2. Binary Decision Diagrams Fachgebiet Rechnersysteme1

Size: px
Start display at page:

Download "2. Binary Decision Diagrams Fachgebiet Rechnersysteme1"

Transcription

1 2. Binry Deision Digrms Fhgeiet Rehnersysteme 2. Binry Deision Digrms Verifition Tehnology Content 2. BDD onepts 2.22 Vrile orderings 2.3 OBDD lgorithms 2.4 FDD s nd OKFDD s 2.5 Integer vlued deision digrms

2 2. Binry Deision Digrms 2 The prolem of logi verifition: show tht two iruits implement the sme oolen funtion = g g

3 2. Binry Deision Digrms 3 2. BDD onepts Prolem: effiient representtion of Boolen funtions DNF: liner for OR of n vriles, exponentil for XOR Reed-Muller: liner for XOR of n vriles, exponentil for OR Prolem: effiient pplition of Boolen opertions exmple: DNF Negtion DNF, e.g.: + d + ef + gh ( + d + ef + gh)? Possile solution in mny ses: inry deision digrms dg s( (BDD s)

4 2. Binry Deision Digrms 4 2. BDD onepts Investigted systemtilly first y R. Brynt (CMU) Seminl pper y Brynt in 86 Erly work y Shnnon ~ 94 (relis-networks) Revolutionry impt on logi synthesis, logi verifition, et. Mny modern CAD-tools employ BDD s

5 2. Binry Deision Digrms 5 2. BDD onepts d f Ide: deompose funtion into two sufuntions whih do not depend on ertin vrile, e.g., x

6 2. Binry Deision Digrms 6 2. BDD onepts d f Ide: Deompose funtion into two sufuntions whih do not depend on ertin f(,,, d) vrile, e.g., x Apply Boole s expnsion theorem in systemti wy to ll vriles Represent result grphilly f(,,, d)

7 2. Binry Deision Digrms 7 2. BDD onepts d f f = *f(,,, d) + *f(,,, d) f f(,,, d) f(,,, d) f(,,, d) f(,,, d)

8 2. Binry Deision Digrms 8 2. BDD onepts The pplition of Boole s expnsion theorem to ll vriles leds to deision tree. Exmple: XOR in 3 vriles Funtion vlues

9 2. Binry Deision Digrms 9 2. BDD onepts The pplition of Boole s expnsion theorem to ll vriles leds to deision tree. Exmple: XOR in 3 vriles Funtion vlues

10 2. Binry Deision Digrms 2. BDD onepts Vrile ordering: order in whih Boole's expnsion theorem is pplied order,,

11 2. Binry Deision Digrms 2. BDD onepts Conepts: Nodes Edge lellings lli Direted edges (Diret) suessors of node

12 2. Binry Deision Digrms 2 2. BDD onepts Conepts: Root node Pths Lefs or Terminl nodes

13 2. Binry Deision Digrms 3 2. BDD onepts Deision trees re ordered (identil vrile ordering on ll pths) or free Exmple of free deision tree:

14 2. Binry Deision Digrms 4 2. BDD onepts A fully expnded deision tree hs 2 n lef nodes Exmple of (free) deision tree whih is not fully expnded:

15 2. Binry Deision Digrms 5 2. BDD onepts Oservtion: there re identil su-trees

16 2. Binry Deision Digrms 6 2. BDD onepts Oservtion: there re identil su-trees

17 2. Binry Deision Digrms 7 2. BDD onepts Merging identil su-trees results in deisiongrph

18 2. Binry Deision Digrms 8 2. BDD onepts "-prt" "-prt"

19 2. Binry Deision Digrms 9 2. BDD onepts Shnnon: A symoli nlysis of rely nd swithing iruits (938) Size of the networks grows linerly in the numer of vriles

20 2. Binry Deision Digrms 2 2. BDD onepts Some simple exmples of BDD's:

21 2. Binry Deision Digrms 2 2. BDD onepts AND-, OR-, XOR-opertion in n vriles x x x x 2 x x 2 2 x x n x n x n x n #nodes grows linerly in #vriles

22 2. Binry Deision Digrms S S S 2. BDD onepts Exmple: SN 748 ALU: n+4 D E B G S 3 3 = 3 E A P F 3 D 3 = = 2 Q A 2 2 E D B 3 2 F A B D 2 2 Q = = = A=B F B A E = F E D B Q = n M A Q = =

23 2. Binry Deision Digrms BDD onepts SN 748 BDD ("shred BDD"): g 4 p f3 f2 eq f f s3 s2 s s m

24 2. Binry Deision Digrms BDD onepts One pth to the lef-node orresponds to produt n implint of the funtion. Exmple:

25 2. Binry Deision Digrms BDD onepts 2 Prolems: Given inry deision digrm. How to derive the Boolen funtion represented y the BDD? Given Boolen funtion. How to derive the BDD for it? First: BDD Boolen funtion

26 2. Binry Deision Digrms BDD onepts A node v of BDD is hrterized y triple (x, v,v ), where v,v re the suessors of v v x v v The lef nodes nd represent the Boolen funtions nd Aording to Boole's expnsion theorem, the Boolen funtion f(v) is ssoited with node v s follows (where vr(v) is the vrile of node v): f(v) = vr(v) f(v ) + vr(v) f(v )

27 2. Binry Deision Digrms BDD onepts Exmple: whih Boolen funtion is represented y the following BDD? The funtion ssoited with node n e determined only if the funtions ssoited with the suessor nodes re known f(v) = vr(v) f(v ) + vr(v) f(v )

28 2. Binry Deision Digrms BDD onepts "Bottom-up proedure":. Step Funtions nd

29 2. Binry Deision Digrms BDD onepts "Bottom-up proedure": 2. Step f(v) = vr(v) f(v ) + vr(v) f(v ) = + = Funtions nd

30 2. Binry Deision Digrms 3 2. BDD onepts "Bottom-up proedure": 3. Step f() f(v) = vr(v) ()f( f(v ) + vr(v) f(v ) = + = f(v) = vr(v) f(v ) + vr(v) f(v ) = + = Funtions nd

31 2. Binry Deision Digrms 3 2. BDD onepts There re mny vrints of inry deision digrms Most useful nd ommon: OBDD's (Ordered Binry Deision Digrms, Brynt 986) OBDD properties: Ordered : The vriles pper in fixed ordering on ll pths Tehnilly, n index ( positive integer) is ssoited with eh vrile index(vr(v)) For eh node v with suessors v nd v we hve: index(vr(v)) < index(vr(v )) und index(vr(v)) < index(vr(v ))

32 2. Binry Deision Digrms BDD onepts vrile order,, index() = index() = 3 index() = 2

33 2. Binry Deision Digrms BDD onepts OBDD properties (ont'd.): Redued: The funtion represented y one node is different from the funtions of ll other nodes The two suessors of eh node re distint

34 2. Binry Deision Digrms BDD onepts Redution exmple: Severl representtions of Identil suessors

35 2. Binry Deision Digrms BDD onepts Simplified representtions exist, e.g., -edges to the right, -edges to the left Edges to omitted et. Exmple: ( ) ( d) (e f) or: edges re dshed lines d f e d f ll others

36 2. Binry Deision Digrms BDD onepts Now: Boolen funtion OBDD Exmple ove: ( ) ( d) (e f) Let F ( ) ( d) (e f) ( ) r Vrile ordering,,, d, e, f Following Boole's expnsion theorem, we hve the following oftors of F w.r.t. F ( ) r r F ( ) r r

37 2. Binry Deision Digrms BDD onepts More expnsions: F ( ) r r F ( ) r r F F F r F et.

38 2. Binry Deision Digrms BDD onepts The prolem of redution: In the exmple ove it ws esy to detet F F r nd to merge the nodes for F nd F Redundnt nodes hve to e removed Redundnt nodes Either represent the sme funtion Or hve identil suessors (esy to detet) How to know tht two nodes represent the sme funtion?

39 2. Binry Deision Digrms BDD onepts Two funtions f f f g g g re equl iff they hve identil oftors f f g g f g f f g g

40 2. Binry Deision Digrms 4 2. BDD onepts If we presume tht ll suessor nodes of two nodes represent distint funtions then the two nodes represent identil funtions iff the diret suessor nodes re pirwise identil f f g g This results in simple ottom-up-proedure: redundnt nodes re eliminited in the ottom-level first, the in the seond level, et.

41 2. Binry Deision Digrms 4 2. BDD onepts. Step:. Step: / lefs ll others

42 2. Binry Deision Digrms BDD onepts 2. Step: nodes ll others ll others

43 2. Binry Deision Digrms BDD onepts ll others 3. Step nodes We n deide tht the two nodes do not We n deide tht the two -nodes do not represent the sme funtion y mens of the - nodes

44 2. Binry Deision Digrms BDD onepts Exmple: derive the OBDD for the following funtion, vrile order r,e,g r e g p p = eg + rg + reg p r = eg + g = g 2 3 = 8 ses p r = eg + eg Trffi- Light Cheker r e g p

45 2. Binry Deision Digrms BDD onepts p r = eg + g = g p = eg + rg + reg r p r = eg + eg e g g g

46 2. Binry Deision Digrms BDD onepts Redution ws neessry in the originl onept y R. Brynt (986), ut n e voided ompletely (s. Set. 2.3)

47 2. Binry Deision Digrms BDD onepts OBDD s n e implemented esily y mens of 2:-Multiplexors x x f_ x f x f_ x f x x f_ x f x

48 2. Binry Deision Digrms BDD onepts Exmple:

49 2. Binry Deision Digrms BDD onepts Given ertin vrile ordering, OBDD s re nonil representtions of Boolen funtions, i.e., there exists extly one OBBD-representtion for eh Boolen funtion Two iruits implementing the sme funtion hve identil OBDD's = =

50 2. Binry Deision Digrms 5 OBDD Ci it 2. BDD onepts OBDD s 3 2 n+4 D E S B G S S S = Ciruit : = Q A P F F A E D B = = = A=B F B A D E E D B 2 2 Q Q = = = 3 2 S S S Ciruit 2: = M n F E A Q = = = 3 n+4 D E Q B A G P F S S D 3 = = 2 2 Q F A=B A E 2 B B A D E Q = = = M n F F A E D B A Q Q = = =

51 2. Binry Deision Digrms Vrile Orderings The vrile ordering hs ritil impt on the size of the OBDD (= #nodes) There re stti nd dynmi proedures res to determine "good" orderings

52 2. Binry Deision Digrms Vrile orderings The numer of nodes of OBDD depends ritilly on the vrile ordering Clssil exmple (Brynt 986): x f = x x 2 + x 3 x 4 + x 5 x 6 x x 3 x 2 x 4 x 5 x 5 x 6 x 3 x 3 x 5 x 5 x 5 x 5 x 2 x 2 x 2 x 2 x 4 x 4 x 6

53 2. Binry Deision Digrms Vrile orderings Exmple: n-it dder: Order R : n, n, n-, n-,...,, Order R 2 : n, n-,...,, n, n-,..., n= R : time #nodes time R 2 : #nodes

54 2. Binry Deision Digrms Vrile orderings Clulting the est order my result in exponentil run time For given iruit, "good" orderings n e heuristilly determined Exmple: Distriution of "weight" /4 z / x 4 /4 /2 /2 y /4 /4 /2 x / 4 Sum of weights: x=/2, y=/4, z=/4, first use x for expnsion

55 2. Binry Deision Digrms Vrile orderings Delete seleted vrile nd distriute weight gin y z /4 3/4 /4 /2 3/4 /2 /2 Sum of weights : y=3/4, z=/4, next use y for expnsion Order: x, y, z

56 2. Binry Deision Digrms Vrile orderings Sifting: dynmi ordering proedure (Rudell ICCAD 93) Bsi step: exhnge two djent vriles (Fujit et l. EDAC 9)

57 2. Binry Deision Digrms Vrile orderings Priniple: exhnge - nd - pth g g g 2 g 3 g g 2 g g 3

58 2. Binry Deision Digrms Vrile orderings

59 2. Binry Deision Digrms Vrile orderings

60 2. Binry Deision Digrms Vrile orderings Sifting-proedure: Clulte vrile with mx. #nodes (the "thikest" prt of the OBDD) Shift vrile over OBDD y ypirwise exhnge of djent vriles Shift vrile to position where #nodes is miniml Minimum

61 2. Binry Deision Digrms Vrile orderings Movie "Sifting" y Stefn Höreth:

62 2. Binry Deision Digrms Vrile orderings

63 2. Binry Deision Digrms Vrile orderings

64 2. Binry Deision Digrms Vrile orderings

65 2. Binry Deision Digrms Vrile orderings

66 2. Binry Deision Digrms Vrile orderings

67 2. Binry Deision Digrms Vrile orderings

68 2. Binry Deision Digrms Vrile orderings

69 2. Binry Deision Digrms Vrile orderings

70 2. Binry Deision Digrms Vrile orderings im Detil: V3 V4 V4 V4 V3 V3 V5 V5 V5 V5

71 2. Binry Deision Digrms Vrile orderings

72 2. Binry Deision Digrms Vrile orderings

73 2. Binry Deision Digrms Vrile orderings

74 2. Binry Deision Digrms Vrile orderings

75 2. Binry Deision Digrms Vrile orderings

76 2. Binry Deision Digrms Vrile orderings

77 2. Binry Deision Digrms Vrile orderings

78 2. Binry Deision Digrms Vrile orderings

79 2. Binry Deision Digrms Vrile orderings

80 2. Binry Deision Digrms Vrile orderings

81 2. Binry Deision Digrms Vrile orderings

82 2. Binry Deision Digrms Vrile orderings

83 2. Binry Deision Digrms Vrile orderings

84 2. Binry Deision Digrms Vrile orderings

85 2. Binry Deision Digrms Vrile orderings

86 2. Binry Deision Digrms Vrile orderings

87 2. Binry Deision Digrms Vrile orderings

88 2. Binry Deision Digrms Vrile orderings

89 2. Binry Deision Digrms Vrile orderings

90 2. Binry Deision Digrms OBDD Constrution?

91 2. Binry Deision Digrms OBDD onstrution Priniple: uild OBDD while trversing the iruit from inputs to outputs OBDD-Pkge C-Progrm Trverser C-Progrm C-Progrm C-Progrm *

92 2. Binry Deision Digrms OBDD onstrution OBDD-Pkge C-Progrm Trverser C-Progrm C-Progrmm C-progrm C-Progrmm

93 2. Binry Deision Digrms OBDD onstrution OBDD-Pkge C-Progrm Trverser C-Progrm C-Progrm C-Progrmm

94 2. Binry Deision Digrms OBDD onstrution Orthogonlity of Boole's expnsion f+g = x*(f x + g x ) + x*(f x + g x ), f*g = x*(f x *g x ) + x*(f x * g x ), f = x*f x + x*f x f g * x x * * f x f x g x g x

95 2. Binry Deision Digrms OBDD onstrution AND-opertion of two OBDD s Assumption: nodes re represented s triples (x,v,v) vr low high ess-funtions

96 2. Binry Deision Digrms OBDD onstrution funtion AND(dd, dd2): IF dd= OR dd2= THEN return ; ELSEIF dd= THEN return dd2; ELSEIF dd2= THEN return dd; ELSE vr:=vr(dd);vr2:=vr(dd2); ( IF vr=vr2 THEN x:=vr; v:= AND(low(dd), low(dd2)), v:= AND(high(dd),high(dd2)); ( g ( )); ELSEIF index(vr) < index(vr2) THEN x:=vr; v:= AND(low(dd), ( dd2), v:= AND(high(dd), dd2); ELSEIF... IF v = v THEN return v ELSE return (x,v,v); v);...

97 2. Binry Deision Digrms OBDD onstrution 3 4 * 5 3 dd vr= 4 dd2 vr2= => index(vr) < index(vr2)

98 2. Binry Deision Digrms OBDD onstrution 3 4 * dd vr= dd2 vr2= => index(vr) < index(vr2) x:=vr := x:=vr := v:= nd(low(dd),dd2), v:= nd(high(dd),dd2)

99 2. Binry Deision Digrms OBDD onstrution 3 4 * dd vr= dd2 vr2= => index(vr) < index(vr2)

100 2. Binry Deision Digrms 2.3 OBDD onstrution 3 4 * dd vr= dd2 vr2= => index(vr) < index(vr2) x:=vr := x:=vr := v:= nd(low(dd),dd2), v:= nd(high(dd),dd2)

101 2. Binry Deision Digrms 2.3 OBDD onstrution 3 4 * dd vr= dd2 vr2= => index(vr) < index(vr2) x:=vr := v:= nd(low(dd),dd2), v:= nd(high(dd),dd2)

102 2. Binry Deision Digrms OBDD onstrution 3 4 * dd vr= dd2 vr2= => index(vr) < index(vr2) x:=vr := v:= nd(low(dd),dd2), v:= nd(high(dd),dd2)

103 2. Binry Deision Digrms OBDD onstrution 3 4 * dd vr= dd2 vr2= => index(vr) < index(vr2) x:=vr := v:= nd(low(dd),dd2), v:= nd(high(dd),dd2)

104 2. Binry Deision Digrms OBDD onstrution 3 4 * dd vr= dd2 vr2= => index(vr) < index(vr2) x:=vr := v:= nd(low(dd),dd2), v:= nd(high(dd),dd2)

105 2. Binry Deision Digrms OBDD onstrution 3 4 * dd vr= dd2 vr2= => index(vr) < index(vr2) x:=vr := v:= nd(low(dd),dd2), v:= nd(high(dd),dd2)

106 2. Binry Deision Digrms OBDD onstrution "OBDD-Pkges" mnge two tles: The unique tle (ut) with entries: x v v For uniqueness of OBDD's

107 2. Binry Deision Digrms OBDD onstrution The omputed tle (t) with entries Opertion dd dd2 Result dd Stores previously lulted results

108 2. Binry Deision Digrms OBDD onstrution Redution ws needed in the originl OBDD proedures OBDD uniquess is gurnteed y Cheking in the unique-tle (ut) if the OBDD ws lulted efore Testing for identil suessor nodes In ddition, it is heked in the omputed tle (t) if the result ws lulted efore Mny steps of reursion my e sved

109 2. Binry Deision Digrms OBDD onstrution funtion AND(dd, dd2): IF (AND,dd,dd2,x) t THEN return x; IF dd= OR dd2= THEN return ; ELSEIF dd= THEN return dd2; ELSEIF dd2= THEN return dd; ELSE vr:=vr(dd);vr2:=vr(dd2); IF vr=vr2 THEN x:=vr; v:= AND(low(dd), low(dd2)), v:= AND(high(dd),high(dd2)); ELSEIF index(vr) < index(vr2) THEN x:=vr; v:= AND(low(dd), dd2), v:= AND(high(dd), dd2); ELSEIF... IF v = v THEN return v ELSEIF (x,v,v) ut THEN put in ut; ELSE return (x,v,v);...

110 2. Binry Deision Digrms 2.3 OBDD onstrution The omputed tle is essentil for the effiieny of the lgorithms: In priniple, two dditionl steps of reursion my result t eh step the numer of steps my grow exponentilly in the numer of vriles Using the omputed tle with entries Opertion dd dd2 Result dd the numer of reursions is redued d to n * n2 where n nd n2 re the numer of nodes of dd nd dd2, respetively

111 2. Binry Deision Digrms 2.3 OBDD onstrution * d e f g d e f g

112 2. Binry Deision Digrms OBDD onstrution * - * exponentil in the numer of vriles? -O(n *n 2 ) using the omputed tle! * *

113 2. Binry Deision Digrms OBDD onstrution Generl result: If two OBDD s with m nd n nodes re logilly omined then the resulting OBDD hs m*n nodes This is due to the ft tht not more thn m*n distint funtions re generted!

114 2. Binry Deision Digrms OBDD onstrution Negted edges: The OBDD of funtion f nd the OBDD of the negted funtion re very similr: exhnge the terminl nodes nd! Orthogonlity of negtion: negte funtion y negting it's oftors Mens negtion x = x Prolem: non-nonil representtion!

115 2. Binry Deision Digrms OBDD onstrution Solution: Only the -edge n e negted edge terminl lef only (or the dul version...) x = = x x x x = x x = x

116 2. Binry Deision Digrms OBDD onstrution Exmples: vrile nd negted vrile

117 2. Binry Deision Digrms OBDD onstrution Exmple: XOR funtion

118 2. Binry Deision Digrms OBDD onstrution Coftor lultion using OBDD's of(x, pol, OBDD): x vrile, pol polrity or Esy if vrile = top-vrile, e.g., of(,, OBDD):

119 2. Binry Deision Digrms OBDD onstrution Generlly: Reple pointers to the vrile y the pointer to the -(-)suessor: f = + f = f =

120 2. Binry Deision Digrms OBDD onstrution Exmple: determine the -oftor for vrile d:

121 2. Binry Deision Digrms OBDD onstrution Funtionl sustitution: sustitute funtion g vor vrile x The pper-nd-penil method is: reple ll ourrenes of x textully y g How to do tht with OBDD-representtion? f[x g] = g f x + g f x Rtionle: f x f = x f x + x f x f x f = g f x + g f x f x f x x g

122 2. Binry Deision Digrms OBDD onstrution Funtionl sustitution: sustitute funtion g vor vrile x f[x g] = g f x + g f x Note: x : (f (x g)) = [f x ( g)] + [f x ( g)] = f x g + f x g = f[x g] Funtionl sustitution n e redued to the pplition of the -opertor

123 2. Binry Deision Digrms OBDD onstrution Using Boolen opertions plus oftor-lultion more dvned Boolen opertions like the - nd -quntifier nd funtionl sustitutions n e implemented

124 2. Binry Deision Digrms OBDD onstrution OBDD s re used in mny CAD-tools for synthesis, verifition nd simultion Mny puli domin OBDD-pkges Mny re sed on the ite(p, f, g)-opertor (if p then f else g) CUDD pkge (Boulder Univ.) OBDD re very effiient deision proedures for propositionl lulus, nd re integrted into mny theorem provers like PVS nd ACL2

125 2. Binry Deision Digrms FDD's nd OKFDD's OBDD's re sed on Boole's expnsion theorem OBDD's represent the systemti deomposition in ll vriles Q: Are there other types of "deomposition"? How mny?

126 2. Binry Deision Digrms FDD's nd OKFDD's Boole' expnsion: f x f x f There re more types of expnsion (extly two more): x f x x f x f Positive Dvio-expnsion ) f (f x f f Negtive Dvio-expnsion ) f (f x f f x x x Negtive Dvio expnsion ) f (f x f f x x x

127 2. Binry Deision Digrms FDD's nd OKFDD's FDD s (Funtionl Deision Digrms, Keshull et l. 92) f=f f x x*(f x(f x f x ) for x = f x for x = f x f x f x =f x Sme grph struture, ut different interprettion: f x Boolen differene of f w.r.t. x f x (f x f x )

128 2. Binry Deision Digrms FDD's nd OKFDD's FDD s (Funtionl Deision Digrms, Keshull et l. 92) f=f f x x*(f x(f x f x ) for x = f x for x = f x f x f x =f x Sme grph struture, ut different interprettion: f Rule: vrile = x XOR oth rnhes to get the vlue of f f x (f x f x )

129 2. Binry Deision Digrms FDD's nd OKFDD's FDD s re nonil representtions FDD's oey different rule of redution: f f x f x f x (f x f x ) : if the Boolen differene is then f does not depend on x

130 2. Binry Deision Digrms FDD's nd OKFDD's Orthogonlity of XOR nd AND for FDD s: f g=f x x*(f x f x ) g x x*(g x g x ) = (f x g x ) x*[(f x f x ) (g x g x )] Yes! f g = (f x x*(f x f x )) (g x x*(g x g x )) = (f x *g x ) x*[f x * (g x g x ) (f x f x ) *g x (f x f x )*(g x g x )] No! All 4 omintions hve to e onsidered for the AND of 2 FDD's

131 2. Binry Deision Digrms FDD's nd OKFDD's OBDD nd FDD for 4-it dder

132 2. Binry Deision Digrms FDD's nd OKFDD's OKFDD s (Ordered Kroneker FDD s, Drehsler et l. 94) Allows ny of the three types of deomposition for eh vrile The type of deomposition is stored in deomposition type list (DTL) f = *[( *( )) *(( *( )) )] + *[ *( )] = *( ) + * Boole f x f x f x f x p.dvio f f x x (f x f x ) p.dvio f f x x (f x f x ) DTL

133 2. Binry Deision Digrms FDD's nd OKFDD's OBDD's/FDD's/OKFDD'S in omprison OKFDD s hve OBDD s nd FDD s s sulsses OBDD s: AND, OR, XOR of two OBDD s of size n nd m requires mx. n*m opertions FDD s/okfdd s: s: XOR requires mx. n*m, ut AND nd OR my need exponentilly mny opertions! However: #nodes of FDD/OKFDD my e exponentilly smller thn #nodes of the OBDD (nd vie vers) Importnt for logi synthesis OKFDD s: determining i the deomposition-type t list (DTL) is n dditionl prolem

134 2. Binry Deision Digrms FDD's nd OKFDD's The OBDD size grows only linerly in #vriles for mny iruits (AND, OR, XOR, dders, ALU's, et.) Cn ll iruits e represented with liner (or polynomil) effort? The theoretil nswer is tht there will never e ny representtion with this nie property for ll iruits While the OBDD's re very ompt representtions for mny lsses of iruits they fil for others...

135 2. Binry Deision Digrms FDD's nd OKFDD's Exmple: multiplier iruits A A 3 A 2 A B B B 2 B 3 P 7 P 6 P 5 P 4 P 3 P 2 P P Word length : #OBDD nodes : Interest in other types of deision digrms

136 2. Binry Deision Digrms Integer-Vlued Deision Digrms So fr type B n B m, now: type B n Z: MTBDD s (Multi Terminl Binry Deision Digrms, Clrke et l. DAC 93) BMD s (Binry Moment Digrms, Brynt/Chen DAC 95) rule: vrile = sum oth rnhes MTBDD 4 + BMD

137 2. Binry Deision Digrms Integer-vlued deision digrms MTBDD: f = ( - x)*f x + x*f x where +, -, * re the ddition, sutrtion ti nd multiplition, respetively BMD: f = f x + x*(f x -f x ) HDD s (Clrke/Zho): omintion of MTBDD/BMD, one deomposition types for eh vrile (~ OKFDD s)

138 2. Binry Deision Digrms Integer-vlued deision digrms Exmple of pplition (Fujit et. 96): Vetor-mtrix opertions employing MTBDD s Ide: enode rows nd olumns y mens of oolen vriles elements ~ lefs Exmple 2*2 Mtrix: x f xy f xy y f xy f xy

139 2. Binry Deision Digrms Integer-vlued deision digrms Type B n Z nd ttriuted edges EVBDD s (Edge Vlued Binry Deision Digrms, Li et l. ICCAD 93) *BMD s (Multiplitive Binry Moment Digrms, Brynt/ Chen DAC 95) rule: rule: vrile = => 4 dd weight 2 dd oth rnhes, multiply l y weight EVBDD *BMD

140 2. Binry Deision Digrms Integer-vlued deision digrms EVBDD: f = + ( - x)*f x + x*f x where +, -, * re the ddition, sutrtion ti nd multiplition, respetively *BMD: f = m*(f x + x*(f x -f x )) K*BMD s (Drehsler EDTC 96): one deomposition type for eh vrile (~ OKFDD s, HDD s) s), dditive + multiplitive weights *PHDD (Chen/Brynt ICCAD 97): multiplitive power hyrid deision digrms for floting-point iruits

141 2. Binry Deision Digrms Integer-vlued deision digrms For *BMD s we hve for n edge without weight: f = f x + x*(f x -f x ) = f x + x*f ẋ *BMD s re nonil representtions provided tht:. Rule: f f w x w f x f x. f x

142 2. Binry Deision Digrms Integer-vlued deision digrms 2. Rule: the weight on n edge equls the gd of the weights of the suessor edges f t f x w w x w /t w /t f x f ẋ f x f ẋ leve "n" is node with weight n

143 2. Binry Deision Digrms Integer-vlued deision digrms Exmple: *BMD for f = 4*x + 2 f=f f x +x*(f x - f x ) = 2 + x*(6-2), gd(2, 4) = 2 f 2 f x x 2 4 2

144 2. Binry Deision Digrms Integer-vlued deision digrms Next exmple: *BMD for f = 3*y + 4*x + 2 f = f y + y*(f y( y - f y ) = (4*x + 2) + y*((4*x + 5) - (4*x + 2)) = (4*x + 2) + y*3 f 2 y x 2 3

145 2. Binry Deision Digrms Integer-vlued deision digrms 3. Rule: sign of t is sign of left rnh f t f x w w x w /t w /t f x f ẋ f x f ẋ

146 2. Binry Deision Digrms Integer-vlued deision digrms For *BMD s with rnge {, }, the oolen opertions n e redued to integer ddition, sutrtion nd multiplition: f - f f nd g f*g f or g f + g - f*g f xor g f + g - 2*f*g

147 2. Binry Deision Digrms Integer-vlued deision digrms Some exmple *BMD s: 4 vrile AND ( oolen funtion) x x x 2 x 2 x 3 3 x 3 x 4 x 4 OBDD *BMD

148 2. Binry Deision Digrms Integer-vlued deision digrms 4 vrile OR ( oolen funtion) x x x 3 x 2 x 2 x 3 x 2 x x 4 x 4 x 4 OBDD - *BMD

149 2. Binry Deision Digrms Integer-vlued deision digrms 4 vrile OR ( oolen funtion) x 4 =, x 3 =, x 2 =, x = x 3 x x x x 2 2 x 2 - x 3 x 3 - x 4 x 4 x 4 OBDD - *BMD

150 2. Binry Deision Digrms Integer-vlued deision digrms Exmple: 2-Bit multiplition x, x y, y Result: (x *2 +x *2 )*(y *2 +y *2 ) = 2 *x *(y *2 *2 +y )+ 2 *x *(y *2 +y *2 ) 2 x x x *(y *2 +y *2 )+ 2*x *(y *2 +y *2 ) x *(y *2 +y *2 ) y 2 y *2 +y *2 y

151 2. Binry Deision Digrms Integer-vlued deision digrms Clssifition shem of deision digrms (sed on Minto 96): deomposition type: Shnnon p. Dvio mixed OBDD FDD OKFDD B n B MTBDD BMD HDD B n Z EVBDD *BMD K*BMD B n Z, ttriuted t edges

152 2. Binry Deision Digrms Bit-Vetor Expressions Bit-vetors: t Used for the ompt representtion of omplex digitl hrdwre More dequte thn single its in mny ses Exmples: dt-pths, rithmeti iruits, register-trnsfer-level (rtl) desriptions, storge elements,... Provided y mny hrdwre desription lnguges (HDL's) s si dt-type

153 2. Binry Deision Digrms Bit-vetor expressions Exmple: speifition of 748 ALU Generi it-vetor funtion "A PLUS B" S3 S2 S S M = H M = L Cn = H M = L Cn = L L L L L F = not(a) F = A F = A PLUS L L L H L L H L L L H H L H L L F = not(a+b) F = not(a) B F = F = not(a B) F = A + B F = A + not(b) F = MINUS F = A PLUS A not(b) F = (A + B) PLUS F = (A + not(b)) PLUS F = F = A PLUS A not(b) PLUS L H L H L H H L L H H H H L L L H L L H H L H L H L H H H H L L H H L H H H H L H H H H F = not(b) F = A B F = A not(b) F = not(a)+b F = not(a B) F = B F = A B F = F=A+not(B) F = A + B F = A F = (A + B) PLUS A not(b) F = A MINUS B MINUS F = A not(b) MINUS F = A PLUS AB F=APLUSB F = (A + not(b)) PLUS AB F = A B MINUS F = A PLUS A F = (A + B) PLUS A F = (A + not(b)) PLUS A F = A MINUS F = (A + B) PLUS AB PLUS F = A MINUS B F = A not(b) F = A PLUS AB PLUS F=APLUSBPLUS F = (A + not(b)) PLUS AB PLUS F = AB F = A PLUS A PLUS F = (A + B) PLUS A PLUS F = (A + not(b)) PLUS A PLUS F = A

154 2. Binry Deision Digrms Bit-vetor expressions Bit-vetor funtions re neessry for input/output speifitions, i.e., for the strtion from internl p,, detils I/O- Speifition Speifition 3 S S = n+4 D E Q B A G P F S S S E 3 D B 3 3 = = = 2 F A=B F A E 2 B A D E D B 2 2 Q Q = = = M n F E A Q = =

155 2. Binry Deision Digrms Bit-vetor expressions Typil it-vetor funtions: Funtion Mening Exmple: FAE(A,N) ADC(A,B,C) C) ADD(A,B) INC(A) DCR(A) RSH(C,V) LSH(V,C) ROL(A) ROR(A) MPX(A,S) MINT(A,N) GT(A,B) LESS(A,B) fn-out ddition ddition modulo inrement derement rigth-shift left-shift rotte left rotte right multiplexor. Dim. minterm A greter B A less B FAE(,3)="" ADC("","", )="" ADD("","")="" INC("")="" DCR("")="" RSH(,"")="" LSH("", ) )="" ROL("")="" ROR("")="" MPX("","")= MINT(A(:2),)= (not A()) nd (not A(2)) GT("","")= LESS("","")=

156 2. Binry Deision Digrms Bit-vetor expressions Bit-vetors in VHDL Type it_vetor predefined signl X: it_vetor ( to 6) or: (6 downto ) Seletion of single elements X(4) or slies X(2 to 4) Constnt-denottion (B)"" Assignments X(2 to 4) <= X(8 to ) Overloded oolen primitives, e.g., "" AND "" = "" Contention, e.g., X(2 to 4)X(5 to 7) = X(2 to 7)...

157 2. Binry Deision Digrms Bit-vetor expressions Verifition prolems: How to demonstrte the equlity of ritrry itvetor expressions? Do we hve to reson formlly out tuples, et.?

158 2. Binry Deision Digrms Bit-vetor expressions Deision proedure: proedure to deide the truth of sttement in some domin For generi expressions (my ontin expressions of ritrry length), indutive resoning is typilly used Exmple: prove ADD(A, B) = ADD(B, A) for ritrry vetors A nd B of the sme length Typilly theorem prover is employed You hve to derive the proof in lrge prt y yourself The theorem prover heks if the proof is orret Not utomted, t needs user intertion ti

159 2. Binry Deision Digrms Bit-vetor expressions For fixed-length expressions, the prolem eomes muh simpler Exmple: prove ADD(A, B) = ADD(B, A) for 32-it vetors A nd B Severl deision proedures exist: The prolem n e redued to OBDD's The prolem n e redued to n integer-liner progrmming (ILP) prolem A speifi deision proedure ws given y Cyrluk et l. (CAV 97) for restrited repertoire of it-vetor funtions

160 2. Binry Deision Digrms Bit-vetor expressions Redution to OBDD's ("it-lsting"): Trnslte expression using it-vetor-funtions into multi-level gte-networks e.g., A PLUS B, where A nd B re two 4-it vetors, is trnsformed into the gte-network of four-it dder Then s efore! vetor expression gte network vetor gte expression 2 network 2 OBDD =? OBDD 2

161 2. Binry Deision Digrms Bit-vetor expressions Tehnique offers the generl possiility to rry out proofs involving omplex it-vetor expressions Exmples: ADD(A, B) = ADD(B, A) (ADD(A, B) > ADD(B, C)) (A>C) (A>B) = NOT(ADD(A, NOT(B))()) where A, B, C hve fixed length y delrtion Typilly tkes < se. for 64-it vetors

162 2. Binry Deision Digrms Bit-vetor expressions A A > B = NOT (ADD(A, NOT(B)))() A N B N N B N N > ADD N+ N CPU-time

163 2. Binry Deision Digrms Bit-vetor expressions Exmple: verifition of ALU s Verifition of VHDL-speifition using itvetor-opertions vs. network of stndrd-ells Wordlength CPU-time Bit ALU: 2 * 32 oolen funtions in up to 77 vriles

164 2. Binry Deision Digrms Bit-vetor expressions Some referenes: Hssoun/Sso (Eds.): Logi Synthesis nd Verifition, Springer Book-Chpters on BDD's, SAT, Equivlene heking Hhtel/Somenzi: Logi Synthesis nd Verifition Algorithms, Springer

165 2. Binry Deision Digrms Bit-vetor expressions Written exm in the summer etween 8. Juli nd 7. Otoer 2 plese follow Doodle link

1. Logic verification

1. Logic verification . Logi verifition Bsi priniples of OBDD s Vrile ordering Network of gtes => OBDD s FDD s nd OKFDD s Resoning out iruits Struturl methods Stisfiility heker Logi verifition The si prolem: prove tht two iruits

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Unit 4. Combinational Circuits

Unit 4. Combinational Circuits Unit 4. Comintionl Ciruits Digitl Eletroni Ciruits (Ciruitos Eletrónios Digitles) E.T.S.I. Informáti Universidd de Sevill 5/10/2012 Jorge Jun 2010, 2011, 2012 You re free to opy, distriute

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 22 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

Hardware Verification 2IMF20

Hardware Verification 2IMF20 Hrdwre Verifition 2IMF20 Julien Shmltz Leture 02: Boolen Funtions, ST, CEC Course ontent - Forml tools Temporl Logis (LTL, CTL) Domin Properties System Verilog ssertions demi & Industrils Proessors Networks

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

Propositional models. Historical models of computation. Application: binary addition. Boolean functions. Implementation using switches.

Propositional models. Historical models of computation. Application: binary addition. Boolean functions. Implementation using switches. Propositionl models Historil models of omputtion Steven Lindell Hverford College USA 1/22/2010 ISLA 2010 1 Strt with fixed numer of oolen vriles lled the voulry: e.g.,,. Eh oolen vrile represents proposition,

More information

Boolean algebra.

Boolean algebra. http://en.wikipedi.org/wiki/elementry_boolen_lger Boolen lger www.tudorgir.com Computer science is not out computers, it is out computtion nd informtion. computtion informtion computer informtion Turing

More information

Hybrid Systems Modeling, Analysis and Control

Hybrid Systems Modeling, Analysis and Control Hyrid Systems Modeling, Anlysis nd Control Rdu Grosu Vienn University of Tehnology Leture 5 Finite Automt s Liner Systems Oservility, Rehility nd More Miniml DFA re Not Miniml NFA (Arnold, Diky nd Nivt

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation

CS12N: The Coming Revolution in Computer Architecture Laboratory 2 Preparation CS2N: The Coming Revolution in Computer Architecture Lortory 2 Preprtion Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes

More information

A Differential Approach to Inference in Bayesian Networks

A Differential Approach to Inference in Bayesian Networks Dierentil pproh to Inerene in Byesin Networks esented y Ynn Shen shenyn@mi.pitt.edu Outline Introdution Oeriew o lgorithms or inerene in Byesin networks (BN) oposed new pproh How to represent BN s multi-rite

More information

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1. Exerise Genertor polynomils of onvolutionl ode, given in binry form, re g, g j g. ) Sketh the enoding iruit. b) Sketh the stte digrm. ) Find the trnsfer funtion T. d) Wht is the minimum free distne of

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

Solutions - Homework 1 (Due date: September 9:30 am) Presentation and clarity are very important!

Solutions - Homework 1 (Due date: September 9:30 am) Presentation and clarity are very important! ECE-238L: Computer Logi Design Fll 23 Solutions - Homework (Due dte: Septemer 2th @ 9:3 m) Presenttion nd lrity re very importnt! PROBLEM (5 PTS) ) Simpliy the ollowing untions using ONLY Boolen Alger

More information

Instructions. An 8.5 x 11 Cheat Sheet may also be used as an aid for this test. MUST be original handwriting.

Instructions. An 8.5 x 11 Cheat Sheet may also be used as an aid for this test. MUST be original handwriting. ID: B CSE 2021 Computer Orgniztion Midterm Test (Fll 2009) Instrutions This is losed ook, 80 minutes exm. The MIPS referene sheet my e used s n id for this test. An 8.5 x 11 Chet Sheet my lso e used s

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Resources. Introduction: Binding. Resource Types. Resource Sharing. The type of a resource denotes its ability to perform different operations

Resources. Introduction: Binding. Resource Types. Resource Sharing. The type of a resource denotes its ability to perform different operations Introduction: Binding Prt of 4-lecture introduction Scheduling Resource inding Are nd performnce estimtion Control unit synthesis This lecture covers Resources nd resource types Resource shring nd inding

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

Exercise 3 Logic Control

Exercise 3 Logic Control Exerise 3 Logi Control OBJECTIVE The ojetive of this exerise is giving n introdution to pplition of Logi Control System (LCS). Tody, LCS is implemented through Progrmmle Logi Controller (PLC) whih is lled

More information

EFFICIENT SYMBOLIC COMPUTATION FOR WORD-LEVEL ABSTRACTION FROM COMBINATIONAL CIRCUITS FOR VERIFICATION OVER FINITE FIELDS

EFFICIENT SYMBOLIC COMPUTATION FOR WORD-LEVEL ABSTRACTION FROM COMBINATIONAL CIRCUITS FOR VERIFICATION OVER FINITE FIELDS EXTENDED VERSION OF THE PAPER ACCEPTED TO APPEAR IN IEEE TRANS ON CAD, PAPER ACCEPTANCE OCTOBER 2015 1 EFFICIENT SYMBOLIC COMPUTATION FOR WORD-LEVEL ABSTRACTION FROM COMBINATIONAL CIRCUITS FOR VERIFICATION

More information

expression simply by forming an OR of the ANDs of all input variables for which the output is

expression simply by forming an OR of the ANDs of all input variables for which the output is 2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

The State Explosion Problem. Symbolic Encoding using Decision Diagrams. CiteSeer Database. Overview. Boolean Functions.

The State Explosion Problem. Symbolic Encoding using Decision Diagrams. CiteSeer Database. Overview. Boolean Functions. The Stte Eplosion Prolem Smoli Enoding using Deision Digrms 6.42J/6.834J ognitive Rootis Mrtin Shenher (using mteril from Rndl rnt, ln Mishhenko, nd Geert Jnssen) Mn prolems suffer from stte spe eplosion:

More information

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences

Lecture 6. Notes. Notes. Notes. Representations Z A B and A B R. BTE Electronics Fundamentals August Bern University of Applied Sciences Lecture 6 epresenttions epresenttions TE52 - Electronics Fundmentls ugust 24 ern University of pplied ciences ev. c2d5c88 6. Integers () sign-nd-mgnitude representtion The set of integers contins the Nturl

More information

Metodologie di progetto HW Technology Mapping. Last update: 19/03/09

Metodologie di progetto HW Technology Mapping. Last update: 19/03/09 Metodologie di progetto HW Tehnology Mpping Lst updte: 19/03/09 Tehnology Mpping 2 Tehnology Mpping Exmple: t 1 = + b; t 2 = d + e; t 3 = b + d; t 4 = t 1 t 2 + fg; t 5 = t 4 h + t 2 t 3 ; F = t 5 ; t

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

Fujitsu Laboratories of America. 77 Rio Robles, San Jose CA happens when one attempts to compare the functionality. inputs is neglected.

Fujitsu Laboratories of America. 77 Rio Robles, San Jose CA happens when one attempts to compare the functionality. inputs is neglected. VERIFUL : VERItion using FUntionl Lerning Rjrshi Mukherjee y Dept. of Eletril nd Computer Engineering University of Texs t Austin Austin TX 7872 Astrt It is well known tht lerning (i.e., indiret implitions)

More information

Nondeterminism and Nodeterministic Automata

Nondeterminism and Nodeterministic Automata Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

More information

Note 12. Introduction to Digital Control Systems

Note 12. Introduction to Digital Control Systems Note Introduction to Digitl Control Systems Deprtment of Mechnicl Engineering, University Of Ssktchewn, 57 Cmpus Drive, Ssktoon, SK S7N 5A9, Cnd . Introduction A digitl control system is one in which the

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005 RLETON UNIVERSIT eprtment of Eletronis ELE 2607 Swithing iruits erury 28, 05; 0 pm.0 Prolems n Most Solutions, Set, 2005 Jn. 2, #8 n #0; Simplify, Prove Prolem. #8 Simplify + + + Reue to four letters (literls).

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL: PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for right-ngled tringles

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

Parse trees, ambiguity, and Chomsky normal form

Parse trees, ambiguity, and Chomsky normal form Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

More information

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automata 1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

More information

Implication Graphs and Logic Testing

Implication Graphs and Logic Testing Implition Grphs n Logi Testing Vishwni D. Agrwl Jmes J. Dnher Professor Dept. of ECE, Auurn University Auurn, AL 36849 vgrwl@eng.uurn.eu www.eng.uurn.eu/~vgrwl Joint reserh with: K. K. Dve, ATI Reserh,

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Fall Notes - Unit 1 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl systems. It dels with the cse where vriles ssume only one o two vlues: TRUE (usully represented

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

MTH 5102 Linear Algebra Practice Exam 1 - Solutions Feb. 9, 2016

MTH 5102 Linear Algebra Practice Exam 1 - Solutions Feb. 9, 2016 Nme (Lst nme, First nme): MTH 502 Liner Algebr Prctice Exm - Solutions Feb 9, 206 Exm Instructions: You hve hour & 0 minutes to complete the exm There re totl of 6 problems You must show your work Prtil

More information

Fast Boolean Algebra

Fast Boolean Algebra Fst Boolen Alger ELEC 267 notes with the overurden removed A fst wy to lern enough to get the prel done honorly Printed; 3//5 Slide Modified; Jnury 3, 25 John Knight Digitl Circuits p. Fst Boolen Alger

More information

Automatic Synthesis of New Behaviors from a Library of Available Behaviors

Automatic Synthesis of New Behaviors from a Library of Available Behaviors Automti Synthesis of New Behviors from Lirry of Aville Behviors Giuseppe De Giomo Università di Rom L Spienz, Rom, Itly degiomo@dis.unirom1.it Sestin Srdin RMIT University, Melourne, Austrli ssrdin@s.rmit.edu.u

More information

GM1 Consolidation Worksheet

GM1 Consolidation Worksheet Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-378: Computer Hardware Design Winter Notes - Unit 1 ELETRIL ND OMPUTER ENGINEERING DEPRTMENT, OKLND UNIVERSIT EE-78: omputer Hrdwre Design Winter 016 INTRODUTION TO LOGI IRUITS Notes - Unit 1 OOLEN LGER This is the oundtion or designing nd nlyzing digitl

More information

m2 m3 m1 (a) (b) (c) n2 n3

m2 m3 m1 (a) (b) (c) n2 n3 Outline LOGIC SYNTHESIS AND TWO-LEVEL LOGIC OPTIMIZATION Giovnni De Miheli Stnford University Overview of logi synthesis. Comintionl-logi design: { Bkground. { Two-level forms. Ext minimiztion. Covering

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2 EE08A Leture 2: Comintionl Logi Design EE 08A Leture 2 () 2005-2008 W. J. Dlly n P. Levis Announements Prof. Levis will hve no offie hours on Friy, Jn 8. Ls n setions hve een ssigne - see the we pge Register

More information

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then Slrs-7.2-ADV-.7 Improper Definite Integrls 27.. D.dox Pge of Improper Definite Integrls Before we strt the min topi we present relevnt lger nd it review. See Appendix J for more lger review. Inequlities:

More information

12.4 Similarity in Right Triangles

12.4 Similarity in Right Triangles Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

More information

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences.

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences. Lecture 3 Ferury 6 ern University of pplied ciences ev. f57fc 3. We hve seen tht circuit cn hve multiple (n) inputs, e.g.,, C, We hve lso seen tht circuit cn hve multiple (m) outputs, e.g. X, Y,, ; or

More information

September 13 Homework Solutions

September 13 Homework Solutions College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

More information

Chapter 8 Roots and Radicals

Chapter 8 Roots and Radicals Chpter 8 Roots nd Rdils 7 ROOTS AND RADICALS 8 Figure 8. Grphene is n inredily strong nd flexile mteril mde from ron. It n lso ondut eletriity. Notie the hexgonl grid pttern. (redit: AlexnderAIUS / Wikimedi

More information

Finite State Automata and Determinisation

Finite State Automata and Determinisation Finite Stte Automt nd Deterministion Tim Dworn Jnury, 2016 Lnguges fs nf re df Deterministion 2 Outline 1 Lnguges 2 Finite Stte Automt (fs) 3 Non-deterministi Finite Stte Automt (nf) 4 Regulr Expressions

More information

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014 CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

More information

Fachgebiet Rechnersysteme1. 1. Boolean Algebra. 1. Boolean Algebra. Verification Technology. Content. 1.1 Boolean algebra basics (recap)

Fachgebiet Rechnersysteme1. 1. Boolean Algebra. 1. Boolean Algebra. Verification Technology. Content. 1.1 Boolean algebra basics (recap) . Boolen Alger Fchgeiet Rechnersysteme. Boolen Alger Veriiction Technology Content. Boolen lger sics (recp).2 Resoning out Boolen expressions . Boolen Alger 2 The prolem o logic veriiction: Show tht two

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)

More information

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Learning Objectives of Module 2 (Algebra and Calculus) Notes: 67 Lerning Ojetives of Module (Alger nd Clulus) Notes:. Lerning units re grouped under three res ( Foundtion Knowledge, Alger nd Clulus ) nd Further Lerning Unit.. Relted lerning ojetives re grouped under

More information

Foundations of Computer Science Comp109

Foundations of Computer Science Comp109 Reding Foundtions o Computer Siene Comp09 University o Liverpool Boris Konev konev@liverpool..uk http://www.s.liv..uk/~konev/comp09 Prt. Funtion Comp09 Foundtions o Computer Siene Disrete Mthemtis nd Its

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Algebra Basics. Algebra Basics. Curriculum Ready ACMNA: 133, 175, 176, 177, 179.

Algebra Basics. Algebra Basics. Curriculum Ready ACMNA: 133, 175, 176, 177, 179. Curriulum Redy ACMNA: 33 75 76 77 79 www.mthletis.om Fill in the spes with nything you lredy know out Alger Creer Opportunities: Arhitets eletriins plumers et. use it to do importnt lultions. Give this

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4

Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4 Semnti nlysis SI 16 Priniples of Progrmming Lnguges Fulty of omputer Siene Dlhousie University Winter 2012 Reding: hpter 4 Motivtion Soure progrm (hrter strem) Snner (lexil nlysis) Front end Prse tree

More information

Ch. 2.3 Counting Sample Points. Cardinality of a Set

Ch. 2.3 Counting Sample Points. Cardinality of a Set Ch..3 Counting Smple Points CH 8 Crdinlity of Set Let S e set. If there re extly n distint elements in S, where n is nonnegtive integer, we sy S is finite set nd n is the rdinlity of S. The rdinlity of

More information

Fault Modeling. EE5375 ADD II Prof. MacDonald

Fault Modeling. EE5375 ADD II Prof. MacDonald Fult Modeling EE5375 ADD II Prof. McDonld Stuck At Fult Models l Modeling of physicl defects (fults) simplify to logicl fult l stuck high or low represents mny physicl defects esy to simulte technology

More information

Combinational Logic. Precedence. Quick Quiz 25/9/12. Schematics à Boolean Expression. 3 Representations of Logic Functions. Dr. Hayden So.

Combinational Logic. Precedence. Quick Quiz 25/9/12. Schematics à Boolean Expression. 3 Representations of Logic Functions. Dr. Hayden So. 5/9/ Comintionl Logic ENGG05 st Semester, 0 Dr. Hyden So Representtions of Logic Functions Recll tht ny complex logic function cn e expressed in wys: Truth Tle, Boolen Expression, Schemtics Only Truth

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

A Functorial Query Language

A Functorial Query Language A Funtoril Query Lnguge Ryn Wisnesky, Dvid Spivk Deprtment of Mthemtis Msshusetts Institute of Tehnology {wisnesky, dspivk}@mth.mit.edu Presented t Boston Hskell April 16, 2014 Outline Introdution to FQL.

More information

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR 6.. Spetrosopy NMR spetrosopy Different types of NMR NMR spetrosopy involves intertion of mterils with the lowenergy rdiowve region of the eletromgneti spetrum NMR spetrosopy is the sme tehnology s tht

More information

1.3 SCALARS AND VECTORS

1.3 SCALARS AND VECTORS Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd

More information