Pre-Lie algebras, rooted trees and related algebraic structures

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Pre-Lie algebras, rooted trees and related algebraic structures"

Transcription

1 Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004

2 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers re lso pre-lie lgers. Exmple 3 The vetor spe of polynomil vetor fields on ffine spe A n. i P (x) xi j = i Q(x) xj j Q(x) ( xj P (x) ) xi. (2) 1

3 Theorem 4 (CL) The free pre-lie lger on single genertor hs sis indexed y rooted trees. The pre-lie produt is given y the sum over ll possile grftings. 2

4 Corollry 5 For given polynomil vetor field P, there exists unique morphism from the free pre-lie lger on one genertor O to the pre-lie lger of polynomil vetor fields whih mps O to P. To ny rooted tree T, one n ssoite in this wy vetor field T P. Exmple 6 Consider the following vetor field (not polynomil, ut nlyti): V = exp(x) x. (3) Then for ny rooted tree T, one hs T V = T exp(x) x, (4) where T is the numer of verties of T. Exmple 7 Find wht is T V for V = x x. 3

5 Definition 8 The PreLie operd is the operd desriing pre-lie lgers. Rell tht n operd P is given y olletion of modules P(n) over the symmetri groups S n with omposition mps i : P(m) P(n) P(m + n 1), (5) stisfying nturl xioms. The stndrd exmple is given y P(n) = hom(w n, W ) (6) for some fixed vetor spe W, together with omposition of multi-liner opertions t position i. 4

6 One n reformulte nd enhne the desription of the free pre-lie lgers s desription of the PreLie operd. Theorem 9 (CL) The vetor spe PreLie(n) hs sis indexed y the set of rooted trees with verties in ijetion with {1,..., n} (lelled rooted trees). The tion of S n is y hnging the deortion. The omposition T i T of tree T t ple i of tree T is sum over the set of mps from inoming edges t i to verties of T

7 For ny olletion P(n) of S n -modules, one defines n nlyti funtor whih mps vetor spe W to P(W ) = n 1 W n Sn P(n). (7) Rell tht one n define the derived funtor P of n nlyti funtor P y the formul P (W ) = P(W K{ }). (8) Equivlently, the S n -module P (n) is the restrition of the tion of S n+1 on P(n + 1) to the sugroup fixing n + 1. Theorem 10 If P is n operd, then, for ny vetor spe W, P (W ) hs nturl struture of ssoitive lger. The produt is given y omposition t the distinguished ple. 6

8 Exmple 11 Let us onsider the se of the PreLie operd nd vetor spe W = K{,, }. Then PreLie (W ) hs sis indexed y rooted trees with mp from verties to the set {,,, } suh tht is the imge of extly one vertex, lled the distinguished vertex (mrked deorted rooted trees). 7

9 Theorem 12 The suspe I(W ) spnned y trees where is not the root is twosided idel of PreLie (W ). The quotient lger hs nother desription. Rell tht the rket [x, y] = x y y x, (9) in pre-lie lger defines Lie lger. Theorem 13 The quotient of PreLie (W ) y I(W ) is isomorphi s n ssoitive lger to the universl enveloping lger of the Lie lger ssoited to the free pre-lie lger on W. PreLie (W )/I(W ) U(PreLie(W ) Lie ). (10) N.B. This enveloping lger is the dul of the Hopf lger of rooted trees, see Buther, Dür, Grossmn & Lrsson, Connes & Kreimer, Hoffmn, Foissy et.. 8

10 Definition 14 A lef is vertex without inoming edges. Theorem 15 The suspe Q(W ) spnned y trees where is lef is su-lger of PreLie (W ). Definition 16 A verterte is rooted tree with distinguished vertex lled the til. N.B. The til n e the sme s the root. A rooted tree where is lef n e onsidered s verterte: the distinguished vertex is removed nd the til is the vertex to whih is ws grfted. 9

11 Theorem 17 The lger Q(W ) is the free ssoitive lger on the suspe spnned y rooted trees where is lef tthed to the root. When onsidered s vertertes, the genertors re the vertertes where the til is the root. They n e identified with rooted trees. 10

12 Theorem 18 (Foissy) The universl enveloping lger U(PreLie(W ) Lie ) is free ssoitive lger. No expliit desription of suspe M(W ) of genertors is known. Theorem 19 The lger PreLie (W ) is free ssoitive lger on the spe of genertors M(W ) W, where the genertors in the prt W re the trees with two verties whose vertex mrked y is not the root. 11

13 Generting funtions To eh olletion P(n) of S n -modules, one ssoites generting funtion: P = n 0 dim P(n) x n /n!. (11) For PreLie, one gets PL = n 1 n n 1 x n /n!, (12) losely relted to the Lmert W-funtion. Mny lgeri theorems on free pre-lie lgers imply nlyti properties of the funtion PL. For exmple: Theorem 20 (CL) The free pre-lie lger PreLie(W ) is free module over the universl enveloping lger U(PreLie(W ) Lie ) over the genertors W. Hene one hs PL = x exp(pl). (13) 12

14 From now on, reple the tegory of vetor spes y the tegory of hins omplexes with vnishing differentils. Definition 21 A Λ-lger is hin omplex W with mp : W W W of degree 0 nd mp, : W W W of degree 1 suh tht is pre-lie produt,, is Lie rket of degree 1 nd the following reltion holds ± x y, z ± z y, x = z, x y, (14) where pproprite signs hve to e inserted ording to the Koszul sign rules. Mny good properties of pre-lie lgers should generlize to Λ-lgers. 13

15 Conjeture 22 The generting series for the nlyti funtor Λ is given y Λ = n 1 n 1 k=1 (n k t) x n /n!, (15) This would follow from the Koszul property for the operd Λ. These dimensions re known to e upper ounds. Note tht one reovers PL when t = 0. Conjeture 23 The free Λ-lger Λ(W ) is free s Lie lger nd its enveloping lger is free s n ssoitive lger. Conjeture 24 The ssoitive lger Λ (W ) is free ssoitive lger. Conjeture 25 There exists quotient mp of ssoitive lgers Λ (W ) U(Λ(W ) Lie ). (16) 14

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

The Word Problem in Quandles

The Word Problem in Quandles The Word Prolem in Qundles Benjmin Fish Advisor: Ren Levitt April 5, 2013 1 1 Introdution A word over n lger A is finite sequene of elements of A, prentheses, nd opertions of A defined reursively: Given

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

1.3 SCALARS AND VECTORS

1.3 SCALARS AND VECTORS Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd

More information

Functions. mjarrar Watch this lecture and download the slides

Functions. mjarrar Watch this lecture and download the slides 9/6/7 Mustf Jrrr: Leture Notes in Disrete Mthemtis. Birzeit University Plestine 05 Funtions 7.. Introdution to Funtions 7. One-to-One Onto Inverse funtions mjrrr 05 Wth this leture nd downlod the slides

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers.

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers. 8. Complex Numers The rel numer system is dequte for solving mny mthemticl prolems. But it is necessry to extend the rel numer system to solve numer of importnt prolems. Complex numers do not chnge the

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Symmetrical Components 1

Symmetrical Components 1 Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedy-stte nlysis of high voltge trnsmission systems, we mke use of the per-phse equivlent

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Line Integrals and Entire Functions

Line Integrals and Entire Functions Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series

More information

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals. MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 9. Modules over PID This week we re proving the fundmentl theorem for finitely generted modules over PID, nmely tht they re ll direct sums of cyclic modules.

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA PHILIP DANIEL AND CHARLES SEMPLE Astrt. Amlgmting smller evolutionry trees into single prent tree is n importnt tsk in evolutionry iology. Trditionlly,

More information

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages 5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

Computing Persistent Homology

Computing Persistent Homology Computing Persistent Homology Afr Zomorodin nd Gunnr Crlsson (Disrete nd Computtionl Geometry) Astrt We show tht the persistent homology of filtered d- dimensionl simpliil omplex is simply the stndrd homology

More information

LIP. Laboratoire de l Informatique du Parallélisme. Ecole Normale Supérieure de Lyon

LIP. Laboratoire de l Informatique du Parallélisme. Ecole Normale Supérieure de Lyon LIP Lortoire de l Informtique du Prllélisme Eole Normle Supérieure de Lyon Institut IMAG Unité de reherhe ssoiée u CNRS n 1398 One-wy Cellulr Automt on Cyley Grphs Zsuzsnn Rok Mrs 1993 Reserh Report N

More information

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1 CS4 45- Determinisitic Finite Automt -: Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother

More information

An introduction to groups

An introduction to groups n introdution to groups syllusref efereneene ore topi: Introdution to groups In this h hpter Groups The terminology of groups Properties of groups Further exmples of groups trnsformtions 66 Mths Quest

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES CHARLIE COLLIER UNIVERSITY OF BATH These notes hve been typeset by Chrlie Collier nd re bsed on the leture notes by Adrin Hill nd Thoms Cottrell. These

More information

Identifying and Classifying 2-D Shapes

Identifying and Classifying 2-D Shapes Ientifying n Clssifying -D Shpes Wht is your sign? The shpe n olour of trffi signs let motorists know importnt informtion suh s: when to stop onstrution res. Some si shpes use in trffi signs re illustrte

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4

Semantic Analysis. CSCI 3136 Principles of Programming Languages. Faculty of Computer Science Dalhousie University. Winter Reading: Chapter 4 Semnti nlysis SI 16 Priniples of Progrmming Lnguges Fulty of omputer Siene Dlhousie University Winter 2012 Reding: hpter 4 Motivtion Soure progrm (hrter strem) Snner (lexil nlysis) Front end Prse tree

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

CS241 Week 6 Tutorial Solutions

CS241 Week 6 Tutorial Solutions 241 Week 6 Tutoril olutions Lnguges: nning & ontext-free Grmmrs Winter 2018 1 nning Exerises 1. 0x0x0xd HEXINT 0x0 I x0xd 2. 0xend--- HEXINT 0xe I nd ER -- MINU - 3. 1234-120x INT 1234 INT -120 I x 4.

More information

8.3 THE HYPERBOLA OBJECTIVES

8.3 THE HYPERBOLA OBJECTIVES 8.3 THE HYPERBOLA OBJECTIVES 1. Define Hperol. Find the Stndrd Form of the Eqution of Hperol 3. Find the Trnsverse Ais 4. Find the Eentriit of Hperol 5. Find the Asmptotes of Hperol 6. Grph Hperol HPERBOLAS

More information

Proportions: A ratio is the quotient of two numbers. For example, 2 3

Proportions: A ratio is the quotient of two numbers. For example, 2 3 Proportions: rtio is the quotient of two numers. For exmple, 2 3 is rtio of 2 n 3. n equlity of two rtios is proportion. For exmple, 3 7 = 15 is proportion. 45 If two sets of numers (none of whih is 0)

More information

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C. Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

m A 1 1 A ! and AC 6

m A 1 1 A ! and AC 6 REVIEW SET A Using sle of m represents units, sketh vetor to represent: NON-CALCULATOR n eroplne tking off t n ngle of 8 ± to runw with speed of 6 ms displement of m in north-esterl diretion. Simplif:

More information

Génération aléatoire uniforme pour les réseaux d automates

Génération aléatoire uniforme pour les réseaux d automates Génértion létoire uniforme pour les réseux d utomtes Niols Bsset (Trvil ommun ve Mihèle Sori et Jen Miresse) Université lire de Bruxelles Journées Alé 2017 1/25 Motivtions (1/2) p q Automt re omni-present

More information

STRUCTURE OF CONCURRENCY Ryszard Janicki. Department of Computing and Software McMaster University Hamilton, ON, L8S 4K1 Canada

STRUCTURE OF CONCURRENCY Ryszard Janicki. Department of Computing and Software McMaster University Hamilton, ON, L8S 4K1 Canada STRUCTURE OF CONCURRENCY Ryszrd Jnicki Deprtment of Computing nd Softwre McMster University Hmilton, ON, L8S 4K1 Cnd jnicki@mcmster.c 1 Introduction Wht is concurrency? How it cn e modelled? Wht re the

More information

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS CS 310 (sec 20) - Winter 2003 - Finl Exm (solutions) SOLUTIONS 1. (Logic) Use truth tles to prove the following logicl equivlences: () p q (p p) (q q) () p q (p q) (p q) () p q p q p p q q (q q) (p p)

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam 440-2 Geometry/Topology: Differentible Mnifolds Northwestern University Solutions of Prctice Problems for Finl Exm 1) Using the cnonicl covering of RP n by {U α } 0 α n, where U α = {[x 0 : : x n ] RP

More information

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x  0 : Clculus II MAT 146 Integrtion Applictions: Volumes of 3D Solids Our gol is to determine volumes of vrious shpes. Some of the shpes re the result of rotting curve out n xis nd other shpes re simply given

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)

More information

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18 Computt onl Biology Leture 18 Genome Rerrngements Finding preserved genes We hve seen before how to rerrnge genome to obtin nother one bsed on: Reversls Knowledge of preserved bloks (or genes) Now we re

More information

Non Right Angled Triangles

Non Right Angled Triangles Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in non-right ngled tringles. This unit

More information

Vectors. Chapter14. Syllabus reference: 4.1, 4.2, 4.5 Contents:

Vectors. Chapter14. Syllabus reference: 4.1, 4.2, 4.5 Contents: hpter Vetors Syllus referene:.,.,.5 ontents: D E F G H I J K Vetors nd slrs Geometri opertions with vetors Vetors in the plne The mgnitude of vetor Opertions with plne vetors The vetor etween two points

More information

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS 33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

State Minimization for DFAs

State Minimization for DFAs Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Handout: Natural deduction for first order logic

Handout: Natural deduction for first order logic MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes

More information

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points. Prole 3: Crnot Cyle of n Idel Gs In this prole, the strting pressure P nd volue of n idel gs in stte, re given he rtio R = / > of the volues of the sttes nd is given Finlly onstnt γ = 5/3 is given You

More information

= state, a = reading and q j

= state, a = reading and q j 4 Finite Automt CHAPTER 2 Finite Automt (FA) (i) Derterministi Finite Automt (DFA) A DFA, M Q, q,, F, Where, Q = set of sttes (finite) q Q = the strt/initil stte = input lphet (finite) (use only those

More information

A Functorial Query Language

A Functorial Query Language A Funtoril Query Lnguge Ryn Wisnesky, Dvid Spivk Deprtment of Mthemtis Msshusetts Institute of Tehnology {wisnesky, dspivk}@mth.mit.edu Presented t Boston Hskell April 16, 2014 Outline Introdution to FQL.

More information

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and Leture 7: iffusion of Ions: Prt : oupled diffusion of tions nd nions s desried y Nernst-Plnk Eqution Tody s topis Continue to understnd the fundmentl kinetis prmeters of diffusion of ions within n eletrilly

More information

The Ellipse. is larger than the other.

The Ellipse. is larger than the other. The Ellipse Appolonius of Perg (5 B.C.) disovered tht interseting right irulr one ll the w through with plne slnted ut is not perpendiulr to the is, the intersetion provides resulting urve (oni setion)

More information

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples

More information

An algebraic characterization of strictly piecewise languages

An algebraic characterization of strictly piecewise languages An lgeri hrteriztion of stritly pieewise lnguges Jie Fu, Jeffrey Heinz, nd Herert G. Tnner University of Delwre jiefu,heinz,tnner@udel.edu Astrt. This pper provides n lgeri hrteriztion of the Stritly Pieewise

More information

The Modified Heinz s Inequality

The Modified Heinz s Inequality Journl of Applied Mthemtics nd Physics, 03,, 65-70 Pulished Online Novemer 03 (http://wwwscirporg/journl/jmp) http://dxdoiorg/0436/jmp03500 The Modified Heinz s Inequlity Tkshi Yoshino Mthemticl Institute,

More information

Automatic Synthesis of New Behaviors from a Library of Available Behaviors

Automatic Synthesis of New Behaviors from a Library of Available Behaviors Automti Synthesis of New Behviors from Lirry of Aville Behviors Giuseppe De Giomo Università di Rom L Spienz, Rom, Itly degiomo@dis.unirom1.it Sestin Srdin RMIT University, Melourne, Austrli ssrdin@s.rmit.edu.u

More information

2.1 ANGLES AND THEIR MEASURE. y I

2.1 ANGLES AND THEIR MEASURE. y I .1 ANGLES AND THEIR MEASURE Given two interseting lines or line segments, the mount of rottion out the point of intersetion (the vertex) required to ring one into orrespondene with the other is lled the

More information

nd edges. Eh edge hs either one endpoint: end(e) = fxg in whih se e is termed loop t vertex x, or two endpoints: end(e) = fx; yg in whih se e is terme

nd edges. Eh edge hs either one endpoint: end(e) = fxg in whih se e is termed loop t vertex x, or two endpoints: end(e) = fx; yg in whih se e is terme Theory of Regions Eri Bdouel nd Philippe Drondeu Iris, Cmpus de Beulieu, F-35042 Rennes Cedex, Frne E-mil : feri.bdouel,philippe.drondeug@iris.fr Astrt. The synthesis prolem for nets onsists in deiding

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

More information

1 From NFA to regular expression

1 From NFA to regular expression Note 1: How to convert DFA/NFA to regulr expression Version: 1.0 S/EE 374, Fll 2017 Septemer 11, 2017 In this note, we show tht ny DFA cn e converted into regulr expression. Our construction would work

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r CO-ORDINTE GEOMETR II I Qudrnt Qudrnt (-.+) (++) X X - - - 0 - III IV Qudrnt - Qudrnt (--) - (+-) Region CRTESIN CO-ORDINTE SSTEM : Retngulr Co-ordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr

More information

Higher categories and observables for generalised Turaev-Viro models

Higher categories and observables for generalised Turaev-Viro models Hiher teories nd oservles or enerlised Turev-Viro models Septemer 21, 2010 CLP 7 Cteories, Loi nd Phsis, Birminhm Ctherine Meusurer, Deprtment Mthemtik, Universität Hmur work with John W Brrett (in proress)

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Lexical Analysis Finite Automate

Lexical Analysis Finite Automate Lexicl Anlysis Finite Automte CMPSC 470 Lecture 04 Topics: Deterministic Finite Automt (DFA) Nondeterministic Finite Automt (NFA) Regulr Expression NFA DFA A. Finite Automt (FA) FA re grph, like trnsition

More information

The Riemann-Stieltjes Integral

The Riemann-Stieltjes Integral Chpter 6 The Riemnn-Stieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0

More information

On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries

On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries On-Line Cnstrutin Overview Suffix tries f Suffix Trees E. Ukknen On-line nstrutin f suffix tries in qudrti time Suffix trees On-line nstrutin f suffix trees in liner time Applitins 1 2 Suffix Trees A suffix

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Combinatorial Hopf algebras from PROs

Combinatorial Hopf algebras from PROs Comintoril Hopf lgers from PROs Jen-Pul Bultel, Smuele Girudo To cite this version: Jen-Pul Bultel, Smuele Girudo. Comintoril Hopf lgers from PROs. Journl of Algeric Comintorics, Springer Verlg, 2016,

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodal Analysis Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions

More information

DATABASTEKNIK - 1DL116

DATABASTEKNIK - 1DL116 DATABASTEKNIK - DL6 Spring 004 An introductury course on dtse systems http://user.it.uu.se/~udl/dt-vt004/ Kjell Orsorn Uppsl Dtse Lortory Deprtment of Informtion Technology, Uppsl University, Uppsl, Sweden

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Automata and Languages

Automata and Languages Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

Linear Systems with Constant Coefficients

Linear Systems with Constant Coefficients Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

More information

Complexity in Modal Team Logic

Complexity in Modal Team Logic ThI Theoretische Informtik Complexity in Modl Tem Logic Julin-Steffen Müller Theoretische Informtik 18. Jnur 2012 Theorietg 2012 Theoretische Informtik Inhlt 1 Preliminries 2 Closure properties 3 Model

More information

MATH 573 FINAL EXAM. May 30, 2007

MATH 573 FINAL EXAM. May 30, 2007 MATH 573 FINAL EXAM My 30, 007 NAME: Solutions 1. This exm is due Wednesdy, June 6 efore the 1:30 pm. After 1:30 pm I will NOT ccept the exm.. This exm hs 1 pges including this cover. There re 10 prolems.

More information

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

4 VECTORS. 4.0 Introduction. Objectives. Activity 1 4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply

More information