10. AREAS BETWEEN CURVES

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "10. AREAS BETWEEN CURVES"

Transcription

1 . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in sense. But now we ll level with you nd tell you the whole truth. The oundries for n re tht s given y n integrl re the grph of function, two verticl lines nd, up to now the fourth oundry hs een the x-xis. We re now going to generlise tht so tht the fourth oundry is the grph of second function. You cn still tke the second function to e y = nd tht gives the x-xis so you cn still hve the x-xis s oundry if you like. But you cn hve curved ottom oundry too. We re going to develop formul for the re etween two curves. There will e top y nd ottom y. Top nd ottom refer to which hs the greter y vlues. Of course curves my cross over nd this mkes the prolem just little it more complicted, ut not much. y = f(x) (top y) y = g(x) (ottom y) The shded re is the re we wnt. Now f(x) dx gives the re under the top curve, right down to the x-xis nd g(x) dx gives the re under the ottom curve, right down to the x-xis. Clerly the re we wnt is the difference etween the two, tht is, f(x) dx g(x) dx. But this cn e written s [f(x) g(x)] dx. If f(x) g(x) for x, the re etween y = f(x) nd y = g(x) etween x = nd x = is [f(x) g(x)] dx

2 . To rememer this, just rememer the integrl s: top limit ottom limit (top y ottom y) Now when we hve just one curve y = f(x) which lies ove the x-xis from x = to x = nd the ottom oundry of the re is the x-xis, then the top y is y = f(x) nd the ottom y is y =. So the re under the grph is [f(x) ] dx) = f(x) dx, s efore. But if y = f(x) lies elow the x-xis this ecomes the ottom oundry nd the x-xis, y = ecomes the top oundry. The re ecomes, in this cse, [ f(x)] dx = f(x) dx. Previously we explined this minus sign y sying tht res elow the x-xis re negtive. Now we re in position to set the record stright. Ares re never negtive, ut integrls my e. Where the curve is elow the x-xis the re is positive ut the integrl is negtive. Tht s the right wy to look t it. Whenever you hve to work out res elow, ove or etween curves lwys set it up s prolem involving the re etween two curves. If you correctly identify which is the top y nd which is the ottom y you ll never go wrong. The integrl you set up will lwys come out s positive nd will give the required re. Integrls come out negtive, when deling with res, only if you hven t set things up properly. There s lot of sloppy thinking with this topic nd students re often tught d hits. Alright we did strt you off thinking tht res elow the xis re negtive ut t the time it would hve confused you to do otherwise. At lest we re now setting the story right. Some students think tht since res re positive ut integrls cn e negtive, ll you hve to do is to put solute vlue signs round everything. Even worse is the student who, on evluting n integrl to e, writes = =. Using solute vlue signs disply ignornce s to wht is relly going on nd cn led to wrong nswers if the curves cross over. So some guidelines to void such errors re: Never fudge the sign if the integrl comes out negtive. Never use solute vlue signs in connection with res. Exmple : Find the re etween y = x, y = 4 nd x =. y = 4 y = x Solution: Top y is y= 4 nd ottom y is y = x. The re is therefore [4 x ] dx = [ 4x (/)x ] = = 5.

3 .. Wht If Curves Cross? It s solutely importnt to determine whether curves cross within the region eing considered. For if they do, wht ws the top y will ecome the ottom y nd vice vers. The intervl of integrtion will hve to e split up. Suppose we wnt the re etween the curves y = f(x) nd g(x) etween x = nd x = nd suppose the curves cross t some point c etween nd. Suppose tht g(x) f(x) for x c nd g(x) f(x) for x c. Then from x = to x = c it s g(x) which is the top y, while from x = c to x = it s f(x) tht s on top. We must rek the intervl [, ] into two pieces nd integrte seprtely over these two regions. y = g(x) y = f(x) The required re will e c c [g(x) f(x)] dx + [f(x) g(x)] dx. c Exmple : Find the re etween y = x, the x-xis nd lines x = nd x =. Solution: Becuse the curve cuts the x-xis t x = we must divide the intervl [, ] into two pieces. From x = to x = the top y is y = (the x-xis) while from x = to x = it is y = x. The required re is [ x ] dx + [x ] dx = x4 4 + x 4 4 = =. Two things should e noted with this exmple. () If we hd simply integrted x etween nd we would hve concluded tht the re is x dx = x 4 4 = 4 4 =, which is clerly wrong. And tking solute vlues wouldn t help either. Rememer to never use solute vlues with these re questions. If you don t know which is top y nd which is ottom you re likely to come up with totlly wrong nswer. If you do, then you ll set up the integrl correctly so tht it will come out positive. () We could hve exploited symmetry to simplify the clcultion nd void ll those minus signs. The re elow the x-xis is clerly the sme s the re ove so we could hve sid tht the totl x 4 re = x dx = 4 =.

4 Exmple : Find the re etween y = x nd y = x. Solution: Here we re not given ny endpoints. Tht s ecuse the grphs of y = x nd y = x cut in exctly two plces nd so they enclose region. We need to find these two points. Solving x = x we get x = or. So these re the limits of integrtion. The top y, etween nd, is y = x. The re is therefore [x x ] dx. Becuse we know wht we re doing nd hve set up the integrl correctly we cn e sure tht it will e positive. x [x x ] dx = x = = 6. This is the required re. Exmple 4: Find the re etween y = x, y = x nd x =. Solution: The curves cut when x = x, tht is when x =. So they cut in two plces, t x =. / / We hve to integrte from to nd then from to. By symmetry the integrl from to is doule tht from to. / The re is therefore / = [( x ) x ] dx + [x ( x )] dx / [ x ] dx + [x ] dx = x / x / + x x = + = (6 + ) = 6 = =. / 4

5 EXERCISES FOR CHAPTER Exercise : Find the re etween the prols y = x, y = x nd the y-xis. Give your nswer s n exct vlue, in terms of, s well s n pproximtion to 4 deciml plces. Exercise : Find the re enclosed etween the curves y = x x nd x x. Exercise : Find the re enclosed etween the curves y = e x nd y = 6x x etween x = nd x =. Give your nswer s n exct vlue involving e s well s n pproximte numericl vlue to 4 deciml plces. Exercise 4: Find the re enclosed etween the curve y = 6 x nd the line y = 5 x. Give the nswer to 4 deciml plces without using your clcultor, ut insted using the fct tht, to 4 deciml plces, log.5 =.455. Exercise 5: Use integrtion to find the re etween the lines y = + x nd y = x etween x = 5 nd x =. Check your nswer using simple geometry. Exercise 6: Find the re enclosed etween the curves y = 4x + 5, y = 5x + 4 nd the x-xis. Exercise 7: The Lorenz curve is grph tht s used in economics tht shows the distriution of income. If the ottom x% of households represents the ottom y% of income, the point (x, y) lies on the Lorenz curve. The line y = x corresponds to perfect equlity, ut in prctice the curve lies elow it. The most extreme cse, (perfect inequlity) would e where one household erns ll of the income nd the rest ern nothing. This corresponds to the line y = (with spike t x = ). The Gini coefficient is the rtio of the re etween the line of perfect equlity nd the oserved Lorenz curve, nd the re etween the line of perfect equlity nd the line pf perfect inequlity. It is mesure of inequlity. The higher the Gini coefficient, the more unequl is the distriution of income. Find the Gini coefficient if the Lorenz curve is y = x. line of perfect equlity oserved Lorenz curve line of perfect inequlity 5

6 SOLUTIONS FOR CHAPTER Exercise : The curves cut when x = x, tht is, when x = or x =. Over the rnge from x = to x = the top y is y = x. / So the re is / ( x ) x dx = / x dx = [ x x ] =..7. Exercise : The curves cross if x x = x x. Solving, we get x x + x =. Fctorising we get x(x )(x ) =, so the curves cross when x =, nd. The re enclosed is the region etween the curves from x = to x =. But since they cross t x = we need to split the intervl [, ] into two pieces. From x = to x = the top curve is y = x x. Then from x = to x = the top curve is y = x x. So the re is: A = [(x x ) (x x)] dx + [(x x) (x x )] dx = x 4 4 x + x + x x4 4 x = =. Exercise : The curves do not cross nd the top y is y = e x. So the re is [e x (6x x )] dx = = (e ) = e [e x 6x + x + ] dx) = e x x + x +x] Exercise 4: The curves cut when 6 x = 5 x. Solving we get 6 = 5x x nd so x 5x + 6 =. Hence (x )(x ) = nd so x =, 5. When x =.5 the vlue of y for the curve y = 6 x is.4 while for the line y = 5 x it is.5. So etween x = nd x = the top y is y = 5 x. 6

7 The re etween is therefore [(5 x) x ] dx = [ 5x x log x ] = (5 9 log ) (9 4 log ) = log + log = log(/).455 = Exercise 5: The lines cut t x =. When x =, the vlue of y for y = + x is while for y = x it is, so etween x = 5 nd x = the top y is y = x. Between x = nd x = the top y is y = x +. So the enclosed re is 5 [( x) (x + )] dx + [(x + ) ( x)] dx = [ x] dx + [x] dx = x x = ( +.5) + ( ) = 75 + = 78 = 9. We cn check this y simple geometry since the region consists of two tringles. Rememer tht the re of tringle is ½ se perpendiculr height. Here we tke the se to e the verticl sides. When x = 5, x = 6 while x + = 9. So the lrger tringle hs se of 5 nd perpendiculr height of 5. Its re is 5 5 = 75. When x =, x + = nd x = so the smller tringle hs se nd perpendiculr height of. Its re is. The totl re is therefore 75 + = 9. Exercise 6: The curves cross when 4x + 5 = 5x + 4, tht is when x =. 7

8 The curve y = 5x + 4 cuts the x-xis t x = 4/5 while y = 4x + 5 cuts it t x = 5/4. We must divide the re into two portions t x = 4/5. The top y etween x = 5/4 nd x = is 4x + 5. Between x = 5/4 nd 4/5 the ottom y is y =, the x-xis. Then etween x = 4/5 nd x = the ottom y is y = 5x /5 Hence the re is 4x + 5 dx + [ 4x + 5 5x + 4] dx 4/5 5/4 4/5 =. 4 (4x +5)/ + 5/4. 4 (4x +5)/. 5 (5x + 4)/ = / / / = 6 / / 9 5 / 9/ = = = = 9 =.45. 4/5 [ 9/ ] Exercise 7: The re etween the line of perfect equlity (y = x) nd the oserved Lorenz curve, is (x x dx) = x x = = 6. The re etween the line of perfect equlity (y = x) nd the line of perfect inequlity (y = ) is the re of the tringle elow the line y = x, which is clerly ½. Hence the Gini coefficient is /6 / =. 8

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Section 7.1 Area of a Region Between Two Curves

Section 7.1 Area of a Region Between Two Curves Section 7.1 Are of Region Between Two Curves White Bord Chllenge The circle elow is inscried into squre: Clcultor 0 cm Wht is the shded re? 400 100 85.841cm White Bord Chllenge Find the re of the region

More information

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integral Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

More information

Chapter 9 Definite Integrals

Chapter 9 Definite Integrals Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished

More information

Chapter 6 Continuous Random Variables and Distributions

Chapter 6 Continuous Random Variables and Distributions Chpter 6 Continuous Rndom Vriles nd Distriutions Mny economic nd usiness mesures such s sles investment consumption nd cost cn hve the continuous numericl vlues so tht they cn not e represented y discrete

More information

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus Unit # De+inite Integrtion & The Fundmentl Theorem Of Clculus. Find the re of the shded region ove nd explin the mening of your nswer. (squres re y units) ) The grph to the right is f(x) = -x + 8x )Use

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ). AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

Section 4: Integration ECO4112F 2011

Section 4: Integration ECO4112F 2011 Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

More information

The Trapezoidal Rule

The Trapezoidal Rule _.qd // : PM Pge 9 SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion

More information

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point. PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

More information

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes The Vector Product 9.4 Introduction In this section we descrie how to find the vector product of two vectors. Like the sclr product its definition my seem strnge when first met ut the definition is chosen

More information

5.5 The Substitution Rule

5.5 The Substitution Rule 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

More information

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x  0 : Clculus II MAT 146 Integrtion Applictions: Volumes of 3D Solids Our gol is to determine volumes of vrious shpes. Some of the shpes re the result of rotting curve out n xis nd other shpes re simply given

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

More information

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35 7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

3.1 Review of Sine, Cosine and Tangent for Right Angles

3.1 Review of Sine, Cosine and Tangent for Right Angles Foundtions of Mth 11 Section 3.1 Review of Sine, osine nd Tngent for Right Tringles 125 3.1 Review of Sine, osine nd Tngent for Right ngles The word trigonometry is derived from the Greek words trigon,

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

Line and Surface Integrals: An Intuitive Understanding

Line and Surface Integrals: An Intuitive Understanding Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

4.1. Probability Density Functions

4.1. Probability Density Functions STT 1 4.1-4. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile - vers - discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of

More information

Riemann Integrals and the Fundamental Theorem of Calculus

Riemann Integrals and the Fundamental Theorem of Calculus Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

31.2. Numerical Integration. Introduction. Prerequisites. Learning Outcomes

31.2. Numerical Integration. Introduction. Prerequisites. Learning Outcomes Numericl Integrtion 3. Introduction In this Section we will present some methods tht cn be used to pproximte integrls. Attention will be pid to how we ensure tht such pproximtions cn be gurnteed to be

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

AP Calculus BC Review Applications of Integration (Chapter 6) noting that one common instance of a force is weight

AP Calculus BC Review Applications of Integration (Chapter 6) noting that one common instance of a force is weight AP Clculus BC Review Applictions of Integrtion (Chpter Things to Know n Be Able to Do Fin the re between two curves by integrting with respect to x or y Fin volumes by pproximtions with cross sections:

More information

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automata 1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

The Definite Integral

The Definite Integral CHAPTER 3 The Definite Integrl Key Words nd Concepts: Definite Integrl Questions to Consider: How do we use slicing to turn problem sttement into definite integrl? How re definite nd indefinite integrls

More information

Shape and measurement

Shape and measurement C H A P T E R 5 Shpe nd mesurement Wht is Pythgors theorem? How do we use Pythgors theorem? How do we find the perimeter of shpe? How do we find the re of shpe? How do we find the volume of shpe? How do

More information

Algebra II Notes Unit Ten: Conic Sections

Algebra II Notes Unit Ten: Conic Sections Syllus Ojective: 10.1 The student will sketch the grph of conic section with centers either t or not t the origin. (PARABOLAS) Review: The Midpoint Formul The midpoint M of the line segment connecting

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

Trignometric Substitution

Trignometric Substitution Trignometric Substitution Trigonometric substitution refers simply to substitutions of the form x sinu or x tnu or x secu It is generlly used in conjunction with the trignometric identities to sin θ+cos

More information

Numerical Integration

Numerical Integration Numericl Integrtion Wouter J. Den Hn London School of Economics c 2011 by Wouter J. Den Hn June 3, 2011 Qudrture techniques I = f (x)dx n n w i f (x i ) = w i f i i=1 i=1 Nodes: x i Weights: w i Qudrture

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Numerical Integration

Numerical Integration Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl

More information

Similarity and Congruence

Similarity and Congruence Similrity nd ongruence urriculum Redy MMG: 201, 220, 221, 243, 244 www.mthletics.com SIMILRITY N ONGRUN If two shpes re congruent, it mens thy re equl in every wy ll their corresponding sides nd ngles

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

5.1 Estimating with Finite Sums Calculus

5.1 Estimating with Finite Sums Calculus 5.1 ESTIMATING WITH FINITE SUMS Emple: Suppose from the nd to 4 th hour of our rod trip, ou trvel with the cruise control set to ectl 70 miles per hour for tht two hour stretch. How fr hve ou trveled during

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

Math 3B Final Review

Math 3B Final Review Mth 3B Finl Review Written by Victori Kl vtkl@mth.ucsb.edu SH 6432u Office Hours: R 9:45-10:45m SH 1607 Mth Lb Hours: TR 1-2pm Lst updted: 12/06/14 This is continution of the midterm review. Prctice problems

More information

Equations and Inequalities

Equations and Inequalities Equtions nd Inequlities Equtions nd Inequlities Curriculum Redy ACMNA: 4, 5, 6, 7, 40 www.mthletics.com Equtions EQUATIONS & Inequlities & INEQUALITIES Sometimes just writing vribles or pronumerls in

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15 Regulr Lnguge Nonregulr Lnguges The Pumping Lemm Models of Comput=on Chpter 10 Recll, tht ny lnguge tht cn e descried y regulr expression is clled regulr lnguge In this lecture we will prove tht not ll

More information

221A Lecture Notes WKB Method

221A Lecture Notes WKB Method A Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using ψ x, t = e

More information

Sample Questions PREPARING FOR THE AP (AB) CALCULUS EXAMINATION. tangent line, a+h. a+h

Sample Questions PREPARING FOR THE AP (AB) CALCULUS EXAMINATION. tangent line, a+h. a+h Smple Questions PREPARING FOR THE AP (AB) CALCULUS EXAMINATION B B A B tngent line,, f '() = lim h f( + h) f() h +h f(x) dx = lim [f(x ) x + f(x ) x + f(x ) x +...+ f(x ) x n] n B B A B tngent line,, f

More information

Not for reproduction

Not for reproduction AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type

More information

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C. Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

More information

Math 259 Winter Solutions to Homework #9

Math 259 Winter Solutions to Homework #9 Mth 59 Winter 9 Solutions to Homework #9 Prolems from Pges 658-659 (Section.8). Given f(, y, z) = + y + z nd the constrint g(, y, z) = + y + z =, the three equtions tht we get y setting up the Lgrnge multiplier

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

[ ( ) ( )] Section 6.1 Area of Regions between two Curves. Goals: 1. To find the area between two curves

[ ( ) ( )] Section 6.1 Area of Regions between two Curves. Goals: 1. To find the area between two curves Gols: 1. To find the re etween two curves Section 6.1 Are of Regions etween two Curves I. Are of Region Between Two Curves A. Grphicl Represention = _ B. Integrl Represention [ ( ) ( )] f x g x dx = C.

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

More information

Calculus 2: Integration. Differentiation. Integration

Calculus 2: Integration. Differentiation. Integration Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

More information

Area and Perimeter. Area and Perimeter. Curriculum Ready.

Area and Perimeter. Area and Perimeter. Curriculum Ready. Are nd Perimeter Curriculum Redy www.mthletics.com This ooklet shows how to clculte the re nd perimeter of common plne shpes. Footll fields use rectngles, circles, qudrnts nd minor segments with specific

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Non Right Angled Triangles

Non Right Angled Triangles Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in non-right ngled tringles. This unit

More information

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014 Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

More information

Chapter 2. Random Variables and Probability Distributions

Chapter 2. Random Variables and Probability Distributions Rndom Vriles nd Proilit Distriutions- 6 Chpter. Rndom Vriles nd Proilit Distriutions.. Introduction In the previous chpter, we introduced common topics of proilit. In this chpter, we trnslte those concepts

More information

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011 Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

Mathematics of Motion II Projectiles

Mathematics of Motion II Projectiles Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte

More information

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010 CS 311 Homework 3 due 16:30, Thursdy, 14 th Octoer 2010 Homework must e sumitted on pper, in clss. Question 1. [15 pts.; 5 pts. ech] Drw stte digrms for NFAs recognizing the following lnguges:. L = {w

More information

The Trapezoidal Rule

The Trapezoidal Rule SECTION. Numericl Integrtion 9 f Section. The re of the region cn e pproimted using four trpezoids. Figure. = f( ) f( ) n The re of the first trpezoid is f f n. Figure. = Numericl Integrtion Approimte

More information

F (x) dx = F (x)+c = u + C = du,

F (x) dx = F (x)+c = u + C = du, 35. The Substitution Rule An indefinite integrl of the derivtive F (x) is the function F (x) itself. Let u = F (x), where u is new vrible defined s differentible function of x. Consider the differentil

More information