Save this PDF as:

Size: px
Start display at page:

## Transcription

1 QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise Exerise Exerise Exerise Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients, formtion of qudrti equtions with given roots, symmetri funtions of roots. Nme : Contt No. ARRIDE LEARNING ONLINE E-LEARNING ACADEMY A-479 indr Vihr, Kot Rjsthn Contt No

2 QUADRATIC EQUATION. Eqution v/s Identity: A qudrti eqution is stisfied y extly two vlues of ' x ' whih my e rel or imginry. The eqution, x + x + = 0 is: * qudrti eqution if ¹ 0 Two Roots * liner eqution if = 0, ¹ 0 One Root * ontrdition if = = 0, ¹ 0 No Root * n identity if = = = 0 Infinite Roots If qudrti eqution is stisfied y three distint vlues of ' x ', then it is n identity.. Reltion Between Roots & Co-effiients: (i) The solutions of qudrti eqution, x + x + = 0, ( ¹ 0) is given y x = - ± - 4 The expression, - 4 º D is lled disriminnt of qudrti eqution. (ii) If, re the roots of qudrti eqution, x + x + = 0, ¹ 0. Then: () + = - () = () ½ - ½ = D (iii) A qudrti eqution whose roots re &, is (x - ) (x - ) = 0 i.e. x - (sum of roots) x + (produt of roots) = 0 3. Nture of Roots: Consider the qudrti eqution, x + x + = 0 hving, s its roots; D º - 4 Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. #

3 4. Common Roots: Consider two qudrti equtions, x + x + = 0 & x + x + = 0. (i) If two qudrti equtions hve oth roots ommon, then the eqution re identil nd their o-effiient re in proportion. i.e. (ii) = =. If only one root is ommon, then the ommon root ' ' will e: = - - = Hene the ondition for one ommon root is: - - é - ù ê ú ë - û é - ù + ê ú ë - û + = 0 º ( - ) = ( - ) ( - ) Note : If f(x) = 0 & g(x) = 0 re two polynomil eqution hving some ommon root(s) then those ommon root(s) is/re lso the root(s) of h(x) = f(x) + g (x) = Grph of Qudrti Expression: y = f (x) = x + x + or æ D ö æ çy + = x è 4 ø ç + è ö ø * the grph etween x, y is lwys prol. æ D * the o-ordinte of vertex re ö ç-, - è 4 ø * If > 0 then the shpe of the prol is onve upwrds & if < 0 then the shpe of the prol is onve downwrds. * the prol interset the y-xis t point (0, ). * the x-o-ordinte of point of intersetion of prol with x-xis re the rel roots of the qudrti eqution f (x) = 0. Hene the prol my or my not interset the x-xis t rel points. 6. Rnge of Qudrti Expression f (x) = x + x +. (i) Asolute Rnge: é D If > 0 Þ f (x) Î ö ê-, ë 4 ø æ D ù < 0 Þ f (x) Î ç-, - ú è 4 û Hene mximum nd minimum vlues of the expression f (x) is - D 4 in respetive ses nd it ours t x = - (t vertex). Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. #

4 (ii) Rnge in restrited domin: Given x Î [x, x ] () If - Ï [x, x ] then, () If - Î [x, x ] then, f (x) Î [ min { f x ), f( x )}, mx { f( x ), f( )}] ( x é ì D ü ì f (x) Î ê min í f( x), f( x), - ý, mx í f( x), f( x), - ë î 4þ î 7. Sign of Qudrti Expressions: The vlue of expression, f (x) = x + x + t x = x is equl to y-o-ordinte of point on prol 0 y = x + x + whose x-o-ordinte is x. Hene if the point lies ove the x-xis for some x = x, 0 0 then f (x 0 ) > 0 nd vie-vers. We get six different positions of the grph with respet to x-xis s shown. D 4 ü ù ý ú þ û NOTE: (i) " x Î R, y > 0 only if > 0 & D º ² - 4 < 0 (figure 3). (ii) " x Î R, y < 0 only if < 0 & D º ² - 4 < 0 (figure 6). 8. Solution of Qudrti Inequlities: The vlues of ' x ' stisfying the inequlity, x + x + > 0 ( ¹ 0) re: (i) If D > 0, i.e. the eqution x + x + = 0 hs two different roots <. Then > 0 Þ x Î (-, ) È (, ) < 0 Þ x Î (, ) (ii) If D = 0, i.e. roots re equl, i.e. =. Then > 0 Þ x Î (-, ) È (, ) < 0 Þ x Î f (iii) If D < 0, i.e. the eqution x + x + = 0 hs no rel root. Then > 0 Þ x Î R < 0 Þ x Î f (iv) P(x) Q(x) R(x)... Inequlities of the form A(x) B(x) C(x)... < = 0 n e quikly solved using the > method of intervls, where A, B, C..., P, Q, R... re liner funtions of ' x '. Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 3

5 9. Lotion Of Roots: Let f (x) = x² + x +, where > 0 &,, Î R. (i) (ii) (iii) (i) Conditions for oth the roots of f (x) = 0 to e greter thn speified numer x 0 re ² - 4 ³ 0; f (x 0 ) > 0 & (- /) > x 0. (ii) Conditions for oth the roots of f (x) = 0 to e smller thn speified numer x 0 re ² - 4 ³ 0; f (x 0 ) > 0 & (- /) < x 0. (iii) Conditions for oth roots of f (x) = 0 to lie on either side of the numer x 0 (in other words the numer x 0 lies etween the roots of f (x) = 0), is f (x 0 ) < 0. (iv) (v) (iv) (v) Conditions tht oth roots of f (x) = 0 to e onfined etween the numers x nd x, (x < x ) re ² - 4 ³ 0; f (x ) > 0 ; f (x ) > 0 & x < (- /) < x. Conditions for extly one root of f (x) = 0 to lie in the intervl (x, x ) i.e. x < x < x is f (x ). f (x ) < Theory Of Equtions: If,, 3,... n re the roots of the eqution; f(x) = 0 x n + x n- + x n n- x + n = 0 where 0,,... n re ll rel & 0 ¹ 0 then, å = -, å = +, å 0 = ,...,... = 3. n (-)n NOTE : (i) If is root of the eqution f(x) = 0, then the polynomil f(x) is extly divisile y (x - ) or (x - ) is ftor of f(x) nd onversely. (ii) Every eqution of n th degree (n ³ ) hs extly n roots & if the eqution hs more thn n roots, it is n identity. (iii) If the oeffiients of the eqution f(x) = 0 re ll rel nd + i is its root, then - i is lso root. i.e. imginry roots our in onjugte pirs. (iv) An eqution of odd degree will hve odd numer of rel roots nd n eqution of even degree will hve even numers of rel roots. (v) If the oeffiients in the eqution re ll rtionl & + n 0 is one of its roots, then - is lso root where, Î Q & is not perfet squre. (vi) If there e ny two rel numers '' & '' suh tht f() & f() re of opposite signs, then f(x) = 0 must hve odd numer of rel roots (lso tlest one rel root) etween ' ' nd ' '. (vii) Every eqution f(x) = 0 of degree odd hs tlest one rel root of sign opposite to tht of its lst term. Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 4

6 PART - I : OBJECTIVE QUESTIONS * Mrked Questions re hving more thn one orret option. Setion (A) : Identity & Reltion etween the roots nd oeffiients A-. Numer of vlues of ' p ' for whih the eqution (p - 3p + ) x - (p - 5p + 4) x + p - p = 0 possess more thn two roots, is: (A) 0 (B) (C) (D) none A-. If, re the roots of qudrti eqution x + p x + q = 0 nd g, d re the roots of x + p x r = 0, then ( - g). ( - d) is equl to : (A) q + r (B) q r (C) (q + r) (D) (p + q + r) A-3. A-4. A-5. A-6. Two rel numers & re suh tht + = 3 & ½ - ½ = 4, then & re the roots of the qudrti eqution: (A) 4x - x - 7 = 0 (B) 4x - x + 7 = 0 (C) 4x - x + 5 = 0 (D) none of these If, re the roots of the eqution (x ) + x = 0, then the eqution whose roots re - nd - is (A) x + 6x + 9 = 0 (B) x + 6x 9 = 0 (C) x + 6x 9 = 0 (D) x + x = If x = then the vlue of x 4 x 3 x + 3x + is equl to (A) (B) 3 (C) 5 (D) 0 If 4 x 4 x = 4 then (x) 5/ hs the vlue equl to (A) 5 5 (B) 5 (C) 5 5 (D) 5 A-7. The vlue of is (A) 0 (B) 6 (C) 8 (D) none of these Setion (B) : Nture of Roots nd Common Roots B-. B-. B-3. If,, re integers nd = 4( + 5d ), d Î N, then roots of the eqution x + x + = 0 re (A) Irrtionl (B) Rtionl & different (C) Complex onjugte (D) Rtionl & equl Consider the eqution x + x n = 0, where n Î N nd n Î [5, 00]. Totl numer of different vlues of 'n' so tht the given eqution hs integrl roots, is (A) 4 (B) 6 (C) 8 (D) 3 If P(x) = x + x + & Q (x) = -x + dx +, where ¹ 0, then P(x). Q(x) = 0 hs (A) extly one rel root (B) tlest two rel roots (C) extly three rel roots (D) ll four re rel roots Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 5

7 B-4. If the equtions x + px + q = 0 nd x + qx + p = 0 hve extly one root in ommon then the eqution ontining their other root is (A) x x + pq = 0 (B) x + x + pq = 0 (C) x x pq = 0 (D) x + x pq = 0 B-5. x + x + = 0 nd x + x + = 0 hs ommon root, (,, Î R) then (A) = K, = K, = K, K¹ 0 (B) = K, = K, = 3K, K¹ 0 (C) = K, = K, = K, K¹ 0 (D) = K, = K, = K, K¹ 0 Setion (C) : Grph nd Rnge C-. The entire grph of the expression y = x + kx x + 9 is stritly ove the x-xis if nd only if (A) k < 7 (B) 5 < k < 7 (C) k > 5 (D) none C-. Whih of the following grph represents the expression f(x) = x + x + ( ¹ 0) when > 0, < 0 & < 0? (A) (B) (C) (D) C-3. If y = x 6x + 9, then (A) mximum vlue of y is nd it ours t x = (B) minimum vlue of y is nd it ours t x = (C) mximum vlue of y is 3.5 nd it ours t x =.5 (D) minimum vlue of y is 3.5 nd it ours t x =.5 x - x + C-4. If 'x' is rel nd k =, then : x + x + (A) 3 k 3 (B) k ³ 5 (C) k 0 (D) none C-5. Let, nd e rel numers suh tht = 0 nd > 0. Then the eqution x + x + = 0 hs (A) rel roots (B) imginry roots (C) extly one root (D) none of these Setion (D) : Lotion of Roots D-. If the inequlity ( m ) x + 8x + m + 4 > 0 is stisfied for ll x Î R then the lest integrl m is (A) 4 (B) 5 (C) 6 (D) none D-. For ll 'x' x + x > 0, then the intervl in whih '' lies is (A) < 5 (B) 5 < < (C) > 5 (D) < < 5 Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 6

8 D-3. The set of vlues of 'm' for whih the eqution x (m + )x + m + m 8 = 0 hs root in the intervl (, ) nd the other in the intervl (, ) is (A) (, ) (B) (-, ) (C) (-, ) (D) (, ) D-4. If oth roots of the eqution x (m + ) x + m + 4 = 0 re rel nd negtive, then set of vlues of 'm' is (A) 3 < m (B) 4 < m 3 (C) 3 m 5 (D) 3 ³ m or m ³ 5 D-5. If oth roots of the qudrti eqution ( x) (x +) = p re distint & positive then p must lie in the intervl: (A) p > 9 (B) < p < (C) p < - (D) < P < 4 D-6. The vlue of p for whih oth the roots of the qudrti eqution, 4x 0px + (5p + 5p 66) = 0 re less thn lies in : (A) (4/5, ) (B) (, ) (C) (, 4/5) (D) (, ) D-7. D-8. The rel vlues of '' for whih the qudrti eqution x - ( ) x = 0 possesses roots of opposite sign is given y: (A) > 5 (B) 0 < < 4 (C) > 0 (D) > 7 If, re the roots of the qudrti eqution x - p (x - 4) - 5 = 0, then the set of vlues of p for whih one root is less thn & the other root is greter thn is: (A) (7/3, ) (B) (-, 7/3) (C) x Î R (D) none Setion (E) : Theory of Eqution E-. The ondition tht x 3 px + qx r = 0 my hve two of its roots equl to eh other ut of opposite signs is (A) r = pq (B) r = p 3 + pq (C) r = p q (D) none of these E-. If, & g re the roots of the eqution x 3 - x - = 0 then, g + - g hs the vlue equl to: (A) zero (B) - (C) - 7 (D) E-3. Let,, g e the roots of (x ) (x ) (x ) = d, d ¹ 0 then the roots of the eqution (x ) (x ) (x g) + d = 0 re : (A) +, +, + (B),, (C),, (D),, E-4. If,, g, d re the roots of the eqution, x 4 Kx 3 + Kx + Lx + M = 0 where K, L & M re rel numers then the minimum vlue of + + g + d is : (A) 0 (B) - (C) (D) Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 7

9 PART - II : MISCELLANEOUS OBJECTIVE QUESTIONS Comprehensions # : In the given figure DOBC is n isoseles right tringle in whih AC is medin, then nswer the following questions : Y C y = x + x + O A B X. Roots of y = 0 re (A) {, } (B) {4, } (C) {, /} (D) {8, 4}. The eqution whose roots re ( + ) & ( ), where, ( > ) re roots otined in previous question, is (A) x 4x + 3 = 0 (B) x 8x + = 0 (C) 4x 8x + 3 = 0 (D) x 6x + 48 = 0 3. Minimum vlue of the qudrti expression orrespoinding to the qudrti eqution otined in Q. No. ours t x = (A) 8 (B) (C) 4 (D) Comprehensions # : Consider the eqution x 4 lx + 9 = If the eqution hs four rel nd distint roots, then l lies in the intervl (A) (, 6) È (6, ) (B) (0, ) (C) (6, ) (D) (, 6) 5. If the eqution hs no rel root, then l lies in the intervl (A) (, 0) (B) (, 6) (C) (6, ) (D) (0, ) 6. If the eqution hs only two rel roots, then set of vlues of l is (A) (, 6) (B) ( 6, 6) (C) {6} (D) f Mth The Column : 7. For the qudrti eqution x (k 3)x + k = 0, then mth the following olumns Column-I Column-II (A) Both roots re positive (P) (, ) (B) Both roots re negtive (Q) (9, ) (C) Both roots re rel (R) (0, ) (D) One root <, the other > Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 8

10 8. Mth the following Column Column-I Column-II (A) (x ) ( x 3) + k(x ) (x 4) = 0 (P) ( 5, ) (k Î R), hs rel roots for k Î x - (B) Rnge of the funtion does not (Q) f x - k + ontin ny vlue in the intervl [, ] for k Î (C) The eqution, sex + osex = k (R) (, ) æ 5 ö hs rel roots for xî ç0,,if k Î è ø (D) The eqution x + (k )x + k + 5 = 0 hs (S) [, ) positive nd distint roots, if k Î Assertion / Reson : Diretion : Eh question hs 5 hoies (A), (B), (C), (D) nd (E) out of whih ONLY ONE is orret. (A) Sttement- is True, Sttement- is True; Sttement- is orret explntion for Sttement-. (B) Sttement- is True, Sttement- is True; Sttement- is NOT orret explntion for Sttement-. (C) Sttement- is True, Sttement- is Flse. (D) Sttement- is Flse, Sttement- is True. (E) Sttement- nd Sttement- oth re Flse. 9. STATEMENT - : Mximum vlue of log /3 (x 4x + 5) is '0'. STATEMENT - : log x 0 for x ³ nd 0 < <. 0. Let, e the roots of f(x) = 3x 4x + 5 = 0. STATEMENT- : The eqution whose roots re, is given y 3x + 8x 0 = 0. STATEMENT- : To otin, from the eqution f(x) = 0, hving roots nd, the eqution hving roots, one needs to hnge x to x in f(x) = 0. PART - I : MIXED OBJECTIVE * Mrked Questions re hving more thn one orret option.. If the roots of the equtions x + x += 0 re rel nd of the form - nd +, then the vlue of ( + + ) is- (A) 4 (B) (C) (D) None of these. The eqution, p x = - x + 6x - 9 hs: (A) no solution (B) one solution (C) two solutions (D) infinite solutions 3. If, Î R, ¹ 0 nd the qudrti eqution x - x + = 0 hs imginry roots then + + is: (A) positive (B) negtive (C) zero (D) depends on the sign of Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 9

11 4. If, e the roots of 4x 6x + l = 0, where l Î R, suh tht < < nd < < 3, then the numer of integrl solutions of l is (A) 5 (B) 6 (C) (D) 3 5. If oth roots of the qudrti eqution ( - x) (x + ) = p re distint & positive, then p must lie in the intervl: (A) (, ) (B) (, 9/4) (C) (, ) (D) (, ) 6. The vlue of '' for whih the sum of the squres of the roots of the eqution x - ( - ) x - - = 0 ssume the lest vlue is: (A) 0 (B) (C) (D) 3 7. The vlues of k, for whih the eqution x + (k - ) x + k + 5 = 0 possess tlest one positive root, re: (A) [4, ) (B) (-, - ] È [4, ) (C) [-, 4] (D) (-, - ] 8. If >, then the eqution (x - ) (x - ) + = 0, hs: (A) oth roots in (, ) (B) oth roots in (-, ) (C) oth roots in (, ) (D) one root in (-, ) & other in (, ) 9. If (l + l )x + (l + ) x < for ll x Î R, then l elongs to the intervl ö (A) (, ) (B) ê é æ ö -, ë 5 (C) ç, ø è 5 ø (D) none of these 0. If the roots of the eqution x + x + = 0 re rel nd distint nd they differ y t most m, then lies in the intervl (A) ( m, ) (B) [ m, ) (C) (, + m ) (D) none of these. If < < 3 < 4 < 5 < 6, then the eqution (x )(x 3 )(x 5 )+3(x )(x 4 )(x 6 )=0 hs (A) three rel roots (B) root is (, ) (C) no rel root in (, ) (D) no rel root in ( 5, 6 ). For every x Î R, the polynomil x 8 x 5 + x x + is : (A) Positive (B) never positive (C) positive s well s negtive (D) negtive 3. The gretest vlue of lest vlue of the qudrti trinomil, x + x + ( + ), is (A) 9 4 (B) 7 4 (C) 0 (D) 3 (A),, - (B),, (C),, (D),, 5. Roots of the eqution x 3 + x + x + = 0 re 3 onseutive positive integer, the vlue of 4. If (x ) is ftor of x 3 + x +, then roots of the eqution x 3 + x + = 0 re- is- (A) 5 (B) 7 (C) 9 (D) If,, re rel numers stisfying the ondition + + = 0 then the roots of the qudrti equtions, 3x + 5x + 7 = 0 re : (A) positive (B) negtive (C) rel & distint (D) imginry Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 0

12 7. x + x + = 0 hs rel nd distint roots nd ( > ). Further > 0, > 0 nd < 0, then (A) 0 < < (B) 0 < < (C) + > 0 (D) + = 8. If l, m, n re rel, l ¹ m, then the roots of the eqution : (l m) x 5(l + m)x (l m) = 0 re (A) rel nd equl (B) Complex (C) rel nd unequl (D) none of these 9. If the roots of eqution x x + = 0 re two onseutive integers, then 4 equls (A) (B) 3 (C) (D) 0. Whih of the following sttements is true out qudrti eqution x + x + = 0, where,, Î R, ¹ 0 (A) If < 0 then roots re imginry (B) If + + = 0 then roots re rel (C) If,, re equl, roots re equl (D) If < 0 roots re essentilly rel..* If the roots of the eqution x+ p x+ q re equl is mgnitude nd opposite in sign, then r (A) p + q = r (B) p + q = r (C) produt of roots = - ( p + q ) (D) sum of roots =.* The djoining figure shows the grph of y = x + x +. Then y Vertex x x x (A) > 0 (B) > 0 (C) > 0 (D) < 4 3.* Let Q (x) = x + x + = 0, Q (x) = x + x + = 0 e two qudrti equtions, then (A) they hve ommon root if = (B) they hve ommon root if = (C) they hve t lest one ommon root for = nd = (D) they hve omplex ommon root if = 4.* If the differene of the roots of the eqution x + hx + 7 = 0 is 6, then possile vlue(s) of h re (A) 4 (B) 4 (C) 8 (D) 8 5.* For the eqution x + x 6 = 0, the orret sttement (s) is (re) : (A) sum of roots is 0 (B) produt of roots is 4 (C) there re 4 roots (D) there re only roots 6.* If, re the roots of x + x + = 0, nd + h, + h re the roots of px + qx + r = 0, (where h ¹ 0 ), then (A) p = q = r (B) h = æ qö ç - è p ø (C) h = æ q ö ç + è p ø (D) - 4 q - 4pr = p Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. #

13 7.* If, re non-zero rel numers nd, the roots of x + x + = 0, then (A), re the roots of x ( ) x + = 0 (B), re the roots of x + x + = 0 (C), re the roots of x + ( ) x + = 0 (D) ( ), ( ) re the roots of the eqution x + x ( + ) = 0 8. If the roots of the eqution x 3 + Px + Qx - 9 = 0 re eh one more thn the roots of the equton x 3 - Ax + Bx - C = 0, where A, B, C, P & Q re onstnts, then the vlue of A + B + C is equl to : (A) 8 (B) 9 (C) 0 (D) none PART - II : SUBJECTIVE QUESTIONS. If nd re the roots of the eqution x + x + = 0, then find the eqution whose roots re given y : (i) +, + (ii) +, +. If ¹ ut = 5 3, = 5 3, then find the eqution whose roots re nd. 3. In opying qudrti eqution of the form x + px + q = 0, the oeffiient of x ws wrongly written s 0 in ple of nd the roots were found to e 4 nd 6. Find the roots of the orret eqution. 4. If one root of the eqution x + x + = 0 is equl to n th power of the other root, show tht ( n ) /(n + ) + ( n ) /(n + ) + = For wht vlues of k the expression kx + (k + )x + will e perfet squre of liner polynomil. 6. If,, Î R, then prove tht the roots of the eqution x - + x - + x - = 0 re lwys rel nd nnot hve roots if = =. 7. If, re the roots of x + px + = 0 nd, d re the roots of x + qx + = 0. Show tht q - p = ( - ) ( - ) ( + d) ( + d). 8. Find ll vlues of the prmeter ' ' suh tht the roots, of the eqution x + 6 x + = 0 stisfy the inequlity + <. 9. If,, g re the roots of the eqution x 3 + px + qx + r = 0, then find the vlue of æ ö ç - è g ø æ ö ç - è g ø æ ö ç g -. è ø Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. #

14 æ 0. If, nd g re roots of x 3 + x 7 = 0, then find the vlue of å ö ç +. è ø. Find the vlue of '' so tht x x + = 0 nd x 4x + = 0 hve ommon root.. If x + px + q = 0 nd x + qx + p = 0, (p ¹ q) hve ommon root, show tht + p + q = 0 ; show tht their other roots re the roots of the eqution x + x + pq = The equtions x - x + = 0 & x 3 - px + qx = 0, where ¹ 0, q ¹ 0 hve one ommon root & the seond eqution hs two equl roots. Prove tht (q + ) = p. 4. If the equtions x + x + = 0, x + x + 5 = 0 & x + ( + ) x + 36 = 0 hve ommon positive root, then find, nd the roots of the equtions. 5. Drw the grph of the following expressions : (i) y = x + 4x + 3 (ii) y = 9x + 6x + (iii) y = x + x 6. If x e rel, then find the rnge of the following rtionl expressions : (i) y = x x + x + + (ii) y = x x - x x Solve for rel vlues of 'x' : (i) x -3 x -3 (5 + 6) + (5-6) = 0 (ii) x x 3 = 0, 0 8. If,, re non zero, unequl rtionl numers then prove tht the roots of the eqution ( )x + 3 x + x 6 + = 0 re rtionl. 9. Find ll the vlues of 'K' for whih one root of the eqution x² - (K + ) x + K² + K - 8 = 0, exeeds & the other root is smller thn. 0. If & re the two distint roots of x² + (K - 3) x + 9 = 0, then find the vlues of K suh tht, Î (- 6, ).. If p, q, r, s Î R nd pr = (q + s), then show tht tlest one of the equtions x + px + q = 0, x + rx + s = 0 hs rel roots.. Find ll vlues of for whih tlest one of the roots of the eqution x ( 3) x + = 0 is greter thn. 3. If x is root of x + x + = 0, x is root of - x + x + = 0 where 0 < x < x, show tht the eqution x + x + = 0 hs root x 3 stisfying 0 < x < x 3 < x. 4. Otin rel solutions of the simultneous equtions xy + 3 y² - x + 4 y - 7 = 0, xy + y² - x - y + = 0. Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 3

15 PART - I : IIT-JEE PROBLEMS (PREVIOUS YEARS) * Mrked Questions re hving more thn one orret option.. The set of ll rel numers x for whih x - x + + x > 0, is [IIT-JEE 00] (A) (,-) (, ) - U (B) (-,- ) U(, ) -,- U (, (D) (, ) (C) ( ) ). If x + ( ) x + ( ) = 0 where, Î R then find the vlues of for whih eqution hs unequl rel roots for ll vlues of. [IIT-JEE 003] x 5x 3. Find the rnge of vlues of t for whih sint = - + p p, t Î-, [IIT-JEE 005] 3x -x- 4. In qudrti eqution x + x + = 0, if, re roots of eqution, D = 4 nd +, +, re in G. P. then [IIT-JEE 005] (A) D ¹ 0 (B) D = 0 (C) D = 0 (D) D = 0 5. If roots of the eqution x 0x d = 0 re, nd those of x 0x = 0 re, d then the vlue of d is (,, nd d re distint numers) [IIT-JEE 006] 6. Let,, e the sides of tringle. No two of them re equl nd l Î R. If the roots of the eqution x + ( + + )x + 3l ( + + ) = 0 re F rel, then [IIT-JEE 006] (A) l< 4 (B) l> 5 (C) lî 3 3 H G 5I K J F 3, 3 (D) lîhg 4 5 I, K J Let, e the roots of the eqution x px + r = 0 nd, e the roots of the eqution x qx + r = 0. Then the vlue of r is- [IIT-JEE 007] (A) 9 (p q) (q p) (B) 9 L NM (q p) (p q) O QP (C) 9 (q p) (q p) (D) 9 (p q) (q p) 8. Let p nd q e rel numers suh tht p ¹ 0, p 3 ¹ q nd p 3 ¹ - q. If nd re nonzero omplex numers stisfying + = p nd = q, then qudrti eqution hving nd s its roots is :[IIT-JEE 00] (A) (p 3 + q) x (p 3 + q)x + (p 3 + q) = 0 (B) (p 3 + q) x (p 3 q)x + (p 3 + q) = 0 (C) (p 3. q) x. (5p 3. q)x + (p 3. q) = 0 (D) (p 3 q) x (5p 3 + q)x + (p 3 q) = 0 9. Let nd e the roots of x 6x = 0, with >. If n = n n for n ³, then the vlue of is (A) (B) (C) 3 (D) 4 [IIT-JEE 0] 0. A vlue of for whih the equtions [IIT-JEE 0] x + x = 0 ; x + x + = 0, hve one root in ommon is (A) (B) - i 3 (C) i 5 (D) Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 4

16 PART - II : AIEEE PROBLEMS (PREVIOUS YEARS). If ¹ ut = 5 3, = 5 3, then the eqution hving the roots nd is. [AIEEE-00] () 3x + 9x + 3 = 0 () 3x 9x + 3 = 0 (3) 3x 9x 3 = 0 (4) x 6x + = 0. The vlue of for whih one root of the qudrti eqution ( 5 + 3)x + (3 )x + = 0 is twie s lrge s the other, is : [AIEEE-003] () 3 () 3 (3) 3 (4) If ( p) is root of qudrti eqution x + px + ( p) = 0, then its roots re : [AIEEE-004] () 0, (), (3) 0, (4), 4. If one root of the eqution x + px + = 0 is 4, while the eqution x + px + q = 0 hs equl roots, then the vlue of q is : [AIEEE-004] () 49/4 () (3) 3 (4) 4 p æ P ö æ Q ö 5. In tringle PQR, ÐR =. If tn ç nd tn ç re the roots of x + x + = 0, ¹ 0, then : [AIEEE005] è ø è ø () = +. () =. (3) = +. (4) = The vlue of '' for whih the sum of the squres of the roots of the eqution x ( ) x = 0 ssume the lest vlue is - [AIEEE- 005] () () 0 (3) 3 (4) 7. If oth the roots of the qudrti eqution x kx + k +k 5 = 0 re less thn 5, then 'k' lies in the intervl [AIEEE- 005] () (5, 6) () (6, ) (3) (,4) (4) [4, 5] 8. If the roots of the qudrti eqution x + px + q = 0 re tn 30 nd tn 5 respetively, then the vlue of + q p is : [AIEEE-006] () 3 () 0 (3) (4) 9. All the vlues of 'm' for whih oth roots of the eqution x mx + m = 0 re greter thn ut less thn 4 lie in the intervl : [AIEEE-006] () m > 3 () < m < 3 (3) < m < 4 (4) < m < 0 0. If 'x' is rel, the mximum vlue of 3x 3x + 9x + 7 is - [AIEEE- 006] + 9x () 4 () (3) 7 (4) 4. If the differene etween the roots of the eqution x + x + = 0 is less thn 5, then the set of possile vlues of '' is () ( 3, 3) () ( 3, ) (3) (3, ) (4) (, -3) [AIEEE-007]. The qudrti equtions x 6x + = 0 nd x x + 6 = 0 hve one root in ommon. The other roots of the first nd seond equtions re integers in the rtio 4 : 3. Then the ommon root is [AIEEE- 008] () 4 () 3 (3) (4) 3. How mny rel solution does the eqution x 7 + 4x 5 + 6x x 560 = 0 hs? [AIEEE- 008] () () 3 (3) 5 (4) 7 4. If the eqution x + x + 3 = 0 nd x + x + = 0,,, Î R, hve ommons root, then : : is : [JEE Mins_03] () : :3 () 3 : : (3) : 3 : (4) 3 : : Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 5

17 BOARD PATTERN QUESTIONS Solve eh of the following questions ( to 6):. x + x + = 0. x + 3x + 5 = 0 3. x + x + = 0 4. x + + = 0 x 5. 7x 0x + = 0 6. x 8x + 0 = 0 7. The roots of the eqution x x + = 0 re- (A) rel nd different (C) rel nd equl (B) imginry nd different (D) rtionl nd different 8. If the roots of the eqution x + x + = 0 e rel nd different, then the roots of the eqution x (A) rtionl (B) irrtionl (C) rel (D) imginry 9. The numer of rel solutions of x x - = 4 x x + = 0 will e- is- (A) 0 (B) (C) (D) infinite 0. Sum of roots of the eqution (x + 3) 4 x = 0 is- (A) 4 (B) (C) (D) 4. If, re roots of the eqution x 35 x + = 0, then the vlue of ( 35) 3. ( 35) 3 is equl to- (A) (B) 8 (C) 64 (D) None of these. If, re roots of the eqution x 5x + 6 = 0 then the eqution whose roots re + 3 nd + 3 is- (A) x x + 30 = 0 (B) (x 3) 5 (x 3) + 6 = 0 (C) Both (A) nd (B) (D) None of these 3. If, re the root of qudrti eqution x 3x + 5 = 0 then the eqution whose roots re ( 3 + 7) nd ( 3 + 7) is- (A) x + 4x + = 0 (B) x 4x + 4 = 0 (C) x 4x = 0 (D) x + x + 3 = 0 4. The minimum vlue of the expression 4x + x + is- (A) /4 (B) / (C) 3/4 (D) Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 6

18 Exerise # PART - I A-. (B) A-. (C) A-3. (A) A-4. (C) A-5. (C) A-6. (C) A-7. (D) B-. (A) B-. (C) B-3. (B) B-4. (B) B-5. (A) C-. (B) C-. (B) C-3. (C) C-4. (A) C-5. (A) D-. (B) D-. (B) D-3. (B) D-4. (B) D-5. (B) D-6. (D) D-7. (B) D-8. (B) E-. (A) E-. (C) E-3. (B) E-4. (B) PART-II. (A). (A) 3. (D) 4. (C) 5. (B) 6. (D) 7. (A) Q ; (B) R ; (C) PQ ; (D) P 8. (A) R ; (B) Q ; (C) S ; (D) P 9. (A) 0. (D) Exerise # PART - I. (A). (A) 3. (A) 4. (D) 5. (B) 6. (B) 7. (D) 8. (A) 9. (B) 0. (B). (A). (A) 3. (B) 4. (C) 5. (D) 6. (C) 7. (A) 8. (C) 9. (D) 0. (B).* (BC).* (BC) 3.* (ABCD)4.* (CD) 5.* (ABD) 6.* (BD) 7.* (BCD) 8. (A) PART - II. (i) x + ( + ) x + ( + ) = 0 (ii) x + ( 4 ) x + + ( ) = 0 ( r + ). 3x 9x + 3 = , ± 8. (-, 0) È (9/, ) 9. r = 0, 4 4. = - 7, = - 8 ; roots (3, 4), (3, 5), (3, ) Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 7

19 5. (i) (ii) (iii) é 3ù 6. (i) ê, ú ë û (ii) é ù ê, ú ë û 7. (i) x = ±, ± (ii) x = ( ), x = ( 6 ) 9. K Î (-, 3) 0. 6 < K < Î [9, ) 4. x Î R if y =, x = if y = - 3 Exerise # 3 L NM PART - I O QP ÈL N M. (B). > 3. - p - p 3, p, p 4. (C) (A) 7. (D) 8. (B) 9. (C) 0. (B) PART-II. (). () 3. (3) 4. () 5. (3) 6. () 7. (3) 8. () 9. () 0. (). (). (3) 3. () 4. () O Q P Exerise # 4 7. (A) 8. (D) 9. (A) 0. (C). (C). (C) 3. (D) 4. (C) Arride lerning Online E-lerning Ademy A-479 Indr Vihr, Kot Rjsthn Pge No. # 8

QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

### is equal to - (A) abc (B) 2abc (C) 0 (D) 4abc (sinx) + a 2 (sin 2 x) a n (A) 1 (B) 1 (C) 0 (D) 2 is equal to -

J-Mthemtics XRCIS - 0 CHCK YOUR GRASP SLCT TH CORRCT ALTRNATIV (ONLY ON CORRCT ANSWR). The vlue of determinnt c c c c c c (A) c (B) c (C) 0 (D) 4c. If sin x cos x cos 4x cos x cos x sin x 4 cos x sin x

### AP Calculus AB Unit 4 Assessment

Clss: Dte: 0-04 AP Clulus AB Unit 4 Assessment Multiple Choie Identify the hoie tht best ompletes the sttement or nswers the question. A lultor my NOT be used on this prt of the exm. (6 minutes). The slope

### ( ) { } [ ] { } [ ) { } ( ] { }

Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

### A Study on the Properties of Rational Triangles

Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

### Algebra 2 Semester 1 Practice Final

Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

### 1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

### Polynomials and Division Theory

Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

### VECTOR ALGEBRA. Syllabus :

MV VECTOR ALGEBRA Syllus : Vetors nd Slrs, ddition of vetors, omponent of vetor, omponents of vetor in two dimensions nd three dimensionl spe, slr nd vetor produts, slr nd vetor triple produt. Einstein

### 5. Every rational number have either terminating or repeating (recurring) decimal representation.

CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

### Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

### Probability. b a b. a b 32.

Proility If n event n hppen in '' wys nd fil in '' wys, nd eh of these wys is eqully likely, then proility or the hne, or its hppening is, nd tht of its filing is eg, If in lottery there re prizes nd lnks,

### Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

MT TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS C Trigonometric Functions : Bsic Trigonometric Identities : + cos = ; ; cos R sec tn = ; sec R (n ),n cosec cot = ; cosec R {n, n I} Circulr Definition

### List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.

Mth Anlysis CP WS 4.X- Section 4.-4.4 Review Complete ech question without the use of grphing clcultor.. Compre the mening of the words: roots, zeros nd fctors.. Determine whether - is root of 0. Show

### For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

Slrs-7.2-ADV-.7 Improper Definite Integrls 27.. D.dox Pge of Improper Definite Integrls Before we strt the min topi we present relevnt lger nd it review. See Appendix J for more lger review. Inequlities:

### KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the -is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider

### Section 1.3 Triangles

Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

### 2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3

GCE A Level Otober/November 008 Suggested Solutions Mthemtis H (970/0) version. MATHEMATICS (H) Pper Suggested Solutions. Topi: Definite Integrls From the digrm: Are A = y dx = x Are B = x dy = y dy dx

### Final Exam Review. [Top Bottom]dx =

Finl Exm Review Are Between Curves See 7.1 exmples 1, 2, 4, 5 nd exerises 1-33 (odd) The re of the region bounded by the urves y = f(x), y = g(x), nd the lines x = nd x = b, where f nd g re ontinuous nd

### REVIEW Chapter 1 The Real Number System

Mth 7 REVIEW Chpter The Rel Number System In clss work: Solve ll exercises. (Sections. &. Definition A set is collection of objects (elements. The Set of Nturl Numbers N N = {,,,, 5, } The Set of Whole

### April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

### TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION. Contents. Theory Exercise Exercise Exercise Exercise

TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION Contents Toic Pge No. Theory 0-08 Exercise - 09-9 Exercise - 0-8 Exercise - 9 - Exercise - - Answer Key - 7 Syllbus Trigonometric functions, their eriodicity

### Formula for Trapezoid estimate using Left and Right estimates: Trap( n) If the graph of f is decreasing on [a, b], then f ( x ) dx

Fill in the Blnks for the Big Topis in Chpter 5: The Definite Integrl Estimting n integrl using Riemnn sum:. The Left rule uses the left endpoint of eh suintervl.. The Right rule uses the right endpoint

### Individual Group. Individual Events I1 If 4 a = 25 b 1 1. = 10, find the value of.

Answers: (000-0 HKMO Het Events) Creted y: Mr. Frnis Hung Lst udted: July 0 00-0 33 3 7 7 5 Individul 6 7 7 3.5 75 9 9 0 36 00-0 Grou 60 36 3 0 5 6 7 7 0 9 3 0 Individul Events I If = 5 = 0, find the vlue

### m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

CO-ORDINTE GEOMETR II I Qudrnt Qudrnt (-.+) (++) X X - - - 0 - III IV Qudrnt - Qudrnt (--) - (+-) Region CRTESIN CO-ORDINTE SSTEM : Retngulr Co-ordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr

9/6/7 Mustf Jrrr: Leture Notes in Disrete Mthemtis. Birzeit University Plestine 05 Funtions 7.. Introdution to Funtions 7. One-to-One Onto Inverse funtions mjrrr 05 Wth this leture nd downlod the slides

### JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART B MATHEMATICS

JEE(MAIN) 05 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 0 th APRIL, 05) PART B MATHEMATICS CODE-D. Let, b nd c be three non-zero vectors such tht no two of them re colliner nd, b c b c. If is the ngle

### Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

### SOLUTION OF TRIANGLES

SOLUTION OF TIANGLES DPP by VK Sir B.TEH., IIT DELHI VK lsses, -9-40, Indr Vihr, Kot. Mob. No. 989060 . If cos A + cosb + cos = then the sides of the AB re in A.P. G.P H.P. none. If in tringle sin A :

### Chapter 8 Roots and Radicals

Chpter 8 Roots nd Rdils 7 ROOTS AND RADICALS 8 Figure 8. Grphene is n inredily strong nd flexile mteril mde from ron. It n lso ondut eletriity. Notie the hexgonl grid pttern. (redit: AlexnderAIUS / Wikimedi

### y = c 2 MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark) is...

. Liner Equtions in Two Vriles C h p t e r t G l n e. Generl form of liner eqution in two vriles is x + y + 0, where 0. When we onsier system of two liner equtions in two vriles, then suh equtions re lle

### 15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions )

- TRIGONOMETRY Pge P ( ) In tringle PQR, R =. If tn b c = 0, 0, then Q nd tn re the roots of the eqution = b c c = b b = c b = c [ AIEEE 00 ] ( ) In tringle ABC, let C =. If r is the inrdius nd R is the

### MULTIPLE CHOICE QUESTIONS

. Qurti Equtions C h p t e r t G l n e The generl form of qurti polynomil is + + = 0 where,, re rel numers n. Zeroes of qurti polynomil n e otine y equtions given eqution equl to zero n solution it. Methos

### 3 Angle Geometry. 3.1 Measuring Angles. 1. Using a protractor, measure the marked angles.

3 ngle Geometry MEP Prtie ook S3 3.1 Mesuring ngles 1. Using protrtor, mesure the mrked ngles. () () (d) (e) (f) 2. Drw ngles with the following sizes. () 22 () 75 120 (d) 90 (e) 153 (f) 45 (g) 180 (h)

### Solutions to Assignment 1

MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

### 10. AREAS BETWEEN CURVES

. AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

### SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

### (a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

### PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

### MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES CHARLIE COLLIER UNIVERSITY OF BATH These notes hve been typeset by Chrlie Collier nd re bsed on the leture notes by Adrin Hill nd Thoms Cottrell. These

### MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

### T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

### K 7. Quadratic Equations. 1. Rewrite these polynomials in the form ax 2 + bx + c = 0. Identify the values of a, b and c:

Qudrti Equtions The Null Ftor Lw Let's sy there re two numers nd. If # = then = or = (or oth re ) This mens tht if the produt of two epressions is zero, then t lest one of the epressions must e equl to

### This enables us to also express rational numbers other than natural numbers, for example:

Overview Study Mteril Business Mthemtis 05-06 Alger The Rel Numers The si numers re,,3,4, these numers re nturl numers nd lso lled positive integers. The positive integers, together with the negtive integers

### GM1 Consolidation Worksheet

Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up

### Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

### MTH 505: Number Theory Spring 2017

MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of \$ nd \$ s two denomintions of coins nd \$c

### MATH Final Review

MATH 1591 - Finl Review November 20, 2005 1 Evlution of Limits 1. the ε δ definition of limit. 2. properties of limits. 3. how to use the diret substitution to find limit. 4. how to use the dividing out

### Section 6.1 Definite Integral

Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

### THREE DIMENSIONAL GEOMETRY

MD THREE DIMENSIONAL GEOMETRY CA CB C Coordintes of point in spe There re infinite numer of points in spe We wnt to identif eh nd ever point of spe with the help of three mutull perpendiulr oordintes es

### Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

### Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

R Pen Towe Rod No Conttos Ae Bistupu Jmshedpu 8 Tel (67)89 www.penlsses.om IIT JEE themtis Ppe II PART III ATHEATICS SECTION I (Totl ks : ) (Single Coet Answe Type) This setion ontins 8 multiple hoie questions.

### H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

Chpter Review 89 IGURE ol hord GH of the prol 4. G u v H (, ) (A) Use the distne formul to show tht u. (B) Show tht G nd H lie on the line m, where m ( )/( ). (C) Solve m for nd sustitute in 4, otining

### Polynomials. Polynomials. Curriculum Ready ACMNA:

Polynomils Polynomils Curriulum Redy ACMNA: 66 www.mthletis.om Polynomils POLYNOMIALS A polynomil is mthemtil expression with one vrile whose powers re neither negtive nor frtions. The power in eh expression

### Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 12, 16,, 2. 400, 200, 100, 50, 25,, 3. 1 8, 2 7, 1 2, 4, 5, 4. 5, 3, 2,

### University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

### Trigonometry Revision Sheet Q5 of Paper 2

Trigonometry Revision Sheet Q of Pper The Bsis - The Trigonometry setion is ll out tringles. We will normlly e given some of the sides or ngles of tringle nd we use formule nd rules to find the others.

### AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

### Part 4. Integration (with Proofs)

Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

### CS 491G Combinatorial Optimization Lecture Notes

CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

### Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

### The graphs of Rational Functions

Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

### Factorising FACTORISING.

Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

### PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for right-ngled tringles

### AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

### DEEPAWALI ASSIGNMENT

DEEPWLI SSIGNMENT CLSS & DOPPE FO TGET IIT JEE Get Solution & Video Tutorils online www.mthsbysuhg.com Downlod FEE Study Pckges, Test Series from w ww.tekoclsses.com Bhopl : Phone : (0755) 00 000 Wishing

### HS Pre-Algebra Notes Unit 9: Roots, Real Numbers and The Pythagorean Theorem

HS Pre-Alger Notes Unit 9: Roots, Rel Numers nd The Pythgoren Theorem Roots nd Cue Roots Syllus Ojetive 5.4: The student will find or pproximte squre roots of numers to 4. CCSS 8.EE.-: Evlute squre roots

### Discrete Structures Lecture 11

Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

### Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 12, 16,, 2. 400, 200, 100, 50, 25,, 3. 1 8, 2 7, 1 2, 4, 5, 4. 5, 3, 2,

Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

### CALCULUS STUDY MATERIAL. B.Sc. MATHEMATICS III SEMESTER UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

CALCULUS STUDY MATERIAL BS MATHEMATICS III SEMESTER UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY PO MALAPPURAM, KERALA, INDIA - 67 65 5 UNIVERSITY OF CALICUT SCHOOL OF DISTANCE

### CHENG Chun Chor Litwin The Hong Kong Institute of Education

PE-hing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study- onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using

### Special Numbers, Factors and Multiples

Specil s, nd Student Book - Series H- + 3 + 5 = 9 = 3 Mthletics Instnt Workooks Copyright Student Book - Series H Contents Topics Topic - Odd, even, prime nd composite numers Topic - Divisiility tests

### R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

Higher Mthemtics Ojective Test Prctice ook The digrm shows sketch of prt of the grph of f ( ). The digrm shows sketch of the cuic f ( ). R(, 8) f ( ) f ( ) P(, ) Q(, ) S(, ) Wht re the domin nd rnge of

### 12.4 Similarity in Right Triangles

Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

### 38 Riemann sums and existence of the definite integral.

38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

### Non Right Angled Triangles

Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in non-right ngled tringles. This unit

### Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

### Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

### Math 360: A primitive integral and elementary functions

Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

### 4.1. Probability Density Functions

STT 1 4.1-4. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile - vers - discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of

### KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS 6-7 CLASS - XII MATHEMATICS (Reltions nd Funtions & Binry Opertions) For Slow Lerners: - A Reltion is sid to e Reflexive if.. every A

UNIT- POLYNOMIALS Downloded From: www.jsuniltutoril.weebly.com [Yer] UNIT- POLYNOMIALS It is not once nor twice but times without number tht the sme ides mke their ppernce in the world.. Find the vlue

### TOPPER SAMPLE PAPER - 5 CLASS XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100

TOPPER SAMPLE PAPER - 5 CLASS XI MATHEMATICS Questions Time Allowed : 3 Hrs Mximum Mrks: 100 1. All questions re compulsory.. The question pper consist of 9 questions divided into three sections A, B nd

### MATH 573 FINAL EXAM. May 30, 2007

MATH 573 FINAL EXAM My 30, 007 NAME: Solutions 1. This exm is due Wednesdy, June 6 efore the 1:30 pm. After 1:30 pm I will NOT ccept the exm.. This exm hs 1 pges including this cover. There re 10 prolems.

### Linear Inequalities. Work Sheet 1

Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges \$ 15 per week plus \$ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

### 6.5 Improper integrals

Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

### Linear Algebra Introduction

Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

### Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

### FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I

FINALTERM EXAMINATION 011 Clculus &. Anlyticl Geometry-I Question No: 1 { Mrks: 1 ) - Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...

### ( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x).

Mth 15 Fettermn/DeSmet Gustfson/Finl Em Review 1) Let f( ) = 10 5. Find nd simplif f( ) nd then stte the domin of f(). ) Let f( ) = +. Find nd simplif f(1) nd then stte the domin of f(). ) Let f( ) = 8.

### Mathematics. Area under Curve.

Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding