# Lexical Analysis Finite Automate

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lexicl Anlysis Finite Automte CMPSC 470 Lecture 04 Topics: Deterministic Finite Automt (DFA) Nondeterministic Finite Automt (NFA) Regulr Expression NFA DFA A. Finite Automt (FA) FA re grph, like trnsition digrm, with few differences. 1. FA re recognizers; they sy yes or no out possile input string. 2. There re two types of FA. Non-deterministic Finite Automt (NFA): node/stte cn hve severl edge outs for symol. lel of edge cn hve.. Deterministic Finite Automt (DFA): node/stte hs unique edge out for symol. Edges don t hve. Both NFA nd DFA cn recognize the sme lnguge clled, regulr lnguge.

2 B. Non-deterministic Finite Automt (NFA) B.) NFA definition NFA consists of: 1. A finite set of sttes 2. Set of input symol 3. Trnsition function 4. Strt stte (or initil stte) 5. Accepting sttes (or finl sttes) B.) NFA Trnsition Tle One of the wys to represent NFA (trnsition function) NFA Accepts input string xx if nd only if there is some pth in trnsition grph from strt (ss 0 ) to one of ccepting sttes (FF). Is ccepted y NFA? Is ccepted y NFA? Is ccepted y NFA?

3 Exmple) Given the following NFA, strt How mny pths re there for? Does NFA ccept? Does NFA ccept? C. Deterministic Finite Automt (DFA) DFA is specil cse of NFA 1. There re no move on input 2. For ech stte ss nd input symol, there is only one edge out of ss leled. Drw symol tle for DFA. strt Exmple) Drw DFA ccepting ( ). Does this DFA ccept? How mny pths does it hs?

4 Does this DFA ccept? How mny pths does this hs? Given n input string, DFA is esier to nswer yes or no thn NFA, ecuse DFA provides. D. Convert NFA to DFA Regulr expression is used in lexicl nlyzer. Regulr expression cn e esily converted to NFA. However, implementing lexicl nlyzer requires DFA implementtion. First, we will discuss: 1. how to convert NFA to DFA, nd then 2. how to convert regulr expression to NFA. The generl ide is tht ech stte of DFA corresponds to set of NFA. D.) Opertions -closure(ss): Set of NFA sttes rechle from stte ss on -trnsition lone -closure(tt): Set of NFA sttes rechle from set of sttes TT on -closure(ss) move(tt, ): Set of NFA sttes rechle from set of sttes TT on input symol

5 Generte DFA Given NFA, the following sequence of steps uilds DFA sttes (Dsttes), which re sets of NFA sttes, nd trnsition tle (Dtrn). strt Trnsition tle: NFA sttes DFA stte A B C D E 1. Strt stte: AA = -closure(s 0 ) 2. Dtrn[AA, ] = -closure move(aa, ) 3. Dtrn[A, ] = -closure move(aa, )

6 4. Dtrn[BB, ] = -closure move(bb, ) 5. Dtrn[BB, ] = -closure move(bb, ) 6. Dtrn[CC, ] = -closure move(cc, ) 7. Dtrn[CC, ] = -closure move(cc, ) 8. Dtrn[DD, ] = -closure move(dd, ) 9. Dtrn[DD, ] = -closure move(dd, ) 10. Dtrn[EE, ] = -closure move(ee, ) 11. Dtrn[EE, ] = -closure move(ee, ) 12. Since there is no more new DFA stte, stop. Note tht, mong possile DFA sttes, we hve only 5 sttes.

7 E. Convert regulr expression to NFA The McNughton-Ymd-Thompson lgorithm. NFA is constructed, recursively, initilly from ech tomic expression in regulr expression. BASIS: NAF for regulr expression : NFA for regulr expression in Σ: INDUCTION: Let ss nd tt re prts of regulr expression, nd NN(ss) nd NN(tt) re their corresponding NFAs, recursively. ) Suppose rr = ss tt, then NN(rr) = NN(ss) NN(tt), tht is ) Suppose rr = ssss, then NN(rr) = NN(ss)NN(tt), tht is c) Suppose rr = ss, then NN(rr), tht is d) Suppose rr = (ss), then LL(rr) = LL(ss)

8 Exmple) Convert the following regulr expression to NFA. ( ) ( ) 1. Build prse tree from the regulr expression 2. Recursively uild NFA from prse tree.

9 F. Minimize numer of sttes of DFA Is the following two DFAs sme? strt C A B D E strt Two utomt re the sme up to stte nmes if one cn e trnsformed into nother y doing nothing more thn chnging the nme of sttes. Two sttes AA nd CC re equivlent ecuse: String xx distinguishes stte ss from stte tt if exctly one of the sttes reched from ss nd tt y following the pth with lel ss is n ccepting stte. Stte ss is distinguishle from stte tt if there exists string xx tht distinguishes them. Q: Are AA nd BB distinguishle? If then why?

10 Minimize the numer of sttes of DFA. There is lwys unique minimum stte DFA for ny regulr expression. The following steps show how to determine the minimum stte DFA. 1. Strt with initil prtition Π with two groups: FF for ccepting sttes, nd SS FF for non-ccepting sttes. 2. Π new Π 3. Updte ΠΠ: For ech group GG Π, prtition GG into sugroups such tht two sttes ss nd tt re in the sme group if nd only if, Σ, sttes ss nd tt hve trnsition on to sttes in the sme groups of Π. 4. Replce GG in Π new y the set of ll sugroups formed. 5. Repet 2-4, until Π new = Π. Then Π finl = Π 6. Choose one stte in ech group of Π finl s the representtive for tht group. the new stte is the minimum-stte DFA.

11 G. How lexicl nlyzer works The min question in this prt is how lexicl-nlyzer generted y tools, such s Lex, work recognize lexeme nd tokens from regulr expression. ) Pttern mtching sed on NFA Let you hve three ptterns:,, +. Its NFA is: strt You hve the following input nd lexemebegin t 0 th loction How generted nlyzer works?

12 ) Pttern mtching sed on DFA Given NFA, its DFA cn e determined s follows: strt 0,1,3,7 2,4,7 7 strt ,8 5,8 In DFA, 247, 8, 68, 58 re ccepting sttes ecuse they hve ccepting sttes 2, 6, 8 in NFA. 247 ccepts pttern: 8 ccepts pttern: 58 ccepts pttern: 68 ccepts pttern: You hve the following input nd lexemebegin t 0 th loction. How generted nlyzer works?

### Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

### Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

Regulr Expressions (RE) Regulr Expressions (RE) Empty set F A RE denotes the empty set Opertion Nottion Lnguge UNIX Empty string A RE denotes the set {} Alterntion R +r L(r ) L(r ) r r Symol Alterntion

### Chapter 2 Finite Automata

Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

### 12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016

CS125 Lecture 12 Fll 2016 12.1 Nondeterminism The ide of nondeterministic computtions is to llow our lgorithms to mke guesses, nd only require tht they ccept when the guesses re correct. For exmple, simple

### CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

### Non-deterministic Finite Automata

Non-deterministic Finite Automt From Regulr Expressions to NFA- Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion

### 1 From NFA to regular expression

Note 1: How to convert DFA/NFA to regulr expression Version: 1.0 S/EE 374, Fll 2017 Septemer 11, 2017 In this note, we show tht ny DFA cn e converted into regulr expression. Our construction would work

### Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

### Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Nondeterminism Nondeterministic Finite Automt Nondeterminism Subset Construction A nondeterministic finite utomton hs the bility to be in severl sttes t once. Trnsitions from stte on n input symbol cn

### Normal Forms for Context-free Grammars

Norml Forms for Context-free Grmmrs 1 Linz 6th, Section 6.2 wo Importnt Norml Forms, pges 171--178 2 Chomsky Norml Form All productions hve form: A BC nd A vrile vrile terminl 3 Exmples: S AS S AS S S

### Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Outline Automt Theory 101 Rlf Huuck Introduction Finite Automt Regulr Expressions ω-automt Session 1 2006 Rlf Huuck 1 Session 1 2006 Rlf Huuck 2 Acknowledgement Some slides re sed on Wolfgng Thoms excellent

### Homework 3 Solutions

CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

### 1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

### Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Eugene Weinstein Google, NYU Cournt Institute eugenew@cs.nyu.edu Slide Credit: Mehryr Mohri Preliminries Finite lphet, empty string.

### input tape head moves current state

CPS 140 - Mthemticl Foundtions of CS Dr. Susn Rodger Section: Finite Automt (Ch. 2) (lecture notes) Things to do in clss tody (Jn. 13, 2004): ffl questions on homework 1 ffl finish chpter 1 ffl Red Chpter

### State Minimization for DFAs

Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

### a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

CS4 45- Determinisitic Finite Automt -: Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother

### 3 Regular expressions

3 Regulr expressions Given n lphet Σ lnguge is set of words L Σ. So fr we were le to descrie lnguges either y using set theory (i.e. enumertion or comprehension) or y n utomton. In this section we shll

### On Determinisation of History-Deterministic Automata.

On Deterministion of History-Deterministic Automt. Denis Kupererg Mich l Skrzypczk University of Wrsw YR-ICALP 2014 Copenhgen Introduction Deterministic utomt re centrl tool in utomt theory: Polynomil

### CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010

CS 311 Homework 3 due 16:30, Thursdy, 14 th Octoer 2010 Homework must e sumitted on pper, in clss. Question 1. [15 pts.; 5 pts. ech] Drw stte digrms for NFAs recognizing the following lnguges:. L = {w

### 5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

CSC4510 AUTOMATA 5.1 Definitions nd Exmples 5.2 Deterministic Pushdown Automt Definitions nd Exmples A lnguge cn be generted by CFG if nd only if it cn be ccepted by pushdown utomton. A pushdown utomton

### Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

### Automata and Languages

Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive

### CS 330 Formal Methods and Models

CS 330 Forml Methods nd Models Dn Richrds, section 003, George Mson University, Fll 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 7 1. Prove (p q) (p q), () (5pts) using truth tles. p q

### Lecture 9: LTL and Büchi Automata

Lecture 9: LTL nd Büchi Automt 1 LTL Property Ptterns Quite often the requirements of system follow some simple ptterns. Sometimes we wnt to specify tht property should only hold in certin context, clled

### Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

Chpter 1, Prt 1 Regulr Lnguges CSC527, Chpter 1, Prt 1 c 2012 Mitsunori Ogihr 1 Finite Automt A finite utomton is system for processing ny finite sequence of symols, where the symols re chosen from finite

### Good-for-Games Automata versus Deterministic Automata.

Good-for-Gmes Automt versus Deterministic Automt. Denis Kuperberg 1,2 Mich l Skrzypczk 1 1 University of Wrsw 2 IRIT/ONERA (Toulouse) Séminire MoVe 12/02/2015 LIF, Luminy Introduction Deterministic utomt

### Recursively Enumerable and Recursive. Languages

Recursively Enumerble nd Recursive nguges 1 Recll Definition (clss 19.pdf) Definition 10.4, inz, 6 th, pge 279 et S be set of strings. An enumertion procedure for Turing Mchine tht genertes ll strings

### Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,

### Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch.

Overview H9 Vertlerouw H 9: Prsing: op-down & LL(1) do 3 mei 2001 56 heo Ruys h. 8 - Prsing 8.1 ontext-free Grmmrs 8.2 op-down Prsing 8.3 LL(1) Grmmrs See lso [ho, Sethi & Ullmn 1986] for more thorough

### Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Section: Other Models of Turing Mchines Definition: Two utomt re equivlent if they ccept the sme lnguge. Turing Mchines with Sty Option Modify δ, Theorem Clss of stndrd TM s is equivlent to clss of TM

### Where did dynamic programming come from?

Where did dynmic progrmming come from? String lgorithms Dvid Kuchk cs302 Spring 2012 Richrd ellmn On the irth of Dynmic Progrmming Sturt Dreyfus http://www.eng.tu.c.il/~mi/cd/ or50/1526-5463-2002-50-01-0048.pdf

### Prefix-Free Regular-Expression Matching

Prefix-Free Regulr-Expression Mthing Yo-Su Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST Prefix-Free Regulr-Expression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings

### Formal Languages and Automata Theory. D. Goswami and K. V. Krishna

Forml Lnguges nd Automt Theory D. Goswmi nd K. V. Krishn Novemer 5, 2010 Contents 1 Mthemticl Preliminries 3 2 Forml Lnguges 4 2.1 Strings............................... 5 2.2 Lnguges.............................

### CSCI FOUNDATIONS OF COMPUTER SCIENCE

1 CSCI- 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 My 7, 2015 2 Announcements Homework 9 is due now. Some finl exm review problems will be posted on the web site tody. These re prcqce problems not

### Resources. Introduction: Binding. Resource Types. Resource Sharing. The type of a resource denotes its ability to perform different operations

Introduction: Binding Prt of 4-lecture introduction Scheduling Resource inding Are nd performnce estimtion Control unit synthesis This lecture covers Resources nd resource types Resource shring nd inding

### Nondeterministic Finite Automata

Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

### 7 Automata and formal languages. 7.1 Formal languages

7 Automt nd forml lnguges This exposition ws developed by Clemens Gröpl nd Knut Reinert. It is bsed on the following references, ll of which re recommended reding: 1. Uwe Schöning: Theoretische Informtik

### Previously on GLT. Basic technologies. Lexical analysis. Basic technologies ASF+SDF. Concepts of programming languages

Prevously on GLT Generc Lnguge Technology: Bsc technologes Pro.dr. Mrk vn den Brnd ASF+SDF syntx descrptons semntc descrptons: type checkng nlyss trnsormtons t so to s Concepts o progrmmng lnguges syntctc

### 8 Automata and formal languages. 8.1 Formal languages

8 Automt nd forml lnguges This exposition ws developed y Clemens Gröpl nd Knut Reinert. It is sed on the following references, ll of which re recommended reding: 1. Uwe Schöning: Theoretische Informtik

### Prefix-Free Subsets of Regular Languages and Descriptional Complexity

Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek Jurj Šeej DCFS 2015 Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek, Jurj Šeej 1/22 Outline Mximl

### The University of Nottingham

The University of Nottinghm SCHOOL OF COMPUTR SCINC AND INFORMATION TCHNOLOGY A LVL 1 MODUL, SPRING SMSTR 2004-2005 MACHINS AND THIR LANGUAGS Time llowed TWO hours Cndidtes must NOT strt writing their

### NON-DETERMINISTIC FSA

Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

### Design and Analysis of Distributed Interacting Systems

Design nd Anlysis of Distriuted Intercting Systems Lecture 6 LTL Model Checking Prof. Dr. Joel Greenyer My 16, 2013 Some Book References (1) C. Bier, J.-P. Ktoen: Principles of Model Checking. The MIT

### Cover Automata for Finite Languages

Cover Automt for Finite Lnguges Michël Cdilhc Technicl Report n o 0504, June 2005 revision 681 Astrct. Although regulr lnguges comined with finite utomt re widely used nd studied, mny pplictions only use

### 20 MATHEMATICS POLYNOMIALS

0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

### The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem. The Minimization Problem

Simpler & More Generl Minimiztion for Weighted Finite-Stte Automt Json Eisner Johns Hopkins University My 28, 2003 HLT-NAACL First hlf of tlk is setup - revies pst ork. Second hlf gives outline of the

### Lecture V. Introduction to Space Groups Charles H. Lake

Lecture V. Introduction to Spce Groups 2003. Chrles H. Lke Outline:. Introduction B. Trnsltionl symmetry C. Nomenclture nd symols used with spce groups D. The spce groups E. Derivtion nd discussion of

### Nondeterministic Biautomata and Their Descriptional Complexity

Nondeterministic Biutomt nd Their Descriptionl Complexity Mrkus Holzer nd Sestin Jkoi Institut für Informtik Justus-Lieig-Universität Arndtstr. 2, 35392 Gießen, Germny 23. Theorietg Automten und Formle

### expression simply by forming an OR of the ANDs of all input variables for which the output is

2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

### CDM Memoryless Machines

CDM Memoryless Mchines Zero Spce Klus Sutner Crnegie Mellon Universlity 2 Finite Stte Mchines Fll 27 3 DFA Decision Problems Where Are We? 3 Turing Mchines 4 We hve description of bstrct computbility in

### How to simulate Turing machines by invertible one-dimensional cellular automata

How to simulte Turing mchines by invertible one-dimensionl cellulr utomt Jen-Christophe Dubcq Déprtement de Mthémtiques et d Informtique, École Normle Supérieure de Lyon, 46, llée d Itlie, 69364 Lyon Cedex

### CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation

CS2N: The Coming Revolution in Computer Architecture Lortory 2 Preprtion Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes

### On NFA reductions. N6A 5B7, London, Ontario, CANADA ilie 2 Department of Computer Science, University of Chile

On NFA reductions Lucin Ilie 1,, Gonzlo Nvrro 2, nd Sheng Yu 1, 1 Deprtment of Computer Science, University of Western Ontrio N6A 5B7, London, Ontrio, CANADA ilie syu@csd.uwo.c 2 Deprtment of Computer

### Complementing Büchi Automata with a Subset-tuple Construction

DEPARTEMENT D INFORMATIQUE DEPARTEMENT FÜR INFORMATIK Bd de Pérolles 90 CH-1700 Friourg www.unifr.ch/informtics WORKING PAPER Complementing Büchi Automt with Suset-tuple Construction J. Allred & U. Ultes-Nitsche

### How Deterministic are Good-For-Games Automata?

How Deterministic re Good-For-Gmes Automt? Udi Boker 1, Orn Kupfermn 2, nd Mich l Skrzypczk 3 1 Interdisciplinry Center, Herzliy, Isrel 2 The Herew University, Isrel 3 University of Wrsw, Polnd Astrct

### 8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers.

8. Complex Numers The rel numer system is dequte for solving mny mthemticl prolems. But it is necessry to extend the rel numer system to solve numer of importnt prolems. Complex numers do not chnge the

GRADE Division WORKSHEETS Division division is shring nd grouping Division cn men shring or grouping. There re cndies shred mong kids. How mny re in ech shre? = 3 There re 6 pples nd go into ech bsket.

### Automata for Analyzing and Querying Compressed Documents Barbara FILA, LIFO, Orl eans (Fr.) Siva ANANTHARAMAN, LIFO, Orl eans (Fr.) Rapport No

Automt for Anlyzing nd Querying Compressed Documents Brr FILA, LIFO, Orléns (Fr.) Siv ANANTHARAMAN, LIFO, Orléns (Fr.) Rpport N o 2006-03 Automt for Anlyzing nd Querying Compressed Documents Brr Fil, Siv

### Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

### DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive

### Introduction to Electrical & Electronic Engineering ENGG1203

Introduction to Electricl & Electronic Engineering ENGG23 2 nd Semester, 27-8 Dr. Hden Kwok-H So Deprtment of Electricl nd Electronic Engineering Astrction DIGITAL LOGIC 2 Digitl Astrction n Astrct ll

### General Algorithms for Testing the Ambiguity of Finite Automata

Generl Algorithms for Testing the Amiguity of Finite Automt Cyril Alluzen 1,, Mehryr Mohri 2,1, nd Ashish Rstogi 1, 1 Google Reserch, 76 Ninth Avenue, New York, NY 10011. 2 Cournt Institute of Mthemticl

### Looking for All Palindromes in a String

Looking or All Plindromes in String Shih Jng Pn nd R C T Lee Deprtment o Computer Science nd Inormtion Engineering, Ntionl Chi-Nn University, Puli, Nntou Hsien,, Tiwn, ROC sjpn@lgdoccsiencnuedutw, rctlee@ncnuedutw

### Lecture 2 : Propositions DRAFT

CS/Mth 240: Introduction to Discrete Mthemtics 1/20/2010 Lecture 2 : Propositions Instructor: Dieter vn Melkeeek Scrie: Dlior Zelený DRAFT Lst time we nlyzed vrious mze solving lgorithms in order to illustrte

### Automata-based Pattern Mining from Imperfect Traces

Automt-sed Pttern Mining from Imperfect Trces Giles Reger University of Mnchester Oxford Rod, M13 9PL Mnchester, UK regerg@cs.mn.c.uk Howrd Brringer University of Mnchester Oxford Rod, M13 9PL Mnchester,

### State Complexity of Union and Intersection of Binary Suffix-Free Languages

Stte Complexity of Union nd Intersetion of Binry Suffix-Free Lnguges Glin Jirásková nd Pvol Olejár Slovk Ademy of Sienes nd Šfárik University, Košie 0000 1111 0000 1111 Glin Jirásková nd Pvol Olejár Binry

### arxiv: v2 [cs.lo] 26 Dec 2016

On Negotition s Concurrency Primitive II: Deterministic Cyclic Negotitions Jvier Esprz 1 nd Jörg Desel 2 1 Fkultät für Informtik, Technische Universität München, Germny 2 Fkultät für Mthemtik und Informtik,

### COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

### a a a a a a a a a a a a a a a a a a a a a a a a In this section, we introduce a general formula for computing determinants.

Section 9 The Lplce Expnsion In the lst section, we defined the determinnt of (3 3) mtrix A 12 to be 22 12 21 22 2231 22 12 21. In this section, we introduce generl formul for computing determinnts. Rewriting

### On Decentralized Observability of Discrete Event Systems

2011 50th IEEE Conference on Decision nd Control nd Europen Control Conference (CDC-ECC) Orlndo, FL, USA, Decemer 12-15, 2011 On Decentrlized Oservility of Discrete Event Systems M.P. Csino, A. Giu, C.

### What else can you do?

Wht else cn you do? ngle sums The size of specil ngle types lernt erlier cn e used to find unknown ngles. tht form stright line dd to 180c. lculte the size of + M, if L is stright line M + L = 180c( stright

### dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd

### Automata-based Pattern Mining from Imperfect Traces

Automt-sed Pttern Mining from Imperfect Trces Giles Reger University of Mnchester Oxford Rod, M13 9PL Mnchester, UK regerg@cs.mn.c.uk Howrd Brringer University of Mnchester Oxford Rod, M13 9PL Mnchester,

### MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

### ON THE DETERMINIZATION OF WEIGHTED FINITE AUTOMATA

To pper in SIAM Journl on Computing c SIAM 000 ON THE DETERMINIZATION OF WEIGHTED FINITE AUTOMATA ADAM L. BUCHSBAUM, RAFFAELE GIANCARLO, AND JEFFERY R. WESTBROOK Astrct. We study the prolem of constructing

### Convex Sets and Functions

B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line

### Homework Solution - Set 5 Due: Friday 10/03/08

CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

### USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.

### Semantic reachability for simple process algebras. Richard Mayr. Abstract

Semntic rechbility for simple process lgebrs Richrd Myr Abstrct This pper is n pproch to combine the rechbility problem with semntic notions like bisimultion equivlence. It dels with questions of the following

### Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions

### The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-order Pushdown Automata

The Cucl Hierrchy of Infinite Grphs in Terms of Logic nd Higher-order Pushdown Automt Arnud Cryol 1 nd Stefn Wöhrle 2 1 IRISA Rennes, Frnce rnud.cryol@iris.fr 2 Lehrstuhl für Informtik 7 RWTH Achen, Germny

### Reasoning over Time or Space. CS 188: Artificial Intelligence. Outline. Markov Models. Conditional Independence. Query: P(X 4 )

CS 88: Artificil Intelligence Lecture 7: HMMs nd Prticle Filtering Resoning over Time or Spce Often, we wnt to reson out sequence of oservtions Speech recognition Root locliztion User ttention Medicl monitoring

### 13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in

### Semantic Reachability. Richard Mayr. Institut fur Informatik. Technische Universitat Munchen. Arcisstr. 21, D Munchen, Germany E. N. T. C. S.

URL: http://www.elsevier.nl/locte/entcs/volume6.html?? pges Semntic Rechbility Richrd Myr Institut fur Informtik Technische Universitt Munchen Arcisstr. 21, D-80290 Munchen, Germny e-mil: myrri@informtik.tu-muenchen.de

### Project 6: Minigoals Towards Simplifying and Rewriting Expressions

MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

### Learning Goals. Relational Query Languages. Formal Relational Query Languages. Formal Query Languages: Relational Algebra and Relational Calculus

Forml Query Lnguges: Reltionl Alger nd Reltionl Clculus Chpter 4 Lerning Gols Given dtse ( set of tles ) you will e le to express dtse query in Reltionl Alger (RA), involving the sic opertors (selection,

### Golden Section Search Method - Theory

Numericl Methods Golden Section Serch Method - Theory http://nm.mthforcollege.com For more detils on this topic Go to http://nm.mthforcollege.com Click on Keyword Click on Golden Section Serch Method You

### General idea LR(0) SLR LR(1) LALR To best exploit JavaCUP, should understand the theoretical basis (LR parsing);

Bottom up prsing Generl ide LR(0) SLR LR(1) LLR To best exploit JvCUP, should understnd the theoreticl bsis (LR prsing); 1 Top-down vs Bottom-up Bottom-up more powerful thn top-down; Cn process more powerful

### Linear Systems with Constant Coefficients

Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

### Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

### 4. GREEDY ALGORITHMS I

4. GREEDY ALGORITHMS I coin chnging intervl scheduling scheduling to minimize lteness optiml cching Lecture slides by Kevin Wyne Copyright 2005 Person-Addison Wesley http://www.cs.princeton.edu/~wyne/kleinberg-trdos

### Refined interfaces for compositional verification

Refined interfces for compositionl verifiction Frédéric Lng INRI Rhône-lpes http://www.inrilpes.fr/vsy Motivtion Enumertive verifiction of concurrent systems Prllel composition of synchronous processes

### On the Relative Succinctness of Nondeterministic Büchi and co-büchi Word Automata

On the Reltive Succinctness of Nondeterministic Büchi nd co-büchi Word Automt Benjmin Aminof, Orn Kupfermn, nd Omer Lev Herew University, School of Engineering nd Computer Science, Jeruslem 91904, Isrel

### Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

### Analytical Methods for Materials

Anlyticl Methods for Mterils Lesson 7 Crystl Geometry nd Crystllogrphy, Prt 1 Suggested Reding Chpters 2 nd 6 in Wsed et l. 169 Slt crystls N Cl http://helthfreedoms.org/2009/05/24/tble-slt-vs-unrefined-se-slt--primer/

### Automata and semigroups recognizing infinite words

Automt nd semigroups recognizing infinite words Olivier Crton 1 Dominique Perrin 2 Jen-Éric Pin1 1 LIAFA, CNRS nd Université Denis Diderot Pris 7, Cse 7014, 75205 Pris Cedex 13, Frnce 2 Institut Gsprd

### Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples