Theorem. Let be the boundry of the unit squre, y, oriented ounterlokwise, nd let F be the vetor field F, y e y +, 2 y. Find F d r. Solution. Let s write P, y e y + nd Q, y 2 y, so tht F P, Q. Let

More information

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2

y1 y2 DEMUX a b x1 x2 x3 x4 NETWORK s1 s2 z1 z2 BOOLEAN METHODS Giovnni De Miheli Stnford University Boolen methods Exploit Boolen properties. { Don't re onditions. Minimiztion of the lol funtions. Slower lgorithms, etter qulity results. Externl don't

More information

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C. Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx, MATH3403: Green s Funtions, Integrl Equtions nd the Clulus of Vritions 1 Exmples 5 Qu.1 Show tht the extreml funtion of the funtionl I[y] = 1 0 [(y ) + yy + y ] dx, where y(0) = 0 nd y(1) = 1, is y(x)

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations) KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS 6-7 CLASS - XII MATHEMATICS (Reltions nd Funtions & Binry Opertions) For Slow Lerners: - A Reltion is sid to e Reflexive if.. every A

More information

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

F / x everywhere in some domain containing R. Then, + ). (10.4.1) 0.4 Green's theorem in the plne Double integrls over plne region my be trnsforme into line integrls over the bounry of the region n onversely. This is of prtil interest beuse it my simplify the evlution

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A.

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A. 378 Reltions 16.7 Solutions for Chpter 16 Section 16.1 Exercises 1. Let A = {0,1,2,3,4,5}. Write out the reltion R tht expresses > on A. Then illustrte it with digrm. 2 1 R = { (5,4),(5,3),(5,2),(5,1),(5,0),(4,3),(4,2),(4,1),

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then Slrs-7.2-ADV-.7 Improper Definite Integrls 27.. D.dox Pge of Improper Definite Integrls Before we strt the min topi we present relevnt lger nd it review. See Appendix J for more lger review. Inequlities:

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1 ELETRIL ND OMPUTER ENGINEERING DEPRTMENT, OKLND UNIVERSIT EE-78: omputer Hrdwre Design Winter 016 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Ch. 2.3 Counting Sample Points. Cardinality of a Set

Ch. 2.3 Counting Sample Points. Cardinality of a Set Ch..3 Counting Smple Points CH 8 Crdinlity of Set Let S e set. If there re extly n distint elements in S, where n is nonnegtive integer, we sy S is finite set nd n is the rdinlity of S. The rdinlity of

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

is equal to - (A) abc (B) 2abc (C) 0 (D) 4abc (sinx) + a 2 (sin 2 x) a n (A) 1 (B) 1 (C) 0 (D) 2 is equal to -

is equal to - (A) abc (B) 2abc (C) 0 (D) 4abc (sinx) + a 2 (sin 2 x) a n (A) 1 (B) 1 (C) 0 (D) 2 is equal to - J-Mthemtics XRCIS - 0 CHCK YOUR GRASP SLCT TH CORRCT ALTRNATIV (ONLY ON CORRCT ANSWR). The vlue of determinnt c c c c c c (A) c (B) c (C) 0 (D) 4c. If sin x cos x cos 4x cos x cos x sin x 4 cos x sin x

More information

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt Computing dt with spredsheets Exmple: Computing tringulr numers nd their squre roots. Rell, we showed 1 ` 2 ` `n npn ` 1q{2. Enter the following into the orresponding ells: A1: n B1: tringle C1: sqrt A2:

More information

Lecture 3: Curves in Calculus. Table of contents

Lecture 3: Curves in Calculus. Table of contents Mth 348 Fll 7 Lecture 3: Curves in Clculus Disclimer. As we hve textook, this lecture note is for guidnce nd supplement only. It should not e relied on when prepring for exms. In this lecture we set up

More information

AT100 - Introductory Algebra. Section 2.7: Inequalities. x a. x a. x < a

AT100 - Introductory Algebra. Section 2.7: Inequalities. x a. x a. x < a Section 2.7: Inequlities In this section, we will Determine if given vlue is solution to n inequlity Solve given inequlity or compound inequlity; give the solution in intervl nottion nd the solution 2.7

More information

DATABASE DESIGN I - 1DL300

DATABASE DESIGN I - 1DL300 DATABASE DESIGN I - DL300 Fll 00 An introductory course on dtse systems http://www.it.uu.se/edu/course/homepge/dstekn/ht0/ Mnivskn Sesn Uppsl Dtse Lortory Deprtment of Informtion Technology, Uppsl University,

More information

Part I: Study the theorem statement.

Part I: Study the theorem statement. Nme 1 Nme 2 Nme 3 A STUDY OF PYTHAGORAS THEOREM Instrutions: Together in groups of 2 or 3, fill out the following worksheet. You my lift nswers from the reding, or nswer on your own. Turn in one pket for

More information

Metodologie di progetto HW Technology Mapping. Last update: 19/03/09

Metodologie di progetto HW Technology Mapping. Last update: 19/03/09 Metodologie di progetto HW Tehnology Mpping Lst updte: 19/03/09 Tehnology Mpping 2 Tehnology Mpping Exmple: t 1 = + b; t 2 = d + e; t 3 = b + d; t 4 = t 1 t 2 + fg; t 5 = t 4 h + t 2 t 3 ; F = t 5 ; t

More information

Combinational Logic. Precedence. Quick Quiz 25/9/12. Schematics à Boolean Expression. 3 Representations of Logic Functions. Dr. Hayden So.

Combinational Logic. Precedence. Quick Quiz 25/9/12. Schematics à Boolean Expression. 3 Representations of Logic Functions. Dr. Hayden So. 5/9/ Comintionl Logic ENGG05 st Semester, 0 Dr. Hyden So Representtions of Logic Functions Recll tht ny complex logic function cn e expressed in wys: Truth Tle, Boolen Expression, Schemtics Only Truth

More information

Review: The Riemann Integral Review: The definition of R b

Review: The Riemann Integral Review: The definition of R b eview: The iemnn Integrl eview: The definition of b f (x)dx. For ontinuous funtion f on the intervl [, b], Z b f (x) dx lim mx x i!0 nx i1 f (x i ) x i. This limit omputes the net (signed) re under the

More information

Solutions to Assignment 1

Solutions to Assignment 1 MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart. MATH 1080: Clculus of One Vrile II Fll 2017 Textook: Single Vrile Clculus: Erly Trnscendentls, 7e, y Jmes Stewrt Unit 2 Skill Set Importnt: Students should expect test questions tht require synthesis of

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

AP Calculus AB Unit 4 Assessment

AP Calculus AB Unit 4 Assessment Clss: Dte: 0-04 AP Clulus AB Unit 4 Assessment Multiple Choie Identify the hoie tht best ompletes the sttement or nswers the question. A lultor my NOT be used on this prt of the exm. (6 minutes). The slope

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Probability. b a b. a b 32.

Probability. b a b. a b 32. Proility If n event n hppen in '' wys nd fil in '' wys, nd eh of these wys is eqully likely, then proility or the hne, or its hppening is, nd tht of its filing is eg, If in lottery there re prizes nd lnks,

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

More information

Hardware Verification 2IMF20

Hardware Verification 2IMF20 Hrdwre Verifition 2IMF20 Julien Shmltz Leture 02: Boolen Funtions, ST, CEC Course ontent - Forml tools Temporl Logis (LTL, CTL) Domin Properties System Verilog ssertions demi & Industrils Proessors Networks

More information

Finite State Automata and Determinisation

Finite State Automata and Determinisation Finite Stte Automt nd Deterministion Tim Dworn Jnury, 2016 Lnguges fs nf re df Deterministion 2 Outline 1 Lnguges 2 Finite Stte Automt (fs) 3 Non-deterministi Finite Stte Automt (nf) 4 Regulr Expressions

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

Boolean Algebra. Boolean Algebras

Boolean Algebra. Boolean Algebras Boolen Algebr Boolen Algebrs A Boolen lgebr is set B of vlues together with: - two binry opertions, commonly denoted by + nd, - unry opertion, usully denoted by or ~ or, - two elements usully clled zero

More information

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS CS 310 (sec 20) - Winter 2003 - Finl Exm (solutions) SOLUTIONS 1. (Logic) Use truth tles to prove the following logicl equivlences: () p q (p p) (q q) () p q (p q) (p q) () p q p q p p q q (q q) (p p)

More information

Instructions. An 8.5 x 11 Cheat Sheet may also be used as an aid for this test. MUST be original handwriting.

Instructions. An 8.5 x 11 Cheat Sheet may also be used as an aid for this test. MUST be original handwriting. ID: B CSE 2021 Computer Orgniztion Midterm Test (Fll 2009) Instrutions This is losed ook, 80 minutes exm. The MIPS referene sheet my e used s n id for this test. An 8.5 x 11 Chet Sheet my lso e used s

More information