NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont."

Transcription

1 NFA DFA Exmple 3 CMSC 330: Orgniztion of Progrmming Lnguges NFA {B,D,E {A,E {C,D {E Finite Automt, con't. R = { {A,E, {B,D,E, {C,D, {E 2 Equivlence of DFAs nd NFAs Any string from {A to either {D or {CD represents pth from A to D in the originl NFA Equivlence of DFAs nd NFAs (cont.) Cn reduce ny NFA to DFA using suset lg. How mny sttes in the DFA? Ech DFA stte is suset of the set of NFA sttes Given NFA with n sttes, DFA my hve 2 n sttes Since set with n items my hve 2 n susets Corollry Reducing NFA with n sttes my e O(2 n ) NFA DFA 3 4

2 Implementing DFAs Implementing DFAs (Alterntive) It's esy to uild progrm which mimics DFA cur_stte= 0; while (1) { symol= getchr(); switch (cur_stte) { cse 0: switch (symol) { cse '0': cur_stte= 0; rek; cse '1': cur_stte= 1; rek; cse '\n': printf("rejected\n"); return 0; defult: printf("rejected\n"); return 0; rek; cse 1: switch (symol) { cse '0': cur_stte= 0; rek; cse '1': cur_stte= 1; rek; cse '\n': printf("ccepted\n"); return 1; defult: printf("rejected\n"); return 0; rek; defult: printf("unknown stte; I'm confused\n"); rek; Alterntively, use generic tle-driven DFA given components (Σ, Q, q 0, F, δ) of DFA: q := q 0 while (there exists nother symol s of the input string) q := δ(q, s) if q F then ccept else reject q is just n integer represent δ using rrys or hsh tles represent F s set CMSC CMSC Run Time of Algorithm Regulr Expressions in Prctice Given string s, how long does lgorithm tke to decide whether s is ccepted? ssume we cn compute δ(q0, c) in constnt time then the time per string s to determine cceptnce is O( s ) cn t get much fster! But recll tht constructing the DFA from the NFA constructed from the regulr expression A my tke O(2 A ) time ut this is usully not the cse in prctice So there s the initil overhed, ut then ccepting strings is fst CMSC Regulr expressions re typiclly compiled into tles for the generic lgorithm cn think of this s simple yte code interpreter ut relly just representtion of (Σ, Q A, q A, {f A, δ A ), the components of the DFA produced from the r.e. Regulr expression implementtions often hve extr constructs tht re non-regulr i.e., cn ccept more thn the regulr lnguges cn e useful in certin cses disdvntges: nonstndrd, plus cn hve higher complexity CMSC 330 8

3 Minimizing DFA Result from CS theory Every regulr lnguge is recognizle y minimum-stte DFA tht is unique up to stte nmes In other words For every DFA, there is unique DFA with minimum numer of sttes tht ccepts the sme lnguge Two minimum-stte DFAs hve sme underlying shpe S1 S2 S3 c S1 c S3 S2 9 Minimizing DFA: Hopcroft Reduction Intuition Look for sttes tht cn e distinguish from ech other End up in different ccept / non-ccept stte with identicl input Algorithm Construct initil prtition Accepting nd non-ccepting sttes Itertively refine prtitions (until prtitions remin fixed) Split prtition if memers in prtition hve trnsitions to different prtitions for sme input Two sttes x, y elong in sme prtition if nd only if for ll symols in Σ they trnsition to the sme prtition Updte trnsitions nd remove ded sttes J. Hopcroft, An n log n lgorithm for minimizing sttes in finite utomton, Splitting Prtitions No need to split prtition {S,T,U,V All trnsitions on led to identicl prtition Even though trnsitions on led to different sttes Splitting Prtitions (cont.) Need to split prtition {S,T,U into {S,T, {U Trnsitions on from S,T led to prtition Trnsition on from U led to prtition P3 S U V T X Z Y P4 S U T X Z Y P

4 Resplitting Prtitions Need to reexmine prtitions fter splits Initilly no need to split prtition {S,T,U After splitting prtition {X,Y into {X, {Y need to split prtition {S,T,U into {S,T, {U P4 S U T P3 X Y 13 DFA Minimiztion Algorithm (1) Input DFA (Σ, Q, q 0, F n, δ n ), output DFA (Σ, R, r 0, F d, δ d ) Algorithm Let p 0 = F n, p 1 = Q F // initil prtitions = finl, nonfinl sttes Let R = { p p {p 0, p 1 nd p!= Ø, P = Ø // dd p to R if nonempty While P!= R do itertion Let P = R, R = Ø prtitions For ech p P previous itertion // while prtitions chnged on prev // P = prev prtitions, R = current // for ech prtition from 14 DFA Minimiztion Algorithm (2) Algorithm for split(p,p) Choose some r p, let q = p {r, m = { // pick some stte r in p For ech s q For ech c Σ // for ech stte in p except for r // for ech symol in lphet If δ d (r,c) = q 0 nd δ d (s, c) = q 1 nd // q s = sttes reched for c Return p m, m differently thn r there is no p 1 P such tht q 0 p 1 nd q 1 p 1 then m = m {s // dd s to m if q s not in sme prtition // m = sttes tht ehve 15 Minimizing DFA: Exmple 1 Initil prtitions Accept Reject S T R Split prtition? Not required, minimiztion done move(s, ) = T move(s, ) move(t, ) = T move(t, ) { R { S, T After clenup = R = R 16

5 Minimizing DFA: Exmple 2 Minimizing DFA: Exmple 3 S T R S T R Initil prtitions Accept Reject { R { S, T Split prtition? Not required, minimiztion done move(s, ) = T move(s, ) = R move(t, ) = S move (T, ) = R After clenup 17 Initil prtitions Accept Reject Split prtition? Yes, different prtitions for move(s, ) = T move(s, ) move(t, ) = T move(t, ) { R { S, T P3 DFA lredy miniml = T = R 18 Complement of DFA Given DFA ccepting lnguge L, how cn we crete DFA ccepting its complement? Exmple DFA Σ = {, Complement of DFA (cont.) Algorithm: Add explicit trnsitions to ded stte Chnge every finl stte to nonfinl stte nd every nonfinl stte to finl stte Note this only works with DFAs Why not with NFAs? 19 20

6 Prctice Mke the DFA which ccepts the complement of the lnguge ccepted y the DFA elow. Reducing DFAs to REs Generl ide Remove sttes one y one, leling trnsitions with regulr expressions When two sttes re left (strt nd finl), the trnsition lel is the regulr expression for the DFA S Relting REs to DFAs nd NFAs Why do we wnt to convert etween these? Cn mke it esier to express ides Cn e esier to implement 23

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb. CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2 CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018 CS 301 Lecture 04 Regulr Expressions Stephen Checkowy Jnury 29, 2018 1 / 35 Review from lst time NFA N = (Q, Σ, δ, q 0, F ) where δ Q Σ P (Q) mps stte nd n lphet symol (or ) to set of sttes We run n NFA

More information

Lexical Analysis Finite Automate

Lexical Analysis Finite Automate Lexicl Anlysis Finite Automte CMPSC 470 Lecture 04 Topics: Deterministic Finite Automt (DFA) Nondeterministic Finite Automt (NFA) Regulr Expression NFA DFA A. Finite Automt (FA) FA re grph, like trnsition

More information

Non-deterministic Finite Automata

Non-deterministic Finite Automata Non-deterministic Finite Automt From Regulr Expressions to NFA- Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion

More information

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-* Regulr Expressions (RE) Regulr Expressions (RE) Empty set F A RE denotes the empty set Opertion Nottion Lnguge UNIX Empty string A RE denotes the set {} Alterntion R +r L(r ) L(r ) r r Symol Alterntion

More information

State Minimization for DFAs

State Minimization for DFAs Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

More information

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA Nondeterminism Nondeterministic Finite Automt Nondeterminism Subset Construction A nondeterministic finite utomton hs the bility to be in severl sttes t once. Trnsitions from stte on n input symbol cn

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

More information

CHAPTER 1 Regular Languages. Contents

CHAPTER 1 Regular Languages. Contents Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr

More information

CS375: Logic and Theory of Computing

CS375: Logic and Theory of Computing CS375: Logic nd Theory of Computing Fuhu (Frnk) Cheng Deprtment of Computer Science University of Kentucky 1 Tle of Contents: Week 1: Preliminries (set lger, reltions, functions) (red Chpters 1-4) Weeks

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016 CS125 Lecture 12 Fll 2016 12.1 Nondeterminism The ide of nondeterministic computtions is to llow our lgorithms to mke guesses, nd only require tht they ccept when the guesses re correct. For exmple, simple

More information

Formal languages, automata, and theory of computation

Formal languages, automata, and theory of computation Mälrdlen University TEN1 DVA337 2015 School of Innovtion, Design nd Engineering Forml lnguges, utomt, nd theory of computtion Thursdy, Novemer 5, 14:10-18:30 Techer: Dniel Hedin, phone 021-107052 The exm

More information

3 Regular expressions

3 Regular expressions 3 Regulr expressions Given n lphet Σ lnguge is set of words L Σ. So fr we were le to descrie lnguges either y using set theory (i.e. enumertion or comprehension) or y n utomton. In this section we shll

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

More information

input tape head moves current state

input tape head moves current state CPS 140 - Mthemticl Foundtions of CS Dr. Susn Rodger Section: Finite Automt (Ch. 2) (lecture notes) Things to do in clss tody (Jn. 13, 2004): ffl questions on homework 1 ffl finish chpter 1 ffl Red Chpter

More information

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010 CS 311 Homework 3 due 16:30, Thursdy, 14 th Octoer 2010 Homework must e sumitted on pper, in clss. Question 1. [15 pts.; 5 pts. ech] Drw stte digrms for NFAs recognizing the following lnguges:. L = {w

More information

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automata 1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

More information

Harvard University Computer Science 121 Midterm October 23, 2012

Harvard University Computer Science 121 Midterm October 23, 2012 Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

More information

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute Victor Admchik Dnny Sletor Gret Theoreticl Ides In Computer Science CS 5-25 Spring 2 Lecture 2 Mr 3, 2 Crnegie Mellon University Deterministic Finite Automt Finite Automt A mchine so simple tht you cn

More information

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1 Chpter 1, Prt 1 Regulr Lnguges CSC527, Chpter 1, Prt 1 c 2012 Mitsunori Ogihr 1 Finite Automt A finite utomton is system for processing ny finite sequence of symols, where the symols re chosen from finite

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Name Ima Sample ASU ID

Name Ima Sample ASU ID Nme Im Smple ASU ID 2468024680 CSE 355 Test 1, Fll 2016 30 Septemer 2016, 8:35-9:25.m., LSA 191 Regrding of Midterms If you elieve tht your grde hs not een dded up correctly, return the entire pper to

More information

CS 267: Automated Verification. Lecture 8: Automata Theoretic Model Checking. Instructor: Tevfik Bultan

CS 267: Automated Verification. Lecture 8: Automata Theoretic Model Checking. Instructor: Tevfik Bultan CS 267: Automted Verifiction Lecture 8: Automt Theoretic Model Checking Instructor: Tevfik Bultn LTL Properties Büchi utomt [Vrdi nd Wolper LICS 86] Büchi utomt: Finite stte utomt tht ccept infinite strings

More information

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck. Outline Automt Theory 101 Rlf Huuck Introduction Finite Automt Regulr Expressions ω-automt Session 1 2006 Rlf Huuck 1 Session 1 2006 Rlf Huuck 2 Acknowledgement Some slides re sed on Wolfgng Thoms excellent

More information

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1 CS4 45- Determinisitic Finite Automt -: Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother

More information

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages 5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

More information

1 From NFA to regular expression

1 From NFA to regular expression Note 1: How to convert DFA/NFA to regulr expression Version: 1.0 S/EE 374, Fll 2017 Septemer 11, 2017 In this note, we show tht ny DFA cn e converted into regulr expression. Our construction would work

More information

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Eugene Weinstein Google, NYU Cournt Institute eugenew@cs.nyu.edu Slide Credit: Mehryr Mohri Preliminries Finite lphet, empty string.

More information

Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch.

Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch. Overview H9 Vertlerouw H 9: Prsing: op-down & LL(1) do 3 mei 2001 56 heo Ruys h. 8 - Prsing 8.1 ontext-free Grmmrs 8.2 op-down Prsing 8.3 LL(1) Grmmrs See lso [ho, Sethi & Ullmn 1986] for more thorough

More information

Where did dynamic programming come from?

Where did dynamic programming come from? Where did dynmic progrmming come from? String lgorithms Dvid Kuchk cs302 Spring 2012 Richrd ellmn On the irth of Dynmic Progrmming Sturt Dreyfus http://www.eng.tu.c.il/~mi/cd/ or50/1526-5463-2002-50-01-0048.pdf

More information

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints) C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,

More information

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata CSC4510 AUTOMATA 5.1 Definitions nd Exmples 5.2 Deterministic Pushdown Automt Definitions nd Exmples A lnguge cn be generted by CFG if nd only if it cn be ccepted by pushdown utomton. A pushdown utomton

More information

Lecture 9: LTL and Büchi Automata

Lecture 9: LTL and Büchi Automata Lecture 9: LTL nd Büchi Automt 1 LTL Property Ptterns Quite often the requirements of system follow some simple ptterns. Sometimes we wnt to specify tht property should only hold in certin context, clled

More information

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grmmrs nd Lnguges (Bsed on Hopcroft, Motwni nd Ullmn (2007) & Cohen (1997)) Introduction Consider n exmple sentence: A smll ct ets the fish English grmmr hs rules for constructing sentences;

More information

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS CS 310 (sec 20) - Winter 2003 - Finl Exm (solutions) SOLUTIONS 1. (Logic) Use truth tles to prove the following logicl equivlences: () p q (p p) (q q) () p q (p q) (p q) () p q p q p p q q (q q) (p p)

More information

Recursively Enumerable and Recursive. Languages

Recursively Enumerable and Recursive. Languages Recursively Enumerble nd Recursive nguges 1 Recll Definition (clss 19.pdf) Definition 10.4, inz, 6 th, pge 279 et S be set of strings. An enumertion procedure for Turing Mchine tht genertes ll strings

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

1.3 Regular Expressions

1.3 Regular Expressions 56 1.3 Regulr xpressions These hve n importnt role in describing ptterns in serching for strings in mny pplictions (e.g. wk, grep, Perl,...) All regulr expressions of lphbet re 1.Ønd re regulr expressions,

More information

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M.

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M. Solution Prolem Set 2 Prolem.4 () Let M denote the DFA contructed y wpping the ccept nd non-ccepting tte in M. For ny tring w B, w will e ccepted y M, tht i, fter conuming the tring w, M will e in n ccepting

More information

Normal Forms for Context-free Grammars

Normal Forms for Context-free Grammars Norml Forms for Context-free Grmmrs 1 Linz 6th, Section 6.2 wo Importnt Norml Forms, pges 171--178 2 Chomsky Norml Form All productions hve form: A BC nd A vrile vrile terminl 3 Exmples: S AS S AS S S

More information

CS S-12 Turing Machine Modifications 1. When we added a stack to NFA to get a PDA, we increased computational power

CS S-12 Turing Machine Modifications 1. When we added a stack to NFA to get a PDA, we increased computational power CS411-2015S-12 Turing Mchine Modifictions 1 12-0: Extending Turing Mchines When we dded stck to NFA to get PDA, we incresed computtionl power Cn we do the sme thing for Turing Mchines? Tht is, cn we dd

More information

On Determinisation of History-Deterministic Automata.

On Determinisation of History-Deterministic Automata. On Deterministion of History-Deterministic Automt. Denis Kupererg Mich l Skrzypczk University of Wrsw YR-ICALP 2014 Copenhgen Introduction Deterministic utomt re centrl tool in utomt theory: Polynomil

More information

CSCI FOUNDATIONS OF COMPUTER SCIENCE

CSCI FOUNDATIONS OF COMPUTER SCIENCE 1 CSCI- 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 My 7, 2015 2 Announcements Homework 9 is due now. Some finl exm review problems will be posted on the web site tody. These re prcqce problems not

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 330 Forml Methods nd Models Dn Richrds, section 003, George Mson University, Fll 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 7 1. Prove (p q) (p q), () (5pts) using truth tles. p q

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

Homework Solution - Set 5 Due: Friday 10/03/08

Homework Solution - Set 5 Due: Friday 10/03/08 CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

More information

Prefix-Free Subsets of Regular Languages and Descriptional Complexity

Prefix-Free Subsets of Regular Languages and Descriptional Complexity Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek Jurj Šeej DCFS 2015 Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek, Jurj Šeej 1/22 Outline Mximl

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

Nondeterministic Biautomata and Their Descriptional Complexity

Nondeterministic Biautomata and Their Descriptional Complexity Nondeterministic Biutomt nd Their Descriptionl Complexity Mrkus Holzer nd Sestin Jkoi Institut für Informtik Justus-Lieig-Universität Arndtstr. 2, 35392 Gießen, Germny 23. Theorietg Automten und Formle

More information

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms

Preview 11/1/2017. Greedy Algorithms. Coin Change. Coin Change. Coin Change. Coin Change. Greedy algorithms. Greedy Algorithms Preview Greed Algorithms Greed Algorithms Coin Chnge Huffmn Code Greed lgorithms end to e simple nd strightforwrd. Are often used to solve optimiztion prolems. Alws mke the choice tht looks est t the moment,

More information

How Deterministic are Good-For-Games Automata?

How Deterministic are Good-For-Games Automata? How Deterministic re Good-For-Gmes Automt? Udi Boker 1, Orn Kupfermn 2, nd Mich l Skrzypczk 3 1 Interdisciplinry Center, Herzliy, Isrel 2 The Herew University, Isrel 3 University of Wrsw, Polnd Astrct

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language. Section: Other Models of Turing Mchines Definition: Two utomt re equivlent if they ccept the sme lnguge. Turing Mchines with Sty Option Modify δ, Theorem Clss of stndrd TM s is equivlent to clss of TM

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 0 Forml Methods nd Models Dn Richrds, George Mson University, Fll 2016 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 8 1. Prove q (q p) p q p () (4pts) with truth tle. p q p q p (q p) p q

More information

Prefix-Free Regular-Expression Matching

Prefix-Free Regular-Expression Matching Prefix-Free Regulr-Expression Mthing Yo-Su Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST Prefix-Free Regulr-Expression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings

More information

This lecture covers Chapter 8 of HMU: Properties of CFLs

This lecture covers Chapter 8 of HMU: Properties of CFLs This lecture covers Chpter 8 of HMU: Properties of CFLs Turing Mchine Extensions of Turing Mchines Restrictions of Turing Mchines Additionl Reding: Chpter 8 of HMU. Turing Mchine: Informl Definition B

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probbilistic Model Checking Michelms Term 2011 Dr. Dve Prker Deprtment of Computer Science University of Oxford Long-run properties Lst lecture: regulr sfety properties e.g. messge filure never occurs

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Automata and Languages

Automata and Languages Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive

More information

Software Engineering using Formal Methods

Software Engineering using Formal Methods Softwre Engineering using Forml Methods Propositionl nd (Liner) Temporl Logic Wolfgng Ahrendt 13th Septemer 2016 SEFM: Liner Temporl Logic /GU 160913 1 / 60 Recpitultion: FormlistionFormlistion: Syntx,

More information

How to simulate Turing machines by invertible one-dimensional cellular automata

How to simulate Turing machines by invertible one-dimensional cellular automata How to simulte Turing mchines by invertible one-dimensionl cellulr utomt Jen-Christophe Dubcq Déprtement de Mthémtiques et d Informtique, École Normle Supérieure de Lyon, 46, llée d Itlie, 69364 Lyon Cedex

More information

The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem

The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem Simpler & More Generl Minimiztion for Weighted Finite-Stte Automt Json Eisner Johns Hopkins University My 28, 2003 HLT-NAACL First hlf of tlk is setup - revies pst ork. Second hlf gives outline of the

More information

Formal Languages and Automata Theory. D. Goswami and K. V. Krishna

Formal Languages and Automata Theory. D. Goswami and K. V. Krishna Forml Lnguges nd Automt Theory D. Goswmi nd K. V. Krishn Novemer 5, 2010 Contents 1 Mthemticl Preliminries 3 2 Forml Lnguges 4 2.1 Strings............................... 5 2.2 Lnguges.............................

More information

The University of Nottingham

The University of Nottingham The University of Nottinghm SCHOOL OF COMPUTR SCINC AND INFORMATION TCHNOLOGY A LVL 1 MODUL, SPRING SMSTR 2004-2005 MACHINS AND THIR LANGUAGS Time llowed TWO hours Cndidtes must NOT strt writing their

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Cover Automata for Finite Languages

Cover Automata for Finite Languages Cover Automt for Finite Lnguges Michël Cdilhc Technicl Report n o 0504, June 2005 revision 681 Astrct. Although regulr lnguges comined with finite utomt re widely used nd studied, mny pplictions only use

More information

State Complexity of Union and Intersection of Binary Suffix-Free Languages

State Complexity of Union and Intersection of Binary Suffix-Free Languages Stte Complexity of Union nd Intersetion of Binry Suffix-Free Lnguges Glin Jirásková nd Pvol Olejár Slovk Ademy of Sienes nd Šfárik University, Košie 0000 1111 0000 1111 Glin Jirásková nd Pvol Olejár Binry

More information

Good-for-Games Automata versus Deterministic Automata.

Good-for-Games Automata versus Deterministic Automata. Good-for-Gmes Automt versus Deterministic Automt. Denis Kuperberg 1,2 Mich l Skrzypczk 1 1 University of Wrsw 2 IRIT/ONERA (Toulouse) Séminire MoVe 12/02/2015 LIF, Luminy Introduction Deterministic utomt

More information

1 Error Analysis of Simple Rules for Numerical Integration

1 Error Analysis of Simple Rules for Numerical Integration cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

More information

Formal Methods in Software Engineering

Formal Methods in Software Engineering Forml Methods in Softwre Engineering Lecture 09 orgniztionl issues Prof. Dr. Joel Greenyer Decemer 9, 2014 Written Exm The written exm will tke plce on Mrch 4 th, 2015 The exm will tke 60 minutes nd strt

More information

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15 Regulr Lnguge Nonregulr Lnguges The Pumping Lemm Models of Comput=on Chpter 10 Recll, tht ny lnguge tht cn e descried y regulr expression is clled regulr lnguge In this lecture we will prove tht not ll

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

expression simply by forming an OR of the ANDs of all input variables for which the output is

expression simply by forming an OR of the ANDs of all input variables for which the output is 2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

Hyper-minimisation of weighted finite automata

Hyper-minimisation of weighted finite automata Hyper-minimistion of weighted finite utomt Dniel Quernheim nd ndres Mletti Institute for Nturl Lnguge Processing, University of Stuttgrt @ims.uni-stuttgrt.de ugust 18, 2011. Mletti nd D. Quernheim

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

= state, a = reading and q j

= state, a = reading and q j 4 Finite Automt CHAPTER 2 Finite Automt (FA) (i) Derterministi Finite Automt (DFA) A DFA, M Q, q,, F, Where, Q = set of sttes (finite) q Q = the strt/initil stte = input lphet (finite) (use only those

More information

Complementing Büchi Automata with a Subset-tuple Construction

Complementing Büchi Automata with a Subset-tuple Construction DEPARTEMENT D INFORMATIQUE DEPARTEMENT FÜR INFORMATIK Bd de Pérolles 90 CH-1700 Friourg www.unifr.ch/informtics WORKING PAPER Complementing Büchi Automt with Suset-tuple Construction J. Allred & U. Ultes-Nitsche

More information

On NFA reductions. N6A 5B7, London, Ontario, CANADA ilie 2 Department of Computer Science, University of Chile

On NFA reductions. N6A 5B7, London, Ontario, CANADA ilie 2 Department of Computer Science, University of Chile On NFA reductions Lucin Ilie 1,, Gonzlo Nvrro 2, nd Sheng Yu 1, 1 Deprtment of Computer Science, University of Western Ontrio N6A 5B7, London, Ontrio, CANADA ilie syu@csd.uwo.c 2 Deprtment of Computer

More information

Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodal Analysis Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions

More information

Lecture 2 : Propositions DRAFT

Lecture 2 : Propositions DRAFT CS/Mth 240: Introduction to Discrete Mthemtics 1/20/2010 Lecture 2 : Propositions Instructor: Dieter vn Melkeeek Scrie: Dlior Zelený DRAFT Lst time we nlyzed vrious mze solving lgorithms in order to illustrte

More information

C Dutch System Version as agreed by the 83rd FIDE Congress in Istanbul 2012

C Dutch System Version as agreed by the 83rd FIDE Congress in Istanbul 2012 04.3.1. Dutch System Version s greed y the 83rd FIDE Congress in Istnul 2012 A Introductory Remrks nd Definitions A.1 Initil rnking list A.2 Order See 04.2.B (Generl Hndling Rules - Initil order) For pirings

More information

References. Theory of Computation. Theory of Computation. Introduction. Alexandre Duret-Lutz

References. Theory of Computation. Theory of Computation. Introduction. Alexandre Duret-Lutz References Theory of Computtion Alexndre Duret-Lutz dl@lrde.epit.fr Septemer 10, 2010 Introduction to the Theory of Computtion (Michel Sipser, 2005). Lecture notes from Pierre Wolper's course t http://www.montefiore.ulg.c.e/~pw/cours/clc.html

More information

Introduction to Electrical & Electronic Engineering ENGG1203

Introduction to Electrical & Electronic Engineering ENGG1203 Introduction to Electricl & Electronic Engineering ENGG23 2 nd Semester, 27-8 Dr. Hden Kwok-H So Deprtment of Electricl nd Electronic Engineering Astrction DIGITAL LOGIC 2 Digitl Astrction n Astrct ll

More information

Golden Section Search Method - Theory

Golden Section Search Method - Theory Numericl Methods Golden Section Serch Method - Theory http://nm.mthforcollege.com For more detils on this topic Go to http://nm.mthforcollege.com Click on Keyword Click on Golden Section Serch Method You

More information

Models of Computation: Automata and Processes. J.C.M. Baeten

Models of Computation: Automata and Processes. J.C.M. Baeten Models of Computtion: Automt nd Processes J.C.M. Beten Jnury 4, 2010 ii Prefce Computer science is the study of discrete ehviour of intercting informtion processing gents. Here, ehviour is the centrl notion.

More information

i 1 i 2 i 3... i p o 1 o 2 AUTOMATON q 1, q 2,,q n ... o q Model of a automaton Characteristics of automaton:

i 1 i 2 i 3... i p o 1 o 2 AUTOMATON q 1, q 2,,q n ... o q Model of a automaton Characteristics of automaton: Definition of n Automton:-An Automton is defined s system tht preforms certin functions without humn intervention. it ccepts rw mteril nd energy s input nd converts them into the finl product under the

More information

Hopcroft and Karp s algorithm for Non-deterministic Finite Automata

Hopcroft and Karp s algorithm for Non-deterministic Finite Automata Hopcroft nd Krp s lgorithm for Non-deterministic Finite Automt Filippo Bonchi, Dmien Pous To cite this version: Filippo Bonchi, Dmien Pous. Hopcroft nd Krp s lgorithm for Non-deterministic Finite Automt.

More information

Acceptance Sampling by Attributes

Acceptance Sampling by Attributes Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire

More information

Computing the Optimal Global Alignment Value. B = n. Score of = 1 Score of = a a c g a c g a. A = n. Classical Dynamic Programming: O(n )

Computing the Optimal Global Alignment Value. B = n. Score of = 1 Score of = a a c g a c g a. A = n. Classical Dynamic Programming: O(n ) Alignment Grph Alignment Mtrix Computing the Optiml Globl Alignment Vlue An Introduction to Bioinformtics Algorithms A = n c t 2 3 c c 4 g 5 g 6 7 8 9 B = n 0 c g c g 2 3 4 5 6 7 8 t 9 0 2 3 4 5 6 7 8

More information

CDM Memoryless Machines

CDM Memoryless Machines CDM Memoryless Mchines Zero Spce Klus Sutner Crnegie Mellon Universlity 2 Finite Stte Mchines Fll 27 3 DFA Decision Problems Where Are We? 3 Turing Mchines 4 We hve description of bstrct computbility in

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

Handout: Natural deduction for first order logic

Handout: Natural deduction for first order logic MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes

More information

Designing Information Devices and Systems I Spring 2018 Homework 8

Designing Information Devices and Systems I Spring 2018 Homework 8 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 Homework 8 This homework is due Mrch 19, 2018, t 23:59. Self-grdes re due Mrch 22, 2018, t 23:59. Sumission Formt Your homework sumission

More information

Chapter 2. Determinants

Chapter 2. Determinants Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if d-bc0. The expression d-bc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is

More information

Agenda. Agenda. Regular Expressions. Examples of Regular Expressions. Regular Expressions (crash course) Computational Linguistics 1

Agenda. Agenda. Regular Expressions. Examples of Regular Expressions. Regular Expressions (crash course) Computational Linguistics 1 Agend CMSC/LING 723, LBSC 744 Kristy Hollingshed Seitz Institute for Advnced Computer Studies University of Mrylnd HW0 questions? Due Thursdy before clss! When in doubt, keep it simple... Lecture 2: 6

More information