Pre-Lie algebras, rooted trees and related algebraic structures

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Pre-Lie algebras, rooted trees and related algebraic structures"

Transcription

1 Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004

2 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers re lso pre-lie lgers. Exmple 3 The vetor spe of polynomil vetor fields on ffine spe A n. i P (x) xi j = i Q(x) xj j Q(x) ( xj P (x) ) xi. (2) 1

3 Theorem 4 (CL) The free pre-lie lger on single genertor hs sis indexed y rooted trees. The pre-lie produt is given y the sum over ll possile grftings. 2

4 Corollry 5 For given polynomil vetor field P, there exists unique morphism from the free pre-lie lger on one genertor O to the pre-lie lger of polynomil vetor fields whih mps O to P. To ny rooted tree T, one n ssoite in this wy vetor field T P. Exmple 6 Consider the following vetor field (not polynomil, ut nlyti): V = exp(x) x. (3) Then for ny rooted tree T, one hs T V = T exp(x) x, (4) where T is the numer of verties of T. Exmple 7 Find wht is T V for V = x x. 3

5 Definition 8 The PreLie operd is the operd desriing pre-lie lgers. Rell tht n operd P is given y olletion of modules P(n) over the symmetri groups S n with omposition mps i : P(m) P(n) P(m + n 1), (5) stisfying nturl xioms. The stndrd exmple is given y P(n) = hom(w n, W ) (6) for some fixed vetor spe W, together with omposition of multi-liner opertions t position i. 4

6 One n reformulte nd enhne the desription of the free pre-lie lgers s desription of the PreLie operd. Theorem 9 (CL) The vetor spe PreLie(n) hs sis indexed y the set of rooted trees with verties in ijetion with {1,..., n} (lelled rooted trees). The tion of S n is y hnging the deortion. The omposition T i T of tree T t ple i of tree T is sum over the set of mps from inoming edges t i to verties of T

7 For ny olletion P(n) of S n -modules, one defines n nlyti funtor whih mps vetor spe W to P(W ) = n 1 W n Sn P(n). (7) Rell tht one n define the derived funtor P of n nlyti funtor P y the formul P (W ) = P(W K{ }). (8) Equivlently, the S n -module P (n) is the restrition of the tion of S n+1 on P(n + 1) to the sugroup fixing n + 1. Theorem 10 If P is n operd, then, for ny vetor spe W, P (W ) hs nturl struture of ssoitive lger. The produt is given y omposition t the distinguished ple. 6

8 Exmple 11 Let us onsider the se of the PreLie operd nd vetor spe W = K{,, }. Then PreLie (W ) hs sis indexed y rooted trees with mp from verties to the set {,,, } suh tht is the imge of extly one vertex, lled the distinguished vertex (mrked deorted rooted trees). 7

9 Theorem 12 The suspe I(W ) spnned y trees where is not the root is twosided idel of PreLie (W ). The quotient lger hs nother desription. Rell tht the rket [x, y] = x y y x, (9) in pre-lie lger defines Lie lger. Theorem 13 The quotient of PreLie (W ) y I(W ) is isomorphi s n ssoitive lger to the universl enveloping lger of the Lie lger ssoited to the free pre-lie lger on W. PreLie (W )/I(W ) U(PreLie(W ) Lie ). (10) N.B. This enveloping lger is the dul of the Hopf lger of rooted trees, see Buther, Dür, Grossmn & Lrsson, Connes & Kreimer, Hoffmn, Foissy et.. 8

10 Definition 14 A lef is vertex without inoming edges. Theorem 15 The suspe Q(W ) spnned y trees where is lef is su-lger of PreLie (W ). Definition 16 A verterte is rooted tree with distinguished vertex lled the til. N.B. The til n e the sme s the root. A rooted tree where is lef n e onsidered s verterte: the distinguished vertex is removed nd the til is the vertex to whih is ws grfted. 9

11 Theorem 17 The lger Q(W ) is the free ssoitive lger on the suspe spnned y rooted trees where is lef tthed to the root. When onsidered s vertertes, the genertors re the vertertes where the til is the root. They n e identified with rooted trees. 10

12 Theorem 18 (Foissy) The universl enveloping lger U(PreLie(W ) Lie ) is free ssoitive lger. No expliit desription of suspe M(W ) of genertors is known. Theorem 19 The lger PreLie (W ) is free ssoitive lger on the spe of genertors M(W ) W, where the genertors in the prt W re the trees with two verties whose vertex mrked y is not the root. 11

13 Generting funtions To eh olletion P(n) of S n -modules, one ssoites generting funtion: P = n 0 dim P(n) x n /n!. (11) For PreLie, one gets PL = n 1 n n 1 x n /n!, (12) losely relted to the Lmert W-funtion. Mny lgeri theorems on free pre-lie lgers imply nlyti properties of the funtion PL. For exmple: Theorem 20 (CL) The free pre-lie lger PreLie(W ) is free module over the universl enveloping lger U(PreLie(W ) Lie ) over the genertors W. Hene one hs PL = x exp(pl). (13) 12

14 From now on, reple the tegory of vetor spes y the tegory of hins omplexes with vnishing differentils. Definition 21 A Λ-lger is hin omplex W with mp : W W W of degree 0 nd mp, : W W W of degree 1 suh tht is pre-lie produt,, is Lie rket of degree 1 nd the following reltion holds ± x y, z ± z y, x = z, x y, (14) where pproprite signs hve to e inserted ording to the Koszul sign rules. Mny good properties of pre-lie lgers should generlize to Λ-lgers. 13

15 Conjeture 22 The generting series for the nlyti funtor Λ is given y Λ = n 1 n 1 k=1 (n k t) x n /n!, (15) This would follow from the Koszul property for the operd Λ. These dimensions re known to e upper ounds. Note tht one reovers PL when t = 0. Conjeture 23 The free Λ-lger Λ(W ) is free s Lie lger nd its enveloping lger is free s n ssoitive lger. Conjeture 24 The ssoitive lger Λ (W ) is free ssoitive lger. Conjeture 25 There exists quotient mp of ssoitive lgers Λ (W ) U(Λ(W ) Lie ). (16) 14

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of Worsheet # th Nme:. Sole the folloing sstems of liner equtions. he proe tht the solutions forms suspe of ) ). Find the neessr nd suffiient onditions of ll onstnts for the eistene of solution to the sstem:.

More information

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations) KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS 6-7 CLASS - XII MATHEMATICS (Reltions nd Funtions & Binry Opertions) For Slow Lerners: - A Reltion is sid to e Reflexive if.. every A

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic Chpter 3 Vetor Spes In Chpter 2, we sw tht the set of imges possessed numer of onvenient properties. It turns out tht ny set tht possesses similr onvenient properties n e nlyzed in similr wy. In liner

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS

DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS Homology, Homotopy nd Applitions, vol. 8(2), 2006, pp.115 131 DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS JOHN TERILLA nd THOMAS TRADLER (ommunited y Jim Stsheff) Astrt We develop the deformtion

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

The Word Problem in Quandles

The Word Problem in Quandles The Word Prolem in Qundles Benjmin Fish Advisor: Ren Levitt April 5, 2013 1 1 Introdution A word over n lger A is finite sequene of elements of A, prentheses, nd opertions of A defined reursively: Given

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Functions. mjarrar Watch this lecture and download the slides

Functions. mjarrar Watch this lecture and download the slides 9/6/7 Mustf Jrrr: Leture Notes in Disrete Mthemtis. Birzeit University Plestine 05 Funtions 7.. Introdution to Funtions 7. One-to-One Onto Inverse funtions mjrrr 05 Wth this leture nd downlod the slides

More information

Lecture 2: Cayley Graphs

Lecture 2: Cayley Graphs Mth 137B Professor: Pri Brtlett Leture 2: Cyley Grphs Week 3 UCSB 2014 (Relevnt soure mteril: Setion VIII.1 of Bollos s Moern Grph Theory; 3.7 of Gosil n Royle s Algeri Grph Theory; vrious ppers I ve re

More information

arxiv: v1 [math.ca] 21 Aug 2018

arxiv: v1 [math.ca] 21 Aug 2018 rxiv:1808.07159v1 [mth.ca] 1 Aug 018 Clulus on Dul Rel Numbers Keqin Liu Deprtment of Mthemtis The University of British Columbi Vnouver, BC Cnd, V6T 1Z Augest, 018 Abstrt We present the bsi theory of

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

1.3 SCALARS AND VECTORS

1.3 SCALARS AND VECTORS Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

arxiv: v1 [math.ct] 8 Sep 2009

arxiv: v1 [math.ct] 8 Sep 2009 On the briding of n Ann-tegory rxiv:0909.1486v1 [mth.ct] 8 Sep 2009 September 8, 2009 NGUYEN TIEN QUANG nd DANG DINH HANH Dept. of Mthemtis, Hnoi Ntionl University of Edution, Viet Nm Emil: nguyenqung272002@gmil.om

More information

March 26, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

March 26, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. Mrh 26, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm D shown in the Figure Sine its digonls hve equl length,, the

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

RESEARCH SUMMARY BENJAMIN WALTER

RESEARCH SUMMARY BENJAMIN WALTER RESEARCH SUMMARY BENJAMIN WALTER 1. Introdution My generl re of reserh is lgeri topology. Brodly speking, this mens tht I m interested in onnetions etween strt lger nd topologil spes. Modern lgeri topology

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

Behavior Composition in the Presence of Failure

Behavior Composition in the Presence of Failure Behvior Composition in the Presene of Filure Sestin Srdin RMIT University, Melourne, Austrli Fio Ptrizi & Giuseppe De Giomo Spienz Univ. Rom, Itly KR 08, Sept. 2008, Sydney Austrli Introdution There re

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Polynomials. Polynomials. Curriculum Ready ACMNA:

Polynomials. Polynomials. Curriculum Ready ACMNA: Polynomils Polynomils Curriulum Redy ACMNA: 66 www.mthletis.om Polynomils POLYNOMIALS A polynomil is mthemtil expression with one vrile whose powers re neither negtive nor frtions. The power in eh expression

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Comparing the Pre-image and Image of a Dilation

Comparing the Pre-image and Image of a Dilation hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) ngle-ngle Similrity Theorem (.2) Side-Side-Side Similrity

More information

Properties of Different Types of Lorentz Transformations

Properties of Different Types of Lorentz Transformations merin Journl of Mthemtis nd ttistis 03 3(3: 05-3 DOI: 0593/jjms03030303 roperties of Different Types of Lorentz Trnsformtions tikur Rhmn izid * Md hh lm Deprtment of usiness dministrtion Leding niversity

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France) Grph Sttes EPIT 2005 Mehdi Mhll (Clgry, Cnd) Simon Perdrix (Grenole, Frne) simon.perdrix@img.fr Grph Stte: Introdution A grph-sed representtion of the entnglement of some (lrge) quntum stte. Verties: quits

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers.

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers. 8. Complex Numers The rel numer system is dequte for solving mny mthemticl prolems. But it is necessry to extend the rel numer system to solve numer of importnt prolems. Complex numers do not chnge the

More information

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets. I MATRIX ALGEBRA INTRODUCTION TO MATRICES Referene : Croft & Dvison, Chpter, Blos, A mtri ti is retngulr rr or lo of numers usull enlosed in rets. A m n mtri hs m rows nd n olumns. Mtri Alger Pge If the

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Symmetrical Components 1

Symmetrical Components 1 Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedy-stte nlysis of high voltge trnsmission systems, we mke use of the per-phse equivlent

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Bisimulation, Games & Hennessy Milner logic

Bisimulation, Games & Hennessy Milner logic Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory

More information

Hybrid Systems Modeling, Analysis and Control

Hybrid Systems Modeling, Analysis and Control Hyrid Systems Modeling, Anlysis nd Control Rdu Grosu Vienn University of Tehnology Leture 5 Finite Automt s Liner Systems Oservility, Rehility nd More Miniml DFA re Not Miniml NFA (Arnold, Diky nd Nivt

More information

Ch. 2.3 Counting Sample Points. Cardinality of a Set

Ch. 2.3 Counting Sample Points. Cardinality of a Set Ch..3 Counting Smple Points CH 8 Crdinlity of Set Let S e set. If there re extly n distint elements in S, where n is nonnegtive integer, we sy S is finite set nd n is the rdinlity of S. The rdinlity of

More information

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt Computing dt with spredsheets Exmple: Computing tringulr numers nd their squre roots. Rell, we showed 1 ` 2 ` `n npn ` 1q{2. Enter the following into the orresponding ells: A1: n B1: tringle C1: sqrt A2:

More information

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals. MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

More information

University of Warwick institutional repository: A Thesis Submitted for the Degree of PhD at the University of Warwick

University of Warwick institutional repository:  A Thesis Submitted for the Degree of PhD at the University of Warwick University of Wrwik institutionl repository: http://go.wrwik..uk/wrp A Thesis Sumitted for the Degree of PhD t the University of Wrwik http://go.wrwik..uk/wrp/3645 This thesis is mde ville online nd is

More information

PoS(LL2016)035. Cutkosky Rules from Outer Space. Dirk Kreimer Humboldt Univ.

PoS(LL2016)035. Cutkosky Rules from Outer Space. Dirk Kreimer Humboldt Univ. Cutkosky Rules from Outer Spe Humoldt Univ. E-mil: kreimer@physik.hu-erlin.de We overview reent results on the mthemtil foundtions of Cutkosky rules. We emphsize tht the two opertions of shrinking n internl

More information

AVL Trees. D Oisín Kidney. August 2, 2018

AVL Trees. D Oisín Kidney. August 2, 2018 AVL Trees D Oisín Kidne August 2, 2018 Astrt This is verified implementtion of AVL trees in Agd, tking ides primril from Conor MBride s pper How to Keep Your Neighours in Order [2] nd the Agd stndrd lirr

More information

Hyers-Ulam stability of Pielou logistic difference equation

Hyers-Ulam stability of Pielou logistic difference equation vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

More information

Can one hear the shape of a drum?

Can one hear the shape of a drum? Cn one her the shpe of drum? After M. K, C. Gordon, D. We, nd S. Wolpert Corentin Lén Università Degli Studi di Torino Diprtimento di Mtemti Giuseppe Peno UNITO Mthemtis Ph.D Seminrs Mondy 23 My 2016 Motivtion:

More information

Chapter 3. Vector Spaces

Chapter 3. Vector Spaces 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

Line Integrals and Entire Functions

Line Integrals and Entire Functions Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series

More information

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 9. Modules over PID This week we re proving the fundmentl theorem for finitely generted modules over PID, nmely tht they re ll direct sums of cyclic modules.

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

LESSON 11: TRIANGLE FORMULAE

LESSON 11: TRIANGLE FORMULAE . THE SEMIPERIMETER OF TRINGLE LESSON : TRINGLE FORMULE In wht follows, will hve sides, nd, nd these will e opposite ngles, nd respetively. y the tringle inequlity, nd..() So ll of, & re positive rel numers.

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

arxiv: v1 [math.qa] 27 Apr 2017

arxiv: v1 [math.qa] 27 Apr 2017 SIMPLY-LACED QUANTUM CONNECTIONS GENERALISING KZ rxiv:1704.08616v1 [mth.qa 27 Apr 2017 Astrt. We onstrut new fmily of flt onnetions generlising the KZ onnetion, the Csimir onnetion nd the dynmil onnetion.

More information

arxiv: v1 [math.co] 6 Jan 2019

arxiv: v1 [math.co] 6 Jan 2019 HOMOTOPY IN THE CATEGORY OF GRAPHS T. CHIH AND L. SCULL rxiv:1901.01619v1 [mth.co] 6 Jn 2019 Astrt. We develop theory of homotopy for grphs whih is internl to the tegory of grphs. Previous uthors hve ssoited

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages 5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

AP Calculus AB Unit 4 Assessment

AP Calculus AB Unit 4 Assessment Clss: Dte: 0-04 AP Clulus AB Unit 4 Assessment Multiple Choie Identify the hoie tht best ompletes the sttement or nswers the question. A lultor my NOT be used on this prt of the exm. (6 minutes). The slope

More information

SEMICANONICAL BASES AND PREPROJECTIVE ALGEBRAS II: A MULTIPLICATION FORMULA

SEMICANONICAL BASES AND PREPROJECTIVE ALGEBRAS II: A MULTIPLICATION FORMULA SEMICANONICAL BASES AND PREPROJECTIVE ALGEBRAS II: A MULTIPLICATION FORMULA CHRISTOF GEISS, BERNARD LECLERC, AND JAN SCHRÖER Abstrt. Let n be mximl nilpotent sublgebr of omplex symmetri K-Moody Lie lgebr.

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS Bull. Koren Mth. So. 35 (998), No., pp. 53 6 POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS YOUNG BAE JUN*, YANG XU AND KEYUN QIN ABSTRACT. We introue the onepts of positive

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

Random subgroups of a free group

Random subgroups of a free group Rndom sugroups of free group Frédérique Bssino LIPN - Lortoire d Informtique de Pris Nord, Université Pris 13 - CNRS Joint work with Armndo Mrtino, Cyril Nicud, Enric Ventur et Pscl Weil LIX My, 2015 Introduction

More information

Math 4310 Solutions to homework 1 Due 9/1/16

Math 4310 Solutions to homework 1 Due 9/1/16 Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Surface maps into free groups

Surface maps into free groups Surfce mps into free groups lden Wlker Novemer 10, 2014 Free groups wedge X of two circles: Set F = π 1 (X ) =,. We write cpitl letters for inverse, so = 1. e.g. () 1 = Commuttors Let x nd y e loops. The

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA PHILIP DANIEL AND CHARLES SEMPLE Astrt. Amlgmting smller evolutionry trees into single prent tree is n importnt tsk in evolutionry iology. Trditionlly,

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

Slope Lengths for 2-Bridge Parent Manifolds. Martin D. Bobb

Slope Lengths for 2-Bridge Parent Manifolds. Martin D. Bobb Cliorni Stte University, Sn Bernrino Reserh Experiene or Unergrutes Knot Theory Otoer 28, 2013 Hyperoli Knot Complements Hyperoli Knots Deinition A knot or link K is hyperoli i hyperoli metri n e ple on

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 14 Orer (Hnout) Definition 7-11: A reltion is qusi-orering (or preorer) if it is reflexive n trnsitive. A quisi-orering tht is symmetri is n equivlene reltion. A qusi-orering tht is nti-symmetri is n orer

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร

More information

Lecture 8: Abstract Algebra

Lecture 8: Abstract Algebra Mth 94 Professor: Pri Brtlett Leture 8: Astrt Alger Week 8 UCSB 2015 This is the eighth week of the Mthemtis Sujet Test GRE prep ourse; here, we run very rough-n-tumle review of strt lger! As lwys, this

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Computer Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information