Mathematics. Area under Curve.


 Penelope Craig
 9 months ago
 Views:
Transcription
1 Mthemtics Are under Curve
2 Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding the Ares using Integrtion. 6. Symmetricl Are. 7. Are etween Two curves. 8. Volumes nd Surfces of Solids of Revolution. 1
3 1. Introduction. We know the methods of evluting definite integrls. These integrls re used in evluting certin types of ounded regions. For evlution of ounded regions defined y given functions, we shll lso require to drw rough sketch of the given function. The process of drwing rough sketch of given function is clled curve sketching.. Procedure of Curve Sketching. (1) Symmetry: (i) Symmetry out is: If ll powers of y in eqution of the given curve re even, then it is symmetric out is i.e., the shpe of the curve ove is is ectly identicl to its shpe elow is. For emple, y 4 is symmetric out is. (ii) Symmetry out yis: If ll power of in the eqution of the given curve re even, then it is symmetric out yis For emple, 4y is symmetric out yis. (iii) Symmetry in opposite qudrnts or symmetry out origin: If y putting for nd y for y, the eqution of curve remins sme, then it is symmetric in opposite qudrnts. For emple, y nd y re symmetric in opposite qudrnts. (iv) Symmetry out the line nd y then it is symmetric out the line 0 45 with the positive direction of is. y : If the eqution of given curve remins unltered y interchnging y which psses through the origin nd mkes n ngle of
4 () Origin: If the eqution of curve contins no constnt terms then it psses through the origin. Find whether the curve psses through the origin or not. For emples, y 4 0 psses through origin. (3) Points of intersection with the es: If we get rel vlues of on putting y 0 in the eqution of the curve, then rel vlues of nd y 0 give those points where the curve cuts the is. Similrly y putting 0, we cn get the points of intersection of the curve nd yis. y For emple, the curve 1 intersect the es t points (, 0) nd ( 0, ). dy (4) Specil points: Find the points t which 0, t these points the tngent to the curve is prllel to d d is. Find the points t which 0. At these points the tngent to the curve is prllel to yis. dy (5) Region: Write the given eqution s y f(), nd find minimum nd mimum vlues of which determine the region of the curve. For emple for the curve y ( ) y Now y is rel, if 0, So its region lies etween the lines = 0 nd = (6) Regions where the curve does not eist: Determine the regions in which the curve does not eists. For this, find the vlue of y in terms of from the eqution of the curve nd find the vlue of for which y is imginry. Similrly find the vlue of in terms of y nd determine the vlues of y for which is imginry. The curve does not eist for these vlues of nd y. For emple, the vlues of y otined from y 4 re imginry for negtive vlue of, so the curve does not eist on the left side of yis. Similrly the curve y ( ) does not eist for s the vlues of y re imginry for. 3
5 3. Sketching of Some Common Curves. (1) Stright line: The generl eqution of stright line is y c 0. To drw stright line, find the points where it meets with the coordinte es y putting y = 0 nd = 0 respectively in its eqution. By joining these two points, we get the sketch of the line. () Region represented y liner inequlity: To find the region represented y liner inequlities y c nd y c, we proceed s follows. (i) Convert the inequlity into equlity to otin liner eqution in, y. (ii) Drw the stright line represented y it. (iii) The stright line otined in (ii) divides the yplne in two prts. To determine the region represented y the inequlity choose some convenient points, e.g. origin or some point on the coordinte es. If the coordintes of point stisfy the inequlity, then region contining the point is the required region, otherwise the region not contining the point is the required region. 1 (3) Circle: The eqution of circle hving center t (0,0) nd rdius r is given y y r. The eqution of circle hving center t (h, k) nd rdius r is given y ( h) ( y k) r. The generl eqution of circle is y g fy c 0. This represents the circle whose center is t (g,f) nd rdius equl to g f c. The figure of the circle y () is given. Here center is (0,0) nd rdius is. 4
6 (4) Prol: There re four stndrd forms of prol with verte t origin nd the is long either of coordinte is. (i) y 4 : For this prol () Verte: (0,0) () Focus: (, 0) (c) Directri: 0 (d) Ltus rectum: 4 (e) Ais y 0 (f) Symmetry: It is symmetric out is. Directri Z A S (,0) (ii) 4y : For this prol () Verte: (0,0) () Focus: ( 0, ) (0, ) (c) Directri: y 0 (d) Ltus rectum: 4 (e) Ais = 0 (f) Symmetry: It is symmetric out yis ' Z A Directri ' (5) Ellipse: The stndrd eqution of the ellipse hving its center t the origin y nd mjor nd minor es long the coordinte es is 1 Here. The figure of the ellipse is given. B (0,) (, 0) (, 0) A A B (0, ) 5
7 4. Are of Bounded Regions. (1) The re ounded y Crtesin curve y = f(), is nd ordintes = nd = is given y Are y d f( ) d y = f() O y d = = () If the curve y = f() lies elow is, then the re ounded y the curve y f(), the is nd the ordintes = nd = is negtive. So, re is given y y d (3) The re ounded y Crtesin curve =f(y), yis nd sciss y = c nd y = d is given y d Are = c c dy f( y) dy d y = d y = c dy = f(y) O (4) If the eqution of curve is in prmetric form, sy = f(t), y = g(t) then the re t t y d g( t) f' ( t) dt where t 1 nd t re the vlues of t respectively corresponding to the vlues of nd of. 1 6
8 5. Sign convention for finding the Ares using Integrtion. While pplying the discussed sign convention, we will discuss the three cses. Cse I: In the epression f ( ) d if nd f ( ) 0 for ll, then this integrtion will give the re enclosed etween the curve f(), is nd the line = nd = which is positive. No need of ny modifiction. Cse II: If in the epression f ( ) d if > nd f ( ) 0 for ll, then this integrtion will clculte to e negtive. But the numericl or the solute vlue is to e tken to men the re enclosed etween the curve y = f(), is nd the lines = nd =. Cse III: If in the epression f ( ) d where ut f() chnges its sign numers of times in the intervl, then we must divide the region [, ] in such wy tht we clerly get the points lying etween [, ] where f() chnges its sign. For the region where f()>0 we just integrte to get the re in tht region nd then dd the solute vlue of the integrtion clculted in the region where f()<0 to get the desired re etween the curve y = f(), is nd the line = nd =. Hence, if f() is s in ove figure, the re enclosed y y = f(), is nd the lines = nd = is given y c d e A f( ) d f( ) d f( ) d f( ) d f( ) d c d e f f c d e f 7
9 6. Symmetricl Are. If the curve is symmetricl out coordinte is (or line or origin), then we find the re of one symmetricl portion nd multiply it y the numer of symmetricl portions to get the required re. 7. Are etween Two curves. (1) When oth curves intersect t two points nd their common re lies etween these points: If the curves y f ) nd y f ), where f ) f ( ) intersect in two points 1 1 ( ( 1( ( 1 A( = ) nd B( = ), then common re etween the curves is y y ) d y = f 1 () B A y = f () [ 1 = f ( ) f ( )] d O = d = () When two curves intersect t point nd the re etween them is ounded y is: Are ounded y the curves y f1 ( ), y f ( ) nd is is = 1 ) d f f ( ) d ( y 1 = f 1 () P(α,β) y = f () Where P(, ) is the point of intersection of the two curves. O (3) Positive nd negtive re : Are is lwys tken s positive. If some prt of the re lies ove the is nd some prt lies elow is, then the re of two prts should e clculted seprtely nd then dd their numericl vlues to get the desired re. 8
10 Importnt Tips The re of the region ounded y y 4 nd 16 4 y is squre units. 3 The re of the region ounded y y 4 nd y m is squre units 3 The re of the region ounded y 8 3m y 4 nd its ltus rectum is 8 3 squre units The re of the region ounded y one rch of sin () or cos () nd is is sq. units Are of the ellipse 1 is sq. units. y Are of region ounded y the curve y = sin, is nd the line =0 nd = is 4 unit. 8. Volumes nd Surfces of Solids of Revolution. If plne curve is revolved out some is in the plne of the curve, then the ody so generted is known s solid of revolution. The surfce generted y the perimeter of the curve is known s surfce of revolution nd the volume generted y the re is clled volume of revolution. For emple, right ngled tringle when revolved out one of its sides (forming the right ngle) genertes right circulr cones. Volumes of solids of revolution: (i) The volume of the solid generted y the revolution, out the is, of the re ounded y the curve y = f(), the ordintes t =, = nd the is is equl to y d. (,y) A R P Q (+, y+y) S = = O K N M L (ii) The revolution of the re lying etween the curve = f(y), the yis nd the lines given y (interchnging nd y in the ove formule) dy. y nd y is (iii) If the eqution of the generting curve e given y f 1 ( t ) nd y f ( t) nd it is revolved out  is, then the formul corresponding to y d ecomes { f ( t)} d { f1 ( t)}, where f 1 nd f re t the vlues of t corresponding to = nd = t 1 9
11 (iv) If the curve is given y n eqution in polr coordintes, sy r f( ), nd the curve revolves out the initil line, the volume generted y d d y. d, where nd re the vlues of corresponding to = nd = d Now r cos, y r sin. Hence the volume d r sin ( r cos ) d d (v) If the generting curve revolves out ny line AB (which is different from either of the es), then the volume of revolution is ( PN ) d ( ON ), P Q D C A O N M B Note: The volume of the solid generted y revolving the re ounded y the curve r f( ) nd the rdii vectors 3 nd out the initil line is r sin d. 3 The volume in the cse when the ove re is revolved out the line is 3 r 3 cos d. () Are of surfces of revolution: (i) The curved surfce of the solid generted y the revolution, out the  is, of the re ounded y the curve y f(), the ordintes t =, = nd the is is equl to y ds. C S Q A B P R = = O D N M E (ii) If the rc of the curve y f() revolves out yis, then the re of the surfce of revolution dy (etween proper limits) = ds, where ds 1 d d (iii) If the eqution of the curve is given in the prmetric form f 1( t ) nd y f ( t), nd the curve tt t revolves out is, then we get the re of the surfce of revolution yds tt t t f 1 t1 ( t) ds 10
12 t d dy f ( t) dt, where t 1 nd t re the vlues of the prmeter t corresponding to = t1 dt dt nd =. (iv) If the eqution of the curve is given in polr form then the re of the surfce of revolution out  ds dr y ( r sin ). d r r d d sin. etween proper limits. d is ds 11
KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a
KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider
More informationCONIC SECTIONS. Chapter 11
CONIC SECTIONS Chpter. Overview.. Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig..). Fig.. Suppose we rotte the line m round
More informationPolynomials and Division Theory
Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the
More informationk ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.
Stndrd Eqution of Prol with vertex ( h, k ) nd directrix y = k p is ( x h) p ( y k ) = 4. Verticl xis of symmetry Stndrd Eqution of Prol with vertex ( h, k ) nd directrix x = h p is ( y k ) p( x h) = 4.
More informationP 1 (x 1, y 1 ) is given by,.
MA00 Clculus nd Bsic Liner Alger I Chpter Coordinte Geometr nd Conic Sections Review In the rectngulr/crtesin coordintes sstem, we descrie the loction of points using coordintes. P (, ) P(, ) O The distnce
More informationLesson5 ELLIPSE 2 1 = 0
Lesson5 ELLIPSE. An ellipse is the locus of point which moves in plne such tht its distnce from fied point (known s the focus) is e (< ), times its distnce from fied stright line (known s the directri).
More informationNORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y
LOCUS 50 Section  4 NORMALS Consider n ellipse. We need to find the eqution of the norml to this ellipse t given point P on it. In generl, we lso need to find wht condition must e stisfied if m c is to
More informationUS01CMTH02 UNIT Curvature
Stu mteril of BSc(Semester  I) US1CMTH (Rdius of Curvture nd Rectifiction) Prepred by Nilesh Y Ptel Hed,Mthemtics Deprtment,VPnd RPTPScience College US1CMTH UNIT 1 Curvture Let f : I R be sufficiently
More information7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus
7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e
More information, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF
DOWNLOAD FREE FROM www.tekoclsses.com, PH.: 0 903 903 7779, 98930 5888 Some questions (Assertion Reson tpe) re given elow. Ech question contins Sttement (Assertion) nd Sttement (Reson). Ech question hs
More informationEigen Values and Eigen Vectors of a given matrix
Engineering Mthemtics 0 SUBJECT NAME SUBJECT CODE MATERIAL NAME MATERIAL CODE : Engineering Mthemtics I : 80/MA : Prolem Mteril : JM08AM00 (Scn the ove QR code for the direct downlod of this mteril) Nme
More informationThomas Whitham Sixth Form
Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos
More information/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2
SET I. If the locus of the point of intersection of perpendiculr tngents to the ellipse x circle with centre t (0, 0), then the rdius of the circle would e + / ( ) is. There re exctl two points on the
More informationAlgebra II Notes Unit Ten: Conic Sections
Syllus Ojective: 10.1 The student will sketch the grph of conic section with centers either t or not t the origin. (PARABOLAS) Review: The Midpoint Formul The midpoint M of the line segment connecting
More informationFORM FIVE ADDITIONAL MATHEMATIC NOTE. ar 3 = (1) ar 5 = = (2) (2) (1) a = T 8 = 81
FORM FIVE ADDITIONAL MATHEMATIC NOTE CHAPTER : PROGRESSION Arithmetic Progression T n = + (n ) d S n = n [ + (n )d] = n [ + Tn ] S = T = T = S S Emple : The th term of n A.P. is 86 nd the sum of the first
More informationLinear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically.
Liner Inequlities: Ech of the following crries five mrks ech:. Solve the system of equtions grphiclly. x + 2y 8, 2x + y 8, x 0, y 0 Solution: Considerx + 2y 8.. () Drw the grph for x + 2y = 8 by line.it
More informationSpace Curves. Recall the parametric equations of a curve in xyplane and compare them with parametric equations of a curve in space.
Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xyplne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)
More informationJEE Advnced Mths Assignment Onl One Correct Answer Tpe. The locus of the orthocenter of the tringle formed the lines (+P) P + P(+P) = 0, (+q) q+q(+q) = 0 nd = 0, where p q, is () hperol prol n ellipse
More informationR(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of
Higher Mthemtics Ojective Test Prctice ook The digrm shows sketch of prt of the grph of f ( ). The digrm shows sketch of the cuic f ( ). R(, 8) f ( ) f ( ) P(, ) Q(, ) S(, ) Wht re the domin nd rnge of
More informationAPPLICATIONS OF DEFINITE INTEGRALS
Chpter 6 APPICATIONS OF DEFINITE INTEGRAS OVERVIEW In Chpter 5 we discovered the connection etween Riemnn sums ssocited with prtition P of the finite closed intervl [, ] nd the process of integrtion. We
More informationEllipse. 1. Defini t ions. FREE Download Study Package from website: 11 of 91CONIC SECTION
FREE Downlod Stud Pckge from wesite: www.tekoclsses.com. Defini t ions Ellipse It is locus of point which moves in such w tht the rtio of its distnce from fied point nd fied line (not psses through fied
More informationChapter 1: Logarithmic functions and indices
Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4
More informationTime : 3 hours 03  Mathematics  March 2007 Marks : 100 Pg  1 S E CT I O N  A
Time : hours 0  Mthemtics  Mrch 007 Mrks : 100 Pg  1 Instructions : 1. Answer ll questions.. Write your nswers ccording to the instructions given below with the questions.. Begin ech section on new
More informationGeometrical Applications of Integration
Engineering Mthemtics through Applictions Geometricl Applictions of Integrtion. INTRODUCTION In generl, we consider the integrtion s the inverse of differentition. In the epression of the sum, f (), f
More informationChapter 9 Definite Integrals
Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished
More informationSection 7.1 Area of a Region Between Two Curves
Section 7.1 Are of Region Between Two Curves White Bord Chllenge The circle elow is inscried into squre: Clcultor 0 cm Wht is the shded re? 400 100 85.841cm White Bord Chllenge Find the re of the region
More information1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D
. If * is the opertion defined by *b = b for, b N, then ( * ) * is equl to (A) 8 (B) 5 (C) 6 (D) 64 (E) 4. The domin of the function ( 9)/( ),if f( ) = is 6, if = (A) (0, ) (B) (, ) (C) (, ) (D) (, )
More informationCHAPTER : INTEGRATION Content pge Concept Mp 4. Integrtion of Algeric Functions 4 Eercise A 5 4. The Eqution of Curve from Functions of Grdients. 6 Ee
ADDITIONAL MATHEMATICS FORM 5 MODULE 4 INTEGRATION CHAPTER : INTEGRATION Content pge Concept Mp 4. Integrtion of Algeric Functions 4 Eercise A 5 4. The Eqution of Curve from Functions of Grdients. 6 Eercise
More informationMATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A,B and C. SECTION A
MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. TIME : 3hrs M. Mrks.75 Note: This question pper consists of three sections A,B nd C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. X = ) Find the eqution
More informationPROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by
PROPERTES OF RES Centroid The concept of the centroid is prol lred fmilir to ou For plne shpe with n ovious geometric centre, (rectngle, circle) the centroid is t the centre f n re hs n is of smmetr, the
More informationGeometric and Mechanical Applications of Integrals
5 Geometric nd Mechnicl Applictions of Integrls 5.1 Computing Are 5.1.1 Using Crtesin Coordintes Suppose curve is given by n eqution y = f(x), x b, where f : [, b] R is continuous function such tht f(x)
More informationMATHEMATICS PART A. 1. ABC is a triangle, right angled at A. The resultant of the forces acting along AB, AC
FIITJEE Solutions to AIEEE MATHEMATICS PART A. ABC is tringle, right ngled t A. The resultnt of the forces cting long AB, AC with mgnitudes AB nd respectively is the force long AD, where D is the AC foot
More informationTopics Covered AP Calculus AB
Topics Covered AP Clculus AB ) Elementry Functions ) Properties of Functions i) A function f is defined s set of ll ordered pirs (, y), such tht for ech element, there corresponds ectly one element y.
More informationFINALTERM EXAMINATION 9 (Session  ) Clculus & Anlyticl GeometryI Question No: ( Mrs: )  Plese choose one f ( x) x According to PowerRule of differentition, if d [ x n ] n x n n x n n x + ( n ) x n+
More informationy = f(x) This means that there must be a point, c, where the Figure 1
Clculus Investigtion A Men Slope TEACHER S Prt 1: Understnding the Men Vlue Theorem The Men Vlue Theorem for differentition sttes tht if f() is defined nd continuous over the intervl [, ], nd differentile
More informationCh AP Problems
Ch. 7.7. AP Prolems. Willy nd his friends decided to rce ech other one fternoon. Willy volunteered to rce first. His position is descried y the function f(t). Joe, his friend from school, rced ginst him,
More informationI. Equations of a Circle a. At the origin center= r= b. Standard from: center= r=
11.: Circle & Ellipse I cn Write the eqution of circle given specific informtion Grph circle in coordinte plne. Grph n ellipse nd determine ll criticl informtion. Write the eqution of n ellipse from rel
More informationHYPERBOLA. AIEEE Syllabus. Total No. of questions in Ellipse are: Solved examples Level # Level # Level # 3..
HYPERBOLA AIEEE Sllus. Stndrd eqution nd definitions. Conjugte Hperol. Prmetric eqution of te Hperol. Position of point P(, ) wit respect to Hperol 5. Line nd Hperol 6. Eqution of te Tngent Totl No. of
More informationMTH 416a Trigonometry
MTH 416 Trigonometry Level 4 [UNIT 5 REVISION SECTION ] I cn identify the opposite, djcent nd hypotenuse sides on rightngled tringle. Identify the opposite, djcent nd hypotenuse in the following rightngled
More informationCalculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.
Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite
More informationJUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson
JUST THE MATHS UNIT NUMBER 13.6 INTEGRATION APPLICATIONS 6 (First moments of n rc) by A.J.Hobson 13.6.1 Introduction 13.6. First moment of n rc bout the yxis 13.6.3 First moment of n rc bout the xxis
More information7.1 Integral as Net Change Calculus. What is the total distance traveled? What is the total displacement?
7.1 Integrl s Net Chnge Clculus 7.1 INTEGRAL AS NET CHANGE Distnce versus Displcement We hve lredy seen how the position of n oject cn e found y finding the integrl of the velocity function. The chnge
More information2. VECTORS AND MATRICES IN 3 DIMENSIONS
2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2dimensionl Vectors x A point in 3dimensionl spce cn e represented y column vector of the form y z zxis yxis z x y xxis Most of the
More informationChapter 6 Techniques of Integration
MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln
More information10 Vector Integral Calculus
Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve
More informationMathematics Extension 2
00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mthemtics Etension Generl Instructions Reding time 5 minutes Working time hours Write using blck or blue pen Bordpproved clcultors my be used A tble of stndrd
More information5.2 Volumes: Disks and Washers
4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of crosssection or slice. In this section, we restrict
More informationA REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus
More informationThe problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.
ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion
More informationAlg. Sheet (1) Department : Math Form : 3 rd prep. Sheet
Ciro Governorte Nozh Directorte of Eduction Nozh Lnguge Schools Ismili Rod Deprtment : Mth Form : rd prep. Sheet Alg. Sheet () [] Find the vlues of nd in ech of the following if : ) (, ) ( 5, 9 ) ) (,
More informationMath 100 Review Sheet
Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s
More informationSection 6.1 Definite Integral
Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined
More informationThings to Memorize: A Partial List. January 27, 2017
Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors  Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved
More informationSuppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = 2.
Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot
More informationAPPLICATIONS OF THE DEFINITE INTEGRAL
APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its crosssection in plne pssing through
More informationLesson 1: Quadratic Equations
Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring
More informationImproper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.
Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:
More informationr = cos θ + 1. dt ) dt. (1)
MTHE 7 Proble Set 5 Solutions (A Crdioid). Let C be the closed curve in R whose polr coordintes (r, θ) stisfy () Sketch the curve C. r = cos θ +. (b) Find pretriztion t (r(t), θ(t)), t [, b], of C in polr
More informationPARABOLA EXERCISE 3(B)
PARABOLA EXERCISE (B). Find eqution of the tngent nd norml to the prbol y = 6x t the positive end of the ltus rectum. Eqution of prbol y = 6x 4 = 6 = / Positive end of the Ltus rectum is(, ) =, Eqution
More informationChapter 9. Arc Length and Surface Area
Chpter 9. Arc Length nd Surfce Are In which We ppl integrtion to stud the lengths of curves nd the re of surfces. 9. Arc Length (Tet 547 553) P n P 2 P P 2 n b P i ( i, f( i )) P i ( i, f( i )) distnce
More informationEdexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks
Edexcel GCE Core Mthemtics (C) Required Knowledge Informtion Sheet C Formule Given in Mthemticl Formule nd Sttisticl Tles Booklet Cosine Rule o = + c c cosine (A) Binomil Series o ( + ) n = n + n 1 n 1
More informationTriangles The following examples explore aspects of triangles:
Tringles The following exmples explore spects of tringles: xmple 1: ltitude of right ngled tringle + xmple : tringle ltitude of the symmetricl ltitude of n isosceles x x  4 +x xmple 3: ltitude of the
More information10.5. ; 43. The points of intersection of the cardioid r 1 sin and. ; Graph the curve and find its length. CONIC SECTIONS
654 CHAPTER 1 PARAETRIC EQUATIONS AND POLAR COORDINATES ; 43. The points of intersection of the crdioid r 1 sin nd the spirl loop r,, cn t be found ectl. Use grphing device to find the pproimte vlues of
More informationDrill Exercise Find the coordinates of the vertices, foci, eccentricity and the equations of the directrix of the hyperbola 4x 2 25y 2 = 100.
Drill Exercise  1 1 Find the coordintes of the vertices, foci, eccentricit nd the equtions of the directrix of the hperol 4x 5 = 100 Find the eccentricit of the hperol whose ltusrectum is 8 nd conjugte
More informationMH CET 2018 (QUESTION WITH ANSWER)
( P C M ) MH CET 8 (QUESTION WITH ANSWER). /.sec () + log ()  log (3) + log () Ans. ()  log MATHS () 3 c + c C C A cos + cos c + cosc + + cosa ( + cosc ) + + cosa c c ( + + ) c / / I tn  in sec  in
More informationFirst Semester Review Calculus BC
First Semester Review lculus. Wht is the coordinte of the point of inflection on the grph of Multiple hoice: No lcultor y 3 3 5 4? 5 0 0 3 5 0. The grph of piecewiseliner function f, for 4, is shown below.
More informationEngg. Math. I (UnitII)
Dr. Stish Shukl of 7 Engg. Mth. I UnitII) Integrl Clculus iemnn Integrl) The ide. Suppose, f be continuous function defined on [, b nd we wnt to clculte the re bounded by this function with the is from
More informationSection 14.3 Arc Length and Curvature
Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in
More informationDefinite integral. Mathematics FRDIS MENDELU
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the
More informationThe area under the graph of f and above the xaxis between a and b is denoted by. f(x) dx. π O
1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the xxis etween nd is denoted y f(x) dx nd clled the
More informationSection 4: Integration ECO4112F 2011
Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic
More information15  TRIGONOMETRY Page 1 ( Answers at the end of all questions )
 TRIGONOMETRY Pge P ( ) In tringle PQR, R =. If tn b c = 0, 0, then Q nd tn re the roots of the eqution = b c c = b b = c b = c [ AIEEE 00 ] ( ) In tringle ABC, let C =. If r is the inrdius nd R is the
More informationu(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.
Lecture 4 Complex Integrtion MATHGA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex
More informationCalculus 2: Integration. Differentiation. Integration
Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is
More informationDefinite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30
Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion  re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function
More informationIndefinite Integral. Chapter Integration  reverse of differentiation
Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the
More information10.2 The Ellipse and the Hyperbola
CHAPTER 0 Conic Sections Solve. 97. Two surveors need to find the distnce cross lke. The plce reference pole t point A in the digrm. Point B is meters est nd meter north of the reference point A. Point
More informationQUADRATIC EQUATIONS OBJECTIVE PROBLEMS
QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.
More informationMath 0230 Calculus 2 Lectures
Mth Clculus Lectures Chpter 9 Prmetric Equtions nd Polr Coordintes Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition Section 91 Prmetric Curves
More informationA LEVEL TOPIC REVIEW. factor and remainder theorems
A LEVEL TOPIC REVIEW unit C fctor nd reminder theorems. Use the Fctor Theorem to show tht: ) ( ) is fctor of +. ( mrks) ( + ) is fctor of ( ) is fctor of + 7+. ( mrks) +. ( mrks). Use lgebric division
More informationELLIPSE. Standard equation of an ellipse referred to its principal axes along the coordinate axes is. ( a,0) A'
JMthemtics LLIPS. STANDARD QUATION & DFINITION : Stndrd eqution of n ellipse referred to its principl es long the coordinte es is > & = ( e ) = e. Y + =. where where e = eccentricit (0 < e < ). FOCI
More information(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence
Problem ( points) Find the vector eqution of the line tht joins points on the two lines L : r ( + t) i t j ( + t) k L : r t i + (t ) j ( + t) k nd is perpendiculr to both those lines. Find the set of ll
More information2.4 Linear Inequalities and Interval Notation
.4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or
More informationBridging the gap: GCSE AS Level
Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions
More informationCHAPTER 6 APPLICATIONS OF DEFINITE INTEGRALS
CHAPTER 6 APPLICATIONS OF DEFINITE INTEGRALS 6. VOLUMES USING CROSSSECTIONS. A() ;, ; (digonl) ˆ Èˆ È V A() d d c d 6 (dimeter) c d c d c ˆ 6. A() ;, ; V A() d d. A() (edge) È Š È Š È ;, ; V A() d d 8
More informationChapter 6 Notes, Larson/Hostetler 3e
Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn
More information1 ELEMENTARY ALGEBRA and GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE
ELEMENTARY ALGEBRA nd GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE Directions: Study the exmples, work the prolems, then check your nswers t the end of ech topic. If you don t get the nswer given, check
More information10. AREAS BETWEEN CURVES
. AREAS BETWEEN CURVES.. Ares etween curves So res ove the xxis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in
More informationGoals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite
Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite
More informationDefinite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +
Definite Integrls 5 The re under curve cn e pproximted y dding up the res of rectngles. Exmple. Approximte the re under y = from x = to x = using equl suintervls nd + x evluting the function t the lefthnd
More informationFarey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University
U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions
More informationChapter 7: Applications of Integrals
Chpter 7: Applictions of Integrls 78 Chpter 7 Overview: Applictions of Integrls Clculus, like most mthemticl fields, egn with tring to solve everd prolems. The theor nd opertions were formlized lter. As
More informationSession Trimester 2. Module Code: MATH08001 MATHEMATICS FOR DESIGN
School of Science & Sport Pisley Cmpus Session 056 Trimester Module Code: MATH0800 MATHEMATICS FOR DESIGN Dte: 0 th My 06 Time: 0.00.00 Instructions to Cndidtes:. Answer ALL questions in Section A. Section
More informationAnalytically, vectors will be represented by lowercase boldface Latin letters, e.g. a, r, q.
1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples
More informationYear 12 Mathematics Extension 2 HSC Trial Examination 2014
Yer Mthemtics Etension HSC Tril Emintion 04 Generl Instructions. Reding time 5 minutes Working time hours Write using blck or blue pen. Blck pen is preferred. Bordpproved clcultors my be used A tble of
More informationSketch graphs of conic sections and write equations related to conic sections
Achievement Stndrd 909 Sketch grphs of conic sections nd write equtions relted to conic sections Clculus.5 Eternll ssessed credits Sketching Conics the Circle nd the Ellipse Grphs of the conic sections
More informationLoudoun Valley High School Calculus Summertime Fun Packet
Loudoun Vlley High School Clculus Summertime Fun Pcket We HIGHLY recommend tht you go through this pcket nd mke sure tht you know how to do everything in it. Prctice the problems tht you do NOT remember!
More informationMA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations
LESSON 0 Chpter 7.2 Trigonometric Integrls. Bsic trig integrls you should know. sin = cos + C cos = sin + C sec 2 = tn + C sec tn = sec + C csc 2 = cot + C csc cot = csc + C MA 6200 Em 2 Study Guide, Fll
More informationCHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx
CHAPTER 0 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS 0.. PARAMETRIC FUNCTIONS A) Recll tht for prmetric equtions,. B) If the equtions x f(t), nd y g(t) define y s twicedifferentile function of x, then t
More informationIntegration Techniques
Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u
More information